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On Out-of-Sample Statistics for Time-Series*

François Gingras†, Yoshua Bengio‡, and Claude Nadeau§

Résumé / Abstract

Cet article étudie une statistique hors-échantillon pour la prédiction de séries
temporelles qui est analogue à la très utilisée statistique R2 de l'ensemble
d'entraînement (in-sample). Nous proposons et étudions une méthode qui estime la
variance de cette statistique hors-échantillon. Nous suggérons que la statistique hors-
échantillon est plus robuste aux hypothèses distributionnelles et asymptotiques pour
plusieurs tests faits pour les statistiques sur l'ensemble d'entraînement (in-sample). De
plus, nous affirmons qu'il peut être plus important, dans certains cas, de choisir un
modèle qui généralise le mieux possible plutôt que de choisir les paramètres qui sont
le plus proches des vrais paramètres.  Des expériences comparatives furent réalisées
sur des séries financières (rendements journaliers et mensuels de l'indice du TSE300).
Les expériences réalisées pour plusieurs horizons de prédictions, et nous étudions la
relation entre la prédictibilité (hors-échantillon), la variabilité de la statistique R2 hors-
échantillon, et l'horizon de prédiction.

This paper studies an out-of-sample statistic for time-series prediction that is
analogous to the widely used R2 in-sample statistic. We propose and study methods to
estimate the variance of this out-of-sample statistic. We suggest that the out-of-sample
statistic is more robust to distributional and asymptotic assumptions behind many
tests for in-sample statistics. Furthermore we argue that it may be more important in
some cases to choose a model that generalizes as well as possible rather than choose
the parameters that are closest to the true parameters. Comparative experiments are
performed on a financial time-series (daily and monthly returns of the TSE300 index).
The experiments are performed for varying prediction horizons and we study the
relation between predictibility (out-of-sample R2), variability of the out-of-sample R2

statistic, and the prediction horizon.
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1 Introduction

The purpose of the analysis of time-series such as financial time-series is often to take
decisions based on data DT = {z1, . . . , zT}, with Zt = (Xt, Yt). In this paper, we will
focus on decisions which take the form of a prediction ŷT+h of the future value of
some variable 1, say YT+h. The quality of the prediction will be judged a posteriori
according to some loss function, such as the squared difference between the prediction
ŷT+h and the realization YT+h of the predicted variable (ŷT+h − YT+h)

2. A common
approach is to use the historical data DT to infer a function f that takes as input
the value of some summarizing information Xt and produces as output ŷt = f(Xt),
which in the case of the above quadratic loss function would be an estimate of the
conditional expectation E[Yt|Xt]. The hope is that if this function worked well on
observed past pairs (xt, yt), it should work well on (XT+h, YT+h)

2.

How should we choose the function f? A classical approach is to assume a
parametrized class of functions, like affine functions, estimate the value of these
parameters by maximum likelihood or least squares. Then the model is accessed
via goodness-of-fit tests and statistical tests to verify if these parameters differ sig-
nificantly from the value that would be consistent with a null hypothesis (e.g., the
parameters of the regression are significantly different from zero, so that there is re-
ally a linear dependency between the X’s and the Y ’s). In particular, these tests are
important to know whether one should use the proposed model at all, or to decide
among several models.

In this paper we will consider alternative approaches to address the last question,
i.e., how a model should be validated and how several models should be compared.
It is very satisfying to obtain a result on the true value of the parameters (e.g.,
to use an efficient estimator, which converges as fast as possible to the true value
of the parameters). But in many applications of time-series analysis, the end-user
of the analysis may be more interested in knowing whether the model is going to
work well, i.e., to generalize well to the future cases. In fact, we will argue that
sometimes (especially when data is scarce), the two objectives (estimating the true
parameters or choosing the model that generalizes better) may yield very different
results. Another fundamental justification for the approach that we are putting
forward is that we may not be sure that the true distribution of the data has the
form (e.g. linear, Gaussian, etc...) that has been assumed. Therefore it may not be
meaningful to talk about the true value of the parameters, in this case. What may
be more appropriate is the question of generalization performance: will the model

1In this paper we will normally use upper case for random variables and lower case for their
value.

2Obviously ŷT+h = f(XT+h) is computable only if XT+h is available. We will typically consider
lagged variables so that XT+h is available at “time” T if X is lagged by an amount greater or equal
to h.
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yield good predictions in the future? where the notion of “good” can be used to
compare two models. To obtain answers to such questions, we will consider statistics
that measure out-of-sample performance, i.e., measured on data that was not
used to form the prediction function. This contrast with the in-sample R2 used in
predictability tests [Campbell et al., 1997, Kaul, 1996].

Using a measure of performance based on out-of-sample errors is an approach gaining
in popularity. In econometrics, Diebold and Mariano [Diebold and Mariano, 1995]
are using out-of-sample errors (or predictive performances) to build tests on ac-
curacy measures. In the machine learning community, it is common to use such
measures of performance. Splitting the data into a training subset and a test sub-
set is a popular option. For smaller data sets, K-fold cross-validation is preferred
[Efron and Tibshirani, 1993]. The above methods may not be applicable to sequen-
tial data, and in the non-stationary case may yield optimistic estimates.A more honest
estimate can be obtained with a sequential cross-validation procedure, described
in this paper. This estimate essentially attempts to measure the predictability of the
time-series when a particular class of models is used. In this context, what the ana-
lyst will try to choose is not just a function f(xt), but a functional F that maps
historical data Dt into such a function (and will be applied to many consecutive time
steps, as more historical data is gathered).

The objective of this paper is three-fold. First, establish a distinction between two
apparently close null hypotheses: (1) no relationship between the inputs and the
outputs and (2) no better predictive power of a given model with respect to a naive
model. Second, we propose methods to test the second null hypothesis. Third, we
show that these two types of tests yield very different results on commonly studied
financial returns data.

In section 2, we present the classical notion of generalization error, empirical risk min-
imization, and cross-validation, and we extend these notions to sequential data. We
also present the notion of a “naive model” used to establish a comparison benchmark
(and null hypotheses).

In section 3, we introduce a measure of forecastibility, Ro, that is related to the one
defined by Granger and Newbold [Granger and Newbold, 1976]. Its estimator, R̂o, is
presented.

Section 4 describes the financial time-series data and presents some preliminary re-
sults.

In section 5, we test the hypothesis of non-relation between the inputs and the out-
puts. Although this hypothesis is not really what we want to test, it allows us to
nicely introduce some difficult issues with the data at hand, such as dependency in-
duced by overlapping, and the type of methodologies used later on, including the
bootstrap. Furthermore, we will compare the results obtained on that test and the
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test concerning generalization error. Concerning the no-dependency test, we perform
a simulation study to compare the power of in-sample and out-of-sample statistics.

Section 6 aims at assessing whether inputs may be used to produce forecasts that
would outperform a naive forecast. Following section 3, we test if Ro = 0 against
the alternative that it is positive. We do so for different prediction horizons, using
the statistic R̂0 and various bootstrap schemes. The results are compared to those
obtained when trying to reject the null hypothesis of no dependency, allowing us to
show a notable distinction between the absence of relationship between inputs and
outputs and the inability of inputs to forecast outputs.

We conclude the paper with a discussion of the results in section 7.

2 Expected Risk and Sequential Validation

This section reviews notions from the generalization theory of Vapnik [Vapnik, 1995],
and it presents an extension to sequential data of the concepts of generalization error
and cross-validation. We also define a “naive” model that will be used as a reference
for the Ro statistic.

First let us consider the usual i.i.d. case [Vapnik, 1995]. Let Z = (X,Y ) be a
random variable with an unknown density P (Z), and let the training set Dl be a
set of l examples z1, . . . , zl drawn independently from this distribution. In our case,
we will suppose that X ∈ Rn and Y ∈ R. Let F be a set of functions from Rn

to R. A measure of loss is defined which specifies how well a particular function
f ∈ F performs the generalization task for a particular Z: Q(f, Z) is a functional
from F × Rn+1 to R. For example, in this paper we will use the quadratic error
Q(f, Z) = (Y − f(X))2. The objective is to find a function f ∈ F that minimizes
the expectation of the loss Q(f, Z), that is the generalization error of f :

G(f) = E[Q(f, Z)] =
∫
Q(f, z)P (z)dz (1)

Since the density P (z) is unknown, we can’t measure or even less minimize G(f), but
we can minimize the corresponding empirical error:

Gemp(f,Dl) =
1

l

∑
zi∈Dl

Q(f, zi) =
1

l

l∑
i=1

Q(f, zi). (2)

When f is chosen independently of Dl, this is an unbiased estimator of G(f),
since E[Gemp(f,Dl)] = G(f). Empirical risk minimization [Vapnik, 1982,
Vapnik, 1995] simply chooses

f = F (Dl) = argminf∈FGemp(f,Dl)
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where F (Dl) is the functional that maps a data set into a decision function.

An empirical estimate of G(F (D)), the generalization error of a functional F , can
be obtained by partitioning the data in two subsets: a training subset D1 to pick
f = F (D1) ∈ F which minimizes the empirical error in D1, and a held-out or test
subset D2 which gives an unbiased estimate of G(F (D1)). The latter is a slightly
pessimistic estimate of G(F (D)), the generalization error associated to a functional
F when applied to D = D1∪D2, and may be poor for small data sets. When there is
not much data, it is preferable but computationally more expensive to use the K-fold
cross-validation procedure [Bishop, 1995, Efron and Tibshirani, 1993].

However, in the case where the data are not i.i.d., the results of learning theory are
not directly applicable, nor are the procedures for estimating generalization error.

Consider a sequence of points z1, z2, ..., with zt ∈ Rn+1, generated by an unknown
process such that the zt’s may be dependent and have different distributions. Never-
theless, at each time step t, in order to make a prediction, we are allowed to choose a
function ft from a set of functions F using the past observations zt1 = (z1, z2, . . . , zt),
i.e., we choose ft = F (zt1). In our applications zt is a pair (xt, yt) and the functions
f ∈ F take an x as input to take a decision that will be evaluated against a y through
the loss function Q(f, z), with z = (x, y). In this paper, we consider the quadratic
loss

Q(f, Zt) = Q(f, (Xt, Yt)) = (Yt − f(Xt))
2.

We then define the expected generalization error Gt for the decision at time t as

Gt(f) = E[Q(f, Zt+h)|Zt
1] =

∫
Q(f, zt+h)Pt+h(zt+h|Zt

1)dzt+h. (3)

Here we call h the horizon because it corresponds to the prediction horizon in the
case of prediction problems. More generally it is the number of time steps from a
decision to the time when the quality of this decision can be evaluated. The objective
of learning is to find, on the basis of empirical data zt1, the function f ∈ F which has
the lowest expected generalization error Gt(f).

The process Zt may be non-stationary, but as long as the generalization errors made
by a good model are rather stable in time, we believe that one can use the data zt1 to
pick a function which has worked well in the past and hope it will work well in the
future.

We will extend the above empirical and generalization error (equations 2 and 1).
However we consider not the error of a single function f but the error associated with
a functional F which maps a data set Dt = zt1 into a function f ∈ F .

Now let us first consider the empirical error which is the analogue for non i.i.d. data
of the K-fold cross-validation procedure. We call it the sequential cross-validation
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procedure and it measures the out-of-sample error of the functional F as follows:

CT (F, zT1 , h,M) = CT (F, zT1 ) =
1

T −M − h+ 1

T−h∑
t=M

Q(F (zt1), zt+h) (4)

where ft = F (zt1) is the choice of the training algorithm using data zt1 (see equation 7
below), and M > 0 is the minimum number of training examples required for F (zM1 )
to provide meaningful results.

We define the generalization error associated to a functional F for decisions or pre-
dictions with a horizon h as follows:

EGen(F ) = E[CT (F, zT1 )] =
∫ 1

T −M − h+ 1

T−h∑
t=M

Q(F (zt1), zt+h)P (zT1 )dzT1

=
1

T −M − h+ 1

T−h∑
t=M

E[Gt(F (Zt
1))] (5)

where P (zT1 ) is the probability of the sequence ZT
1 under the generating process. In

that case, we readily see that (4) is the empirical version of (5), that is (4) estimates
(5) by definition. In the case of the quadratic loss, we have

EGen(F )=

∑T−h
t=M E

[
V ar[F (Zt

1)(Xt+h)− Yt+h|XT
1 ] + E2[F (Zt

1)(Xt+h)− Yt+h|XT
1 ]
]

T −M − h+ 1
(6)

To complete the picture, let us simply mention that the functional F may be chosen
as

F (zt1) = argminf∈FR(f) +
t∑

s=1

Q(f, zs) (7)

where R(f) might be used as a regularizer, to define a preference among the functions
of F , e.g., those that are smoother.

For example, consider a sequence of observations zt = (xt, yt). A simple class of
functions F is the class of “constant” functions, which do not depend on the argument
x, i.e., f(x) = µ. Applying the principle of empirical risk minimization to this class
of function with the quadratic loss Q(f, (xt, yt)) = (yt − f(xt))

2 yields

f constt = F const(zt1) = argminµ

t∑
s=1

(ys − µ)2 = ȳt =
1

t

t∑
s=1

ys, (8)

the historical average of the y’s up to the current time t. We call this “unconditional”
predictor the naive model, and its average out-of-sample error is CT (F const, zT1 ) =

1
T−M−h+1

∑T−h
t=M(ȳt − yt+h)2.

5



3 Comparison of generalization abilities

To compare the generalization ability of two functionals F1 and F2, let us introduce
two measures of performance 3

Do = Do(F1, F2) = EGen(F2)− EGen(F1) = E[CT (F2, z
T
1 )]− E[CT (F1, z

T
1 )], (9)

Ro = Ro(F1, F2) = 1− EGen(F1)

EGen(F2)
= 1− E[CT (F1, z

T
1 )]

E[CT (F2, zT1 )]
=
Do(F1, F2)

EGen(F2)
, (10)

where EGen(.), CT (., .) were discussed in the previous section. Typically, we will
consider cases where F2 ⊂ F1. For example, F2 = F const could serve as benchmark to
a more complexe functional F1. Ro and Do will be negative, null or positive according
to whether the functional F1 generalizes worse, as well or better than F2. Related
definitions of measure of forecast accuracy have been proposed by many authors. See
[Diebold and Lopez, 1996] for a review and [Diebold and Kilian, 1997] for a general
discussion. Note that, unlike Do, Ro is unitless and therefore easier to interpret.

Broadly speaking, for an arbitrary F , when Ro(F, F
const) or Do(F, F

const) is pos-
itive it means that there is a dependency between the inputs and the
outputs. In other words, when there is no dependency and we use a model (F) with
more capacity (e.g., degrees of freedom, F ⊃ F const) than the naive model, then Ro

will be negative. The converse is not true, i.e. Ro < 0 does not imply no depen-
dency but suggests that the dependency (signal) is small relative to overall random
variation (noise). So in cases where the “signal-to-noise-ratio” is small, it may be
preferable not to try to capture the signal to make predictions.

The empirical versions or estimators of Ro and Do are the statistics

D̂o = D̂o(F1, F2) = CT (F2, z
T
1 )− CT (F1, z

T
1 ) =

∑T−h
t=M(eF2

t )2 −∑T−h
t=M(eF1

t )2

T −M − h+ 1
(11)

and

R̂o = R̂o(F1, F2) = 1− CT (F1, z
T
1 )

CT (F2, zT1 )
= 1−

∑T−h
t=M(eF1

t )2∑T−h
t=M(eF2

t )2
,=

D̂o(F1)

CT (F2, zT1 )
(12)

where
eFt = yt+h − F (zt1)(xt+h)

denotes the prediction error made on yt+h by the functional F . This empirical R̂o

(D̂o) is a “noisy” estimate (due to the finite sample), and thus might be positive even
when Ro (Do) is negative (or vice-versa). While E[D̂o] = Do, E[R̂o] 6= Ro because the

3Arguments of Ro and Do will often be omitted to ease notation.
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expection of a ratio is not equal to the ratio of expectations. In fact we should expect
R̂o to underestimate Ro. This means that R̂o tends to be a conservative estimate
of Ro, which is not undesirable. It is therefore important to analyze how “noisy”
this estimate is in order to conclude on the dependency between the inputs and the
outputs. This matter will be addressed in a later section.

An example may clarify all of the above. Take n = 1 and let F lin be the set of affine
functions, i.e. linear models f(x) = α+ βx. Sticking with the quadratic loss with no
regularization, we have that

f lint (x) = F lin(zt1)(x) = α̂t + β̂tx,

where (α̂t, β̂t), minimizing
t∑

s=1

(ys − α− βxs)2,

are the least square estimates of the linear regression of ys on xs, s = 1, . . . , t, and
rely only on data known up to time t, i.e. zt1. We thus have

eF
const

t = yt+h − F const(zt1)(xt+h) = yt+h − ȳt,

eF
lin

t = yt+h − F lin(zt1)(xt+h) = yt+h − α̂t − β̂txt+h.

If we assume that the Zt’s are independent with expectation E[Yt|xt] = α+ βxt and
variance V ar[Yt|xt] = σ2, then (6) yields

(T −M − h+ 1)EGen(F const) = σ2
T−h∑
t=M

[
1 +

1

t

]
+ β2

T−h∑
t=M

E[(Xt+h − X̄t)
2]

and

(T −M − h+ 1)EGen(F lin) = σ2
T−h∑
t=M

[
1 +

1

t

]
+ σ2

T−h∑
t=M

E

[
(Xt+h − X̄t)

2∑t
s=1(Xs − X̄t)2

]
,

where X̄t = t−1∑t
s=1 Xs is the mean of the X’s up to Xt. We then see that

Ro(F
lin, F const) is negative, null or positive according to whether β2

σ2 is smaller, e-
qual or greater than

θ =

∑T−h
t=M E

[
(Xt+h−X̄t)2∑t

s=1
(Xs−X̄t)2

]
∑T−h
t=M E[(Xt+h − X̄t)2]

. (13)

This illustrates the comment made earlier regarding the fact that Ro < 0 means that
the “signal-to-noise-ratio” (β

2

σ2 here) is too small for F lin to outperform F const. Thus

if the true generating model has β2

σ2 < θ, a model trained from a class of models with
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β = 0 (the naive model) should be chosen for its better generalization, rather than a
model from a class of models that allows β 6= 0. It also illustrates the point made in
the introduction that when the amount of data is finite, choosing a model according to
its expected generalization error may yield a different answer than choosing a model
that is closest to the true generating model. See also [Vapnik, 1982] (section 8.6) for
an example of the difference in out-of-sample generalization performance between the
model obtained when looking for the true generating model versus choosing the model
which has a better chance to generalize (in this case using bounds on generalization
error, for polynomial regression).

Let us now consider a more complex case where the distribution is closer to the kind of
data studied in this paper. If we assume that E[Yt|xT1 ] = α+βxt and V ar[Yt|xT1 ] = σ2

with Cov[Yt, Yt+k|xT1 ] = 0 whenever |k| ≥ h, then (6) yields

(T −M − h+ 1)EGen(F const) =
T−h∑
t=M

(σ2 + E[V ar[Ȳt|XT
1 ]]) + β2

T−h∑
t=M

E[(Xt+h − X̄t)
2]

and

(T −M − h+ 1)EGen(F lin) =
T−h∑
t=M

(σ2 + E[V ar[Ȳt + β̂t(Xt+h − X̄t)|XT
1 ]]).

We then see that Ro is negative, null or positive according to whether β2

σ2 is smaller ,
equal or greater than

θ =
σ−2∑T−h

t=M E
[
V ar[Ȳt + β̂t(Xt+h − X̄t)|XT

1 ]− V ar[Ȳt|XT
1 ]
]

∑T−h
t=M E[(Xt+h − X̄t)2]

. (14)

Note that it can be shown that the above numerator is free of σ as it involves only
expectations of expressions in Xt’s (like the denominator).

4 The financial data and preliminary results

Experiments on the out-of-sample statistics and related in-sample statistics where
performed on a financial time-series. The data is based on the daily total return,
including capital gain as well as dividends, for the Toronto Stock Exchange TSE300
index, starting in January 1982 up to July 1998. The total return series TRt, t =
0, 1, . . . , 4178, can be described as the result at day t of an initial investment of 1
dollar and the reinvestment of all dividends received.

We construct, for different values of h, the log-return series on a horizon h

rt(h) = log

(
TRt

TRt−h

)
= log(TRt)− log(TRt−h). (15)

8
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Figure 1:
Left: daily logarithm of TSE300 index from January 1982 to end of July 1998.

Right: daily log returns of TSE300 for the same period

Thus rt(h) represents the logarithm of the total return at day t of the past h day(s).

There are 4179 trading days in the sample. We consider that there are twenty-one
trading days per “month” or 252 trading days per year. The real number of trading
days, where the trading activities can occur, can vary slightly from month to month,
depending on holidays or exceptional events, but 21 is a good approximation if we
want to work with a fixed number of trading days per month. A horizon of H months
will mean h = H × 21 days.

Using and predicting returns on a horizon greater than the sampling period creates
an overlapping effect. Indeed, upon defining the daily log-returns

rt = rt(1), t = 1, . . . , 4178,

we can write

rt(h) = log(TRt)− log(TRt−h) =
t∑

s=t−h+1

(log(TRs)− log(TRs−1))

=
t∑

s=t−h+1

rs (16)

as a moving sum of the rt’s.
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log-returns skewness kurtosis
daily -1.22 (0.04) 33.17 (0.08)
monthly -1.13 (0.17) 10.63 (0.35)
quarterly -0.40 (0.30) 3.93 (0.60)

Table 1:
Sample skewness and sample kurtosis of TSE300 daily, monthly and quarterly

log-returns. The statistics and their standard deviations (shown in parenthesis)
have been computed according to formulas described in [Campbell et al., 1997].

We will work on monthly returns as it has been suggested from empirical evi-
dence [Campbell et al., 1997, Fama and French, 1988] that they can be useful for
forecasting, while such results are not documented for daily returns. So our horizons
will be multiples of 21 days. Data are slightly better behaved when we take monthly
returns instead of daily ones. For instance, the daily return series is far from being
normally distributed. It is known that stock indices return distributions present more
mass in their tails than the normal distribution [Campbell et al., 1997]. But returns
over longer horizons get closer to normality, thanks to equation 16 and the central
limit theorem. For example, table 1 shows the sample skewness and kurtosis for the
daily, monthly and quarterly returns. We readily notice that these higher moments
are more in line with those of the normal distribution (skewness=0, kurtosis=3) when
we consider longer term returns instead of daily returns.

Table 1 is the first illustration of the touchy problem of the overlapping effect. For
instance, you will notice that the standard deviation are not the same for daily and
monthly returns. This is because the daily returns statistics are based on r1, . . . , r4178,
whereas their monthly counterparts are based on r21(21), r42(21), . . . r21×198(21), that
is approximatively 21 times fewer points than in the daily case. The reason for this
is that we want independent monthly returns. If we assumed that the daily returns
were independent, then monthly returns would have to be at least one month apart
to be also independent. For instance, r21(21) and r40(21) would not be independent
as they share r20 and r21. Therefore, if we want to access independence of successive
monthly returns, we have to compute the correlation coefficient between rt+21(21)
and rt(21), or between rt+h(h) and rt(h) for more general h’s.

Figure 2 left shows the square of the correlation coefficient obtained on the TSE
data for H = 1, 2, . . . , 24. Figure 2 right depicts the values of R̂o with zt =
(rt+h−1(h), rt+2h−1(h)) obtained on the same data. It measures the ability of the
past H month return to forecast the future H month return. According to the first
plot there appears to be little relationship between past and future returns except,
perhaps, when we aggregate the returns on a period of about one year (H = 12).
Figure 2 right tells a similar story: at best, predictability of future returns seems
possible only for yearly returns or so. But how can we decide (formally) if there is
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Figure 2:
Left: The evolution of squared correlation with the aggregation period suggests that

the stronger input/output relation is for the aggregation period of around a year.
Right: Evolution of R̂o with the aggregation period.

a relationship between past and future returns, and if such a relationship might be
useful for forecasting? This will be the goal of the next section.

5 Testing the hypothesis of no relation between Y

and X

Consider testing the hypothesis that there is no relationship between successive re-
turns of horizon h, i.e. H0 : E[rt(h)|rt−h(h)] = µ. Note that rt(h) and rt−h(h) do
not overlap but are contiguous h day returns. To put it in section 3’s notation, we
have xt = rt+h−1(h) and yt = rt+2h−1(h), so that, for instance, x1 = rh(h) is the first
observable x. We wish to test E[Yt|xt] = µ.

As mentioned in the introduction, this hypothesis is not what we are actually inter-
ested in, but what we do in this section proves to be useful in section 6 as it allows
us to introduce the bootstrap, among other things.

To perform a test of hypothesis, one needs a statistic with a behavior that depends
on whether H0 is true or false. We will mainly consider two statistics here. First we
have Ro that will take smaller values under H0 than otherwise. The other approach
to testing H0 is to notice that if E[rt(h)|rt−h(h)] does not depend on rt−h(h) then
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the correlation between rt−h(h) and rt(h) is null, ρ(rt(h), rt−h(h)) = 0. Thus we will
use ρ̂(rt(h), rt−h(h)), an estimator of ρ(rt(h), rt−h(h)), to test H0 as it will tend to be
closer to 0 under H0 than otherwise.

The second thing needed in a test of hypothesis is the distribution of the chosen
statistic under H0. This may be obtained from theoretical results or approximated
from a bootstrap as explained later. In the case of ρ̂(rt(h), rt−h(h)), we do have such a
theoretical result [Bartlett, 1946, Anderson, 1984, Box and Jenkins, 1970]. First let
us formally define

ρ̂(rt(h), rt−h(h)) =

∑T
2h(rt(h)− r̄(h))(rt−h(h)− r̄(h))∑T

h (rt(h)− r̄(h))2
, (17)

with r̄(h) being the sample mean of rh(h), . . . , rT (h). Assuming that the rt’s are
independent and identically distributed with finite variance then

√
T − h+ 1(ρ̂(rt(h), rt−h(h))− ρ(rt(h), rt−h(h))) −→ N(0,W )

with

W =
∞∑
v=1

(ρv+h + ρv−h − 2ρhρv)
2, (18)

where ρk stands for ρ(rt+k(h), rt(h)). If the rt’s are uncorrelated with constant vari-
ance and the rt(h) are running sums of rt’s as shown in equation 16, then

ρk =
(h− |k|)+

h
(19)

where u+ = max(u, 0). Therefore we have

W =
2h−1∑
v=1

ρ2
v−h =

h−1∑
v=1−h

ρ2
v = 1 + 2h−2

h−1∑
v=1

(h− v)2 = 1 +
(h− 1)(2h− 1)

3h

where the identity 12 +22 +32 + . . .+N2 = N(N+1)(2N+1)
6

was used in the last equality.

Large values of
√

T−h+1
W
|ρ̂(rt(h), rt−h(h))| are unfavorable to H0 and their significance

are obtained from a N(0, 1) table.

The distributions of our out-of-sample statistics are unknown. However we may find
an approximation by simulation (bootstrap). So we have to generate data from the
hypothesis H0 : E[Yt|xt] = µ (i.e. do not depend on xt). This can be done in at least
four ways.

1. Generate a set of independent rt’s and compute the Yt = rt+2h+1(h)’s and the
xt = rt+h+1(h)’s in the usual way.

12



2. Keep the Yt obtained from the actual data, but compute the xt’s as suggested
in 1.

3. Keep the xt’s obtained from the actual data, but compute the Yt as suggested
in 1.

4. Generate a set of independent rt’s and compute the Yt’s. Then generate another
set of rt’s independently of the first set and compute the xt’s.

The generation of the rt’s may come from the empirical distribution of the actual rt’s
(i.e. re-sampling with replacement) or another distribution deemed appropriate. We
have considered both the empirical distribution and the N(0, 1) distribution 4.

We believe that the generation scheme 1 is the most appropriate here since it looks
more like the way the original data was treated: Yt and xt obtained from a single set
of rt’s.

Once we have chosen a simulation scheme, we may obtain as many (B, say) samples as
we want and thus get B independent realizations of the statistic R̂o. We then check if
the out-of-sample statistic will take values that are large even in this case, compared
to the value observed on the original data series. Formally, compute p-value= A

B

where A is the number of simulated R̂o greater or equal to the R̂o computed on the
actual data. This measures the plausibility of H0; small values of p-value indicate
that H0 is not plausible in the light of the actual data observed. Another way to
use the bootstrap values of R̂o is to assume that the distribution of R̂o under H0 is
N(Ê[R̂o], V̂ [R̂o]) where Ê[R̂o] and V̂ [R̂o] are the sample mean and the sample variance
of the B bootstrap values of R̂o. Comparing the actual R̂o to this distribution yields
the normalized bootstrap p-value.

For the scheme 1 method we simply compute the p-value of the observed R̂o under
the null hypothesis of no relationship between the inputs and the outputs, using the
empirical histogram of this statistic over the bootstrap replications. When the p-
value is very small, a more meaningful quantity might be the mean and the standard
deviation of the statistic over the bootstrap replications to provide a z-statistic.

Of course, this bootstrap approach may be used even in the case where the (asymptot-
ic) distribution of a statistic is known. Therefore, we will compute bootstrap p-values
for the statistic ρ̂(rt(h), rt−h(h)) as well as its theoretical p-value for comparison pur-
poses.

4Since R̂o, just like the usual in-sample R2, is location-scale invariant, we don’t have to bother
about matching the mean and variance of the actual series.

13



T ρ Ro Do

250 [-0.106,0.101] (−∞, 0.0012] (−∞, 0.017]
500 [-0.075,0.072] (−∞, 0.0009] (−∞,-0.016]
1000 [-0.052,0.050] (−∞,-0.0011] (−∞,-0.043]
2000 [-0.038,0.035] (−∞,-0.0009] (−∞,-0.069]
4000 [-0.026,0.025] (−∞,-0.0006] (−∞,-0.096]
8000 [-0.019,0.018] (−∞,-0.0004] (−∞,-0.119]

Table 2:
Empirical critical points of three statistics estimated on series of different length.

5.1 Results on artificial data

In order to study different properties of in-sample and out-of-sample statistics, we
have generated artificial data and tested the null hypothesis of no relationship on
them. In this way, we can compare the power of the statistics on the same data set,
where the hypothesis behind the use of the autocorrelation statistic is verified.

We chose an autoregressive process of order 1,

yt = βyt−1 + εt

for which we vary the coefficient β of auto-regression from a range of values be-
tween 0 and 0.1 and where εt is drawn from a normal distribution N(0, 1

5
). We

conduct the tests on the null hypothesis for series of lengths in the set T =
{250, 500, 1000, 2000, 4000, 8000}.
We first generated, for each value of T in T , five thousand series for which β = 0.
For each of these series we construct the empirical distribution of 3 statistics, namely
the autocorrelation ρ̂ (equation 17), the out-of-sample R̂o and D̂o.

From these empirical distributions, we estimated the “acceptance” region at signifi-
cance level 10%, say [L5%, H5%] for ρ̂ and (−∞, H10%] for the out-of-sample statistics
D̂o and R̂o. For the out-of-sample statistics, we chose M = 50 for the minimum
number of training examples (see equation 4). The values of these critical points are
presented in table 2.

Having established the critical points at 10%, we now want to study the power of
these tests, i.e. how each statistic is useful to reject the null hypothesis when the
null hypothesis is false. For this goal, we generated two thousand series for different
value of β, ranging from 0 to 0.1. We estimated on these series the value of the three
statistics considered in table 2, and computed for the different values of β the number
of times each of these statistics are outside the interval delimited by the critical values.
The results are presented in table 3. Note that proportions in table 3 have standard
deviations of at most 1

2
√

2000
= 1.1%. We can observe from this table that the out-
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T ŝ β
0 0.02 0.04 0.06 0.08 0.1

250 ρ 0.10 0.14 0.17 0.24 0.34 0.42
250 Ro 0.10 0.14 0.16 0.23 0.32 0.39
250 Do 0.10 0.14 0.16 0.23 0.32 0.39

500 ρ 0.09 0.15 0.22 0.38 0.54 0.73
500 Ro 0.11 0.14 0.21 0.36 0.51 0.68
500 Do 0.11 0.14 0.21 0.36 0.51 0.69

1000 ρ 0.11 0.17 0.36 0.61 0.82 0.94
1000 Ro 0.11 0.16 0.32 0.57 0.77 0.90
1000 Do 0.11 0.16 0.33 0.57 0.77 0.90

2000 ρ 0.10 0.25 0.58 0.87 0.98 1.00
2000 Ro 0.11 0.22 0.54 0.82 0.96 0.99
2000 Do 0.11 0.23 0.53 0.82 0.96 0.99

4000 ρ 0.11 0.37 0.81 0.98 1.00 1.00
4000 Ro 0.11 0.36 0.78 0.97 1.00 1.00
4000 Do 0.11 0.36 0.78 0.98 1.00 1.00

8000 ρ 0.10 0.53 0.98 1.00 1.00 1.00
8000 Ro 0.10 0.49 0.96 1.00 1.00 1.00
8000 Do 0.10 0.49 0.96 1.00 1.00 1.00

Table 3:
Power of 3 statistics for the hypothesis H0 : β = 0 as a function of T and β.

of-sample statistics R̂o and D̂o are less powerful than in-sample statistics for the test
of Ho : β = 0. For β = 0, powers are around 10% as they should be. It would
appear from these results that when we want to test against the null hypothesis of no
dependency, the classical in-sample tests provide more power. But we must underline
again that this is not the null hypothesis of interest here.

5.2 Discussion of the results on financial data

In all cases B = 1000 bootstrap replications were generated and the out-of-sample
statistic was computed on each of them with M = 50, yielding distributions of R̂o

for the null hypothesis of no relationship between input and output.

For ρ̂(rt(h), rt−h(h)), the pure bootstrap p-values and normalized bootstrap p-values
agree well, as shown in table 4, suggesting that the distribution of ρ̂ is approximatively
normal. However, we note a discrepancy between the theoretical p-values and the
bootstrap p-values, suggesting that the asymptotic mean and/or variance is not a
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proper approximation for small samples. In fact, the mean of the ρ̂ are supposed to
be 0, which is not the case for finite sample. When using the value of mean obtained
by bootstrap to the p-value obtained by the three method are much closer. Regarding
R̂0, we see (table 4) that a similar pattern is observed for the positive R̂0. The pure
bootstrap p-values seem to indicate a possible dependence of the near one year return
on the past year return. Also, in this case, the empirical distributions of the R̂0 are
not normal, the observed skewness on these distribution are systematically negative
with values around −4, hence the normalized p-values should not be trusted. The
theoretical p-values for the out-of-sample statistics are not known.

The table 4 also presents the results of the test conducted on the null hypothesis no
relationship between inputs and outputs using the statistic Do. This test statistics
rejects even more strongly the null hypothesis of no linear dependency
than the test based on R̂o.

6 Test of H0 : Ro = 0

Here we attack the problem we are actually interested in: assessing whether gener-
alizations based on past returns are better than the generalizations of an alternative
model, here the naive (constant) model. We consider linear forecasts, so that we want
to know if F lin generalizes better than F naive.

Its distribution not being known, we will have to turn to the bootstrap method and
simulate values of R̂o computed on samples generated under H0 : Ro = 0 (which is
equivalent to Do = 0). Strictly speaking, we want to solve the equation Do(β) = 0.
We can proceed analytically, as we will do when the Yt and the Xt are different, or
numerically when the Yt are autoregressive. We are using the statistic Do because its
estimator D̂o is without bias.

Consider first the case where

E[Yt|Xt] = α + βXt, (20)

with the Xt is an external covariate series (generated independently from the Yt series,
while the Yt’s are generated conditional on the Xt series).

We saw earlier that this amounts to β2

σ2 being equal to the ratio shown in (14). If we
let the Yt’s (given xT1 ) have the correlation structure shown in (19), we have

E[V ar[Ȳt|XT
1 ]] =

σ2

t2h

h−1∑
s=1−h

(h− |s|)(t− |s|)

=
σ2

t2h

[
ht+ 2

h−1∑
s=1

(h− s)(t− s)
]
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H R̂o pbpv nbpv D̂o pbpv nbpv ρ̂ tpv pbpv nbpv

1 -0.03 0.83 0.67 -0.23 0.95 0.93 0.02 0.74 0.60 0.60
2 -0.31 0.99 0.99 -5.10 0.99 1.00 0.02 0.81 0.67 0.67
3 -0.08 0.68 0.51 -1.86 0.84 0.69 -0.02 0.84 0.95 0.98
4 -0.10 0.64 0.46 -3.19 0.83 0.66 -0.05 0.65 0.87 0.87
5 -0.07 0.30 0.31 -2.97 0.62 0.46 -0.07 0.60 0.72 0.72
6 -0.06 0.24 0.29 -3.37 0.52 0.41 -0.06 0.68 0.87 0.89
7 -0.11 0.42 0.39 -6.31 0.70 0.51 -0.09 0.56 0.78 0.75
8 -0.14 0.49 0.39 -8.79 0.69 0.50 -0.15 0.37 0.55 0.51
9 -0.15 0.47 0.39 -8.51 0.61 0.45 -0.18 0.31 0.48 0.46
10 -0.18 0.52 0.43 -9.65 0.57 0.45 -0.22 0.24 0.38 0.38
11 -0.14 0.38 0.35 -7.63 0.39 0.35 -0.26 0.18 0.27 0.26
12 -0.06 0.15 0.25 -3.48 0.17 0.27 -0.32 0.12 0.21 0.20
13 0.07 0.02 0.14 4.57 0.01 0.22 -0.32 0.14 0.20 0.21
14 0.07 0.04 0.14 4.54 0.03 0.17 -0.28 0.21 0.31 0.31
15 -0.01 0.10 0.19 -0.70 0.10 0.23 -0.23 0.33 0.58 0.55
16 -0.05 0.13 0.24 -3.43 0.14 0.25 -0.17 0.48 0.75 0.71
17 -0.11 0.24 0.29 -8.04 0.27 0.29 -0.13 0.58 0.99 0.96
18 -0.15 0.30 0.31 -11.02 0.31 0.34 -0.09 0.73 0.82 0.86
19 -0.16 0.28 0.32 -12.15 0.30 0.32 -0.05 0.85 0.74 0.75
20 -0.25 0.44 0.39 -20.01 0.44 0.39 -0.04 0.88 0.70 0.69
21 -0.21 0.37 0.37 -17.17 0.37 0.35 -0.04 0.89 0.71 0.70
22 -0.26 0.45 0.38 -20.67 0.45 0.36 -0.02 0.94 0.54 0.55
23 -0.16 0.31 0.32 -13.26 0.33 0.32 0.02 0.92 0.37 0.38
24 -0.09 0.19 0.28 -7.41 0.22 0.28 0.08 0.79 0.28 0.28

Table 4:
Test of the hypothesis of no relationship between inputs and outputs. Three

statistics are used, and for each, pure bootstrap (pbpv) and normalized (nbpv)
p-values are computed. For tests based on ρ̂, we also present the theoretical (tpv)
p-values computed by Bartlett’s formula. The test based on the Do statistic also
give a strong evidence against Ho: no relation between inputs and outputs. The
empirical version used to estimate Do does not suffer of a bias like the empirical

version of Ro.
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=
σ2

t2h

[
ht+ 2

h−1∑
s=1

s(t− h+ s)

]

=
σ2

t2

[
ht− (h2 − 1)

3

]
(21)

and
E[V ar[Ȳt + β̂t(Xt+h − X̄t)|XT

1 ]] = σ2E[c′V c],

where V is a t× t matrix with Vij = (h−|i−j|)+

h
, and c is a t× 1 vector with

ci =
1

t
+

(Xt+h − X̄t)(Xi − X̄t)∑t
j=1(Xj − X̄t)2

, i = 1, . . . , t.

If we let L be a (t + h − 1) × t matrix with Lij = I[0 ≤ i − j < h]/
√
h, then we

may write c′V c as W ′W where W = Lc. This representation is useful if we need
to compute V ar[F lin(Zt

1)(Xt+h)|XT
1 ] = σ2c′V c for various values of t as recursive

relations may be worked out in W.

Due the location-scale invariance of the R̂o mentioned earlier, σ2 and α may be chosen
as one pleases (1 and 0, say). The expectations then depend obviously on the process
generating the Xt’s. The simplest thing to do is to assume that XT

1 ∼ δxT1 , that is

XT
1 can only take the value observed. This makes the expectation easy to work out.

Otherwise, these expectations can be worked out via simulations.

Once XT
1 ’s process, α, β, σ2 have been chosen, we generate ZT

1 = (XT
1 , Y

T
1 ) as follows.

1. Generate XT
1 .

2. Generate ε1, . . . , εT so that the εt’s are independent of XT
1 with V ar[εt] = σ2

and the covariance structure shown in (19). This may be done by generating
independent variates with variance equal to σ2

h
and take their moving sums with

a window of size h.

3. Put Yt = α + βxt−h + εt.

The bootstrap test of H0 : Ro = 0 could be performed by generating B samples in
the way explained above, yielding B bootstrap values of R̂o. These would be used to
compute either a pure bootstrap p-value or a normalized bootstrap p-value.

Needless to say that generating data under H01 : Ro = 0 is more tedious than
generating data under H02 : no relationship between inputs and outputs. Furthermore
the above approach relies heavily on the distributional assumptions of linearity and
the given form of covariance, and we would like to devise a procedure that can be
extended to non-linear relationships, for example.
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To get the distribution of R̂o under H01, we can consider an approximation saying
that the distribution of R̂o − Ro is the same under H01 and H02. We will call this
hypothesis the “shifted distribution” hypothesis (note that this hypothesis can only
be approximately true since the domain of R̂o is (−∞, 1]). This means that we
are assuming that the distribution of R̂o under Ro = 0 has the same shape as its
distribution under β = 0 but is shifted to the right, since Ro < 0 under H0 : β = 0. If
that was the case, and we are going the test the validity of this approximation later,
generating R̂o − 0 under H01 would be the same as simulating R̂o − Ro under H02,
which we have done previously without subtracting off Ro. This Ro can be obtained
either analytically or estimated from the bootstrap as

1−
∑B
b=1 CT (F lin, ZT

1 (b))∑B
b=1 CT (F naive, ZT

1 (b))
.

Note, to make the notation clear, that the bootstrap R̂o’s are simply 1 −
CT (F lin,ZT1 (b))

CT (Fnaive,ZT1 (b))
, b = 1, . . . , B. From these R̂o−Ro’s, we obtain the bootstrap p-values

and the normalized bootstrap p-values as usual. Note that the bootstrap p-values for
H01 and H02 are the proportion of the R̂o’s (generated under H02) that are greater
than R̂o(observed) + Ro and R̂o(observed) respectively. Since Ro < 0 under H02, we
see that p-value(H02) ≤ p-value(H01).

6.1 Discussion of the results on artificial data

We present in this section results obtained by two approach. One consist to approx-
imate the distribution of R̂o under the null R̂o = 0 by shifting the distribution of R̂o

already obtained with β = 0. The second consist to generate the distribution of R̂o

with and approximation of the value of β associate with R̂o = 0.

In table 5 we show the power of the R̂o statistic to reject the null hypothesis Ro = 0
with a 10% level, for various values of β. The simulations are conducted on the
artificial data described in section 5.1. Critical values are those of table 2 except that
they must be shifted to the right by 0.0084, 0.0052, 0.0032, 0.0019, 0.0011 and 0.0006
for T = 250, 500, 1000, 2000, 4000, 8000 respectively. Comparing to table 3 of section
5.1 we see that, as expected, the hypothesis Ro = 0 is more difficult to reject than
the hypothesis of no relation between inputs and outputs.

We also estimate graphically the value of β for which the autoregressive model gen-
erate data with R̂o = 0, for a given length of the series. To do this, we plot the
values of D̂o as a function of the values of β, for each length of the series considered
previously. We found the value of β for which the autoregressive model will give a
R̂o = 0, called “critical beta” (βc), are shown in table 6.

After having obtained the critical value of β, we simulated, for each length in T ,
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T \β 0 0.02 0.04 0.06 0.08 0.1

250 0.03 0.05 0.07 0.11 0.18 0.22
500 0.02 0.04 0.08 0.16 0.29 0.45
1000 0.02 0.04 0.13 0.28 0.51 0.74
2000 0.01 0.04 0.20 0.53 0.81 0.95
4000 0.01 0.07 0.42 0.86 0.98 1.00
8000 0.01 0.15 0.74 0.99 1.00 1.00

Table 5:
With the “shifted distribution” hypothesis, this table show the power of the R̂o

statistic to reject the null hypothesis Ro = 0 with a 10% level, for various
alternative hypotheses corresponding to different values of β. The values in bold

correspond to the conditions where we know that the null hypothesis is false.
Observe than we are doing an error in rejecting the null hypothesis when it is true

(e.g. T=250 and β=0.6 and 0.8).

T 250 500 1000 2000 4000 8000
βc 0.093 0.073 0.058 0.043 0.033 0.025

Table 6:
Empirical value of βc associate with Ro = 0 on artificial data.

5000 series according to the autoregressive model. We compare the empirical distri-
butions of R̂o obtained here to the empirical distributions obtained by shifting the
distributions of R̂o obtained under β = 0. Under the approximation saying that
the distribution of R̂o − Ro is the same under H01 and H02, the distributions must
coincide.

We can observe from figure 3 that the empirical distributions of R̂o obtained by
shifting the distribution generated with β = 0 and the distribution of the R̂o generated
with β = βc do not coincide. However, we note that in the right-hand tail, the shifted
approximation has less mass than the true distribution. Therefore, if we are not able
to reject H01 using the shifted approximation, it would not have been rejected using
the true distribution.

Table 7 also shows that using the shifted approximation the critical points for rejecting
the hypothesis R̂o = 0 are underestimated.

In table 8, we see that power of the R̂o statistic to reject the null hypothesis Ro = 0
is lower when we use the empirical distributions generated under Ro = 0 than when
we use the shifted distributions generated under β = 0. A test based on the shifted
approximation is therefore liberal (yields a lower critical value, and rejects more often
than it should), but less than a test based on H02 (null hypothesis of no relation).
This is clear by looking at the three curves in the area that is in the right-hand side
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Empirical distributions of Ro
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Figure 3: Empirical distributions of R̂o for β = 0 shifted and βc
The length of the series was 4000. We can observe the discrepancy between the two
distributions. However, note that in the right-hand tail, the shifted approximation

(full line) has less mass than the true distribution (dotted line).

T 250 500 1000 2000 4000 8000
H10% (shifted) 0.0096 0.0061 0.0021 0.0010 0.0005 0.0002
H10% (empirical) 0.0206 0.0106 0.0058 0.0029 0.0016 0.0008

Table 7:
The critical points corresponding to a coverage surface of 90% for the null

hypothesis R̂o = 0 obtained by the “shifted distribution” and by the usage of βc
obtained numerically.

T \β 0 0.02 0.04 0.06 0.08 0.1

250 0.01 0.01 0.02 0.04 0.07 0.11
500 0.01 0.01 0.02 0.05 0.14 0.24
1000 0.00 0.01 0.04 0.10 0.27 0.49
2000 0.00 0.01 0.06 0.30 0.61 0.88
4000 0.00 0.02 0.19 0.65 0.94 1.00
8000 0.00 0.04 0.52 0.97 1.00 1.00

Table 8:
Power of the R̂o statistic to reject the null hypothesis Ro = 0 with a 10% level, for
various alternative hypotheses corresponding to different values of β. The values in
bold correspond to the conditions where we know that the null hypothesis is false.

In this case, we observe that we are rejecting the null when it is false.
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H pbpv H pbpv H pbpv H pbpv
1 0.95 7 0.85 13 0.57 19 0.81
2 0.99 8 0.87 14 0.54 20 0.84
3 0.92 9 0.86 15 0.70 21 0.83
4 0.90 10 0.89 16 0.72 22 0.83
5 0.83 11 0.86 17 0.80 23 0.80
6 0.82 12 0.76 18 0.81 24 0.76

Table 9:
P-values for the hypothesis H01 : Ro = 0 on the financial data. We may suppose this

test to be optimistic because we use the “shifted distribution” approximation.

tails, in Figure 3.

With the linear model described in equation 20 and using the analytical method to
compute the value of βc, we obtained the same conclusions on the critical points and
the distribution of R̂o.

6.2 Discussion of the results on financial data

For different horizons, we compare the predictive ability of the linear forecast and the
naive forecast, i.e. F lin vs F naive. The set of horizons used in the experiments was
H = 1, 3, 6, 9, . . . , 21, 24, in number of “months” (21 days), i.e., h = 21H. Table 9
gives the p-value of the H01 hypothesis Ro = 0 using the method based on the “shift-
ed distribution” hypothesis described previously. The p-values are pure histogram
counts.

According to this table, there is more than 50% probability to observe values R̂o ≥
0.07 for horizons 13 and 14 under the null hypothesis of Ro = 0. Since the true critical
values are likely to be larger than those computed using the shifted approximation,
we conclude that we are very far from being able to say that the inputs (past
returns) are useful to make a linear forecast, even though we are able to
reject the hypothesis β = 0 (as shown previously in table 4).

This is a very significant result, since it shows the importance of testing a hypoth-
esis that reflects what we really care about (e.g., out-of-sample error): testing an
apparently close hypothesis (no dependency) could yield a very different conclusion!
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7 Conclusion

In this paper we have introduced an extension of the notion of generalization error
to non-iid data. We also gave a definition of two out-of-sample statistics, Ro and Do,
to compare the forecasting ability of two models in this generalized framework, and
we have presented the notion of a naive model used to establish null hypotheses.

The statistic Ro allowed us to establish a link between the signal-to-noise ratio and
the particular value Ro = 0. We have shown that Ro ≤ 0 means that the signal-to-
noise ratio is too small for the linear functional to outperform the naive model. This
does not imply no dependency but indicates that whenever the “signal-to-noise-ratio”
is small, it is preferable not to try to capture the signal to make predictions.

We have made a distinction between tests for dependency and for generalization
ability and we have described a method, based on bootstrap, to perform these tests.

We have used the proposed bootstrap methods to test the two null hypotheses on
simulated data and on real financial data. We have used simulations to better un-
derstand the behavior of the in-sample and out-of-sample statistics in a controlled
environment. We have observed that the tests based on out-of-sample statistics Ro

and Do had less power to test against the null hypothesis of no dependency than the
tests based on an in-sample statistic.

On real financial data, we have observed that we were very far from being able to say
that the past returns are useful to make a linear forecast, even though we are able
to reject the hypothesis of no relation. This result shows the importance of testing
a hypothesis that reflects what we really care about, in that case the out-of-sample
error.

In future work, we must find a way to generate the distribution of R̂o under the
hypothesis of no-predictability. That seems for now not trivial when the generating
model is more complex than an autoregressive one or a linear model with only two
parameters. But this is an important question if we want to avoid making assumptions
on the distribution of the errors.

We also wish to investigate the estimation of confidence intervals for Ro. We therefore
need the distribution (or at least the standard deviation) of the statistic R̂o under the
process generating the observed data. To do so, we would generate different series of
data that preserve the dependency between the inputs and the outputs of the regres-
sion. We would use the values of R̂o on these to test the null hypothesis that Ro is not
positive (via confidence intervals). This method, using either parametric models or
adequate non-parametric are more difficult to apply (because of the requirement that
the proper input/output dependency must be preserved). Models of price returns,
based on ARMA(1,1) or equivalent forms proposed in literature were studied, but
it seemed in our experimentations that they did not reflect some of the statistical
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properties that we observed in the real price return data.
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