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| dentification, Weak Instruments and Statistical
Inferencein Econometrics

Jean-Marie Dufour '

Résumé/ Abstract

Nous analysons les problémes d' inférence associés a I’ identification et a la testabilité en économeétrie,
en soulignant la smilarité entre les deux questions. Aprés une courte revue des notions statistiques
requises, nous étudions tour a tour I'inférence dans les modéles norntparamétriques ains que les
résultats récents sur les modées structurels faiblement identifiés (ou les instruments faibles). Nous
remarquons que beaucoup d’ hypothéses, pour lesguelles des tests sont réguliérement proposés, ne sont
pas en fait testables, tandis que plusieurs méthodes économétriques fréquemment utilisées sont
fondamentalement inappropriées pour les modéles considérés. De telles situations conduisent a des
problémes statistiques mal posés et sont souvent associées a un emploi ma avisé de résultats
digtributionnels asymptotiques. Concernant les hypothéses non-paramétriques, nous analysons trois
problemes de base pour lesquels de telles difficultés apparaissent: (1) tester une hypothése sur un
moment avec des restrictions trop faibles sur la forme de la distribution; (2) I'inférence avec
hétéroscédasticité de forme non spécifiée; (3) I'inférence dans les modéles dynamiques avec un
nombre illimité de paramétres. Concernant les modéles faiblement identifiés, nous insistons sur
I"importance d' utiliser des fonctions pivotales — une condition qui N’ est pas satisfaite par les méthodes
usuelles de type Wald basées sur I'emploi d’ écart-types— et nous passons en revue les dével oppements
récents dans ce domaine, en mettant I’ accent sur la construction de test et régions de confiance valides.
Les techniques considérées comprennent les différentes statistiques proposées, I'emploi de bornes, la
subdivision d’ échantillon, les techniques de projection, le conditionnement et |es tests de Monte Carlo.
Parmi les critéres utilisés pour évauer les procédures, nous insistons sur la possibilité de fournir une
théorie distributionnelle a distance finie, sur la robustesse par rapport a la présence d’instruments
faibles ainsg que sur la robustesse par rapport la spécification d’'un modéle pour les variables
explicatives endogénes du modéle.

Motsclés: test d’ hypothése, région de confiance, intervalle de confiance,
identification, testabilité, théorie asymptotique, inférence exacte, fonction pivotae,
modél e non-paramétrique, Bahadur-Savage, hétéroscédasticité, dépendance érielle,
racine unitaire, éguations s multanées, modée structurel; variable instrumentale,
instrument faible, inférence simultanée, projection, subdivision d’ échantillon, test
conditionnel, test de Monte Carlo, bootstrap.
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We discuss datistical inference problems associated with identification and testability in
econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant
statistical notions, we consider in turn inference in nonparametric models and recent developments on
weakly identified models (or weak instruments). We point out that many hypotheses, for which test
procedures are commonly proposed, are not testable at all, while some frequently used econometric
methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined
statistical problems and are often associated with a misguided use of asymptotic distributional results.
Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties
occur: (1) testing a mean (or a noment) under (too) weak distributional assumptions; (2) inference
under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number
of parameters. Concerning weakly identified models, we stress that valid inference should be based on
proper pivotal functions— a condition not satisfied by standard Wald -type methods based on standard
errors— and we discuss recent developments in this field, mainly from the viewpoint of building valid
tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds,
projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample
distributional theory, robustness to the presence of weak instruments, and robustness to the
specification of a model for endogenous explanatory variables are stressed as important criteria
assessing alternative procedures.

Keywords. hypothesis testing, confidence set, confidence interval, identification,
testability, asymptotic theory, exact inference, pivotal function, nonparametric
model, Bahadur-Savage, heter oskedasticity, serial dependence, unit root,
simultaneous equations, structural model, instrumental variable, weak instrument,
weak identification, simultaneous inference, projection, split-sample, conditional
test, Monte Carlo test, bootstrap.
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1. Introduction

The main objective of econometrics is to supply methods for analyzing economic data, building
models, and assessing alternative theories. Over the last 25 years, econometric research has led
to important developments in many areas, such as: (1) new fields of applications linked to the
availability of new data, financial data, micro-data, panels, qualitative variables; (2) new models:
multivariate time series models, GARCH-types processes; (3) a greater ability to estimate nonlinear
models which require an important computational capacity; (4) methods based on simulation: boot-
strap, indirect inference, Markov chain Monte Carlo techniques; (5) methods based on weak distri-
butional assumptions: nonparametric methods, asymptotic distributions based on “weak regularity
conditions”; (6) discovery of various nonregular problems which require nonstandard distributional
theories, such as unit roots and unidentified (or weakly identified) models.

An important component of this work is the development of procedurete$binghypotheses
(or models). Indeed, a view widely held by both scientists and philosophers testailityor the
formulation oftestable hypothese®nstitutes a central feature of scientific activity — a view we
share. With the exception of mathematics, it is not clear a discipline should be viewed as scientific if
it does not lead to empirically testable hypotheses. But this requirement leaves open the question of
formulating operational procedures for testing models and theories. To date, the only coherent — or,
at least, the only well developed — set of methods are those supplied by statistical and econometric
theory.

Last year, on the same occasion, MacKinnon (2002) discussed the use of simulation-based in-
ference methods in econometrics, specifichtiptstrappingas a way of getting more reliable tests
and confidence sets. In view of the importance of the issue, this paper also considers questions as-
sociated with the development of reliable inference procedures in econometrics. But our exposition
will be, in a way, more specialized, and in another way, more general — and critical. Specifically,
we shall focus on general statistical issues raiseiddéntificationin econometric models, and more
specifically onweak instrument# the context of structural models.fj, simultaneous equations
models (SEM)]. We will find it useful to bring together two separate streams of literature: namely,
results (from mathematical statistics and econometricsg¢stability in nonparametric modeland
the recent econometric research on weak instrunfeimparticular, we shall emphasize that identi-
fication problems arise in both literatures and have similar consequences for econometric methodol-
ogy. Further, the literature on nonparametric testability sheds light on various econometric problems
and their solutions.

Simultaneous equations models (SEM) are related in a natural way to the concept of equilib-
rium postulated by economic theory, both in microeconomics and macroeconomics. So it is not
surprising that SEM were introduced and most often employed in the analysis of economic data.
Methods for estimating and testing such models constitute a hallmark of econometric theory and
represent one of its most remarkable achievements. The problems involved are difficult, raising
among various issues the possibility of observational equivalence between alternative parameter
values (on-identificatiof and the use oinstrumental variableglV). Further, the finite-sample

!By anonparametrianodel (or hypothesis), we mean a set of possible data distributions such that a distribution [e.g.,
the “true” distribution] cannot be singled out by fixindiaite number of parameter values.



distributional theory of estimators and test statistics is very complex, so inference is typically based
on large-sample approximatiofs.

IV methods have become a routine part of econometric analysis and, despite a lot of loose
ends (often hidden by asymptotic distributional theory), the topic of SEM was dormant until a
few years ago. Roughly speaking, an instrument should have two basic properties: first, it should
be independent (or, at least, uncorrelated) with the disturbance term in the equation of interest
(exogeneity, second, it should be correlated with the included endogenous explanatory variables
for which it is supposed to serve as an instrumeelegancg. The exogeneity requirement has
been well known from the very beginning of IV methods. The second one was also known from the
theory of identification, but its practical importance was not well appreciated and often hidden from
attention by lists of instruments relegated to footnotes (if not simply absent) in research papers. It
returned to center stage with the discovery of so-called weak instruments, which can be interpreted
as instruments with little relevancieq, weakly correlated with endogenous explanatory variables).
Weak instruments lead to poor performance of standard econometric procedures and cases where
they have pernicious effects may be difficult to defebiterest in the problem also goes far beyond
IV regressions and SEM, because it underscores the pitfalls in using large-sample approximations,
as well as the importance of going back to basic statistical theory when developing econometric
methods.

A parameter (or a parameter vector) in a model is not identified when it is not possible to
distinguish between alternative values of the parameter. In parametric models, this is typically
interpreted by stating that the postulated distribution of the data — as a function of the parameter
vector (thelikelihood function — can be the same for different values of the parameter véctor.

An important consequence of this sort of situation is a statistical impossibility: we cannot design

a data-based procedure for distinguishing between equivalent parameter values (unless additional
information is introduced). In particular, no reasonable test can be pro@ubedonparametric
models, identification is more difficult to characterize because a likelihood function (involving a
finite number of parameters) is not available and parameters are often introduced through more
abstract techniqueg.Q, functionals of distribution functions). But the central problem is the same:

can we distinguish between alternative values of the parameter? So, quite geneiddigtifination
problemcan be viewed as a special formrain-testability Specifically,

¢ identification involves the possibility of distinguishing different parameter values on the basis
of the corresponding data distributions, while

o testability refers to the possibility of designing procedures that can discriminate between sub-
sets of parameter values.

2For reviews, see Phillips (1983) and Taylor (1983).

3Early papers which called attention to the problem include: Nelson and Startz (1990a, 1990b), Buse (1992), Choi
and Phillips (1992), Maddala and Jeong (1992), and Bound, Jaeger, and Baker (1993, 1995).

“For general expositions of the theory of identification in econometrics and statistics, the reader may consult Rothen-
berg (1971), Fisher (1976), Hsiao (1983), Prakasa Rao (1992), Bekker, Merckens, and Wansbeek (1994) and Manski
(1995, 2003).

5By a reasonable test, we mean here a test that both satisfies a level constraint and may have power superior to the
level when the tested hypothesis (the null hypothesis) does not hold. This will be discussed in greater detail below.



Alternatively, a problem ofion-testabilitycan be viewed as a form @ion-identification.(or un-
deridentification. These problems are closely related. Furthermore, it is well known that one can
create a non-identified model by introducing redundant parameters, and conversely identification
problems can be eliminated by transforming the parameter spagebfy reducing the number of
parameters). Problems of non-identification are associatedbaihparameterizationsnappro-

priate choices of parameter representatioige will see below that the same remark applies quite
generally to non-testability problems, especially in nonparametric setups.

In this paper, we pursue two main objectivéest, we analyze the statistical problems associated
with non-identification within the broader context of testabilisgcond we review the inferential
issues linked to the possible presence of weak instruments in structural models. More precisely,
regarding the issue of testability, the following points will be emphasized:

1. many models and hypotheses are formulated in ways that make them fundamentally non-
testable; in particular, this tends to be the case in nonparametric setups;

2. such difficulties arise in basic apparently well-defined problems, such as: (a) testing an hy-
pothesis about a mean when the observations are independent and identically distributed (i.i.d.
; (b) testing an hypothesis about a mean (or a median) with heteroskedasticity of unknown
form; (c) testing the unit root hypothesis on an autoregressive model whose order can be
arbitrarily large;

3. some parameters tend to be non-testable (badly identified) in nonparametric models while
others are not; in particular, non-testability easily occurs for momergsiheans, variances)
while it does not for quantilese(g, medians); from this viewpoint, moments are not a good
way of representing the properties of distributions in nonparametric setups, while quantiles
are;

4. these phenomena underscpegametric nonseparabilitproblems: statements about a given
parameter (often interpreted as ffaameter of intere$tare not empirically meaningful with-
out supplying information about other parameters (often callésance parameteysbut hy-
potheses that set both the parameter of interest and some nuisance parameters may well be
testable in such circumstances, so that the development of appropriate inference procedures
should start from a joint approach;

5. to the extent that asymptotic distributional theory is viewed as a way of producing statistical
methods which are valid under “weak” distributional assumptions, it is fundamentally mis-
leading because, under nonparametric assumptions, such approximations are arbitrarily bad
in finite samples.

Concerning weak instruments, we will review the associated problems and proposed solutions,
with an emphasis on finite-sample properties and the development of tests and confidence sets which
are robust to the presence of weak instruments. In particular, the following points will be stressed:

1. in accordance with basic statistical theory, one should always loogi¥ots as the funda-
mental ingredient for building tests and confidence sets; this principle appears to be especially
important when identification problems are present;



2. parametric nonseparability arises in striking ways when some parameters may not be iden-
tified, so that proper pivots may easily involve many more parameters than the parameter of
interest; this also indicates that the common distinction between parameters of interest and
nuisance parameters can be quite arbitrary, if not misleading;

3. important additional criteria for evaluating procedures in such contexts include various forms
of invariance (or robustness), such as: (a) robustness to weak instruments; (b) robustness
to instrument exclusion; (c) robustness to the specification of the model for the endogenous
explanatory variables in the equation(s) of interest;

4. weak instrument problems underscore in a striking way the limitations of large-sample argu-
ments for deriving and evaluating inference procedures;

5. very few informative pivotal functions have been proposed in the context of simultaneous
equations models;

6. the early statistic proposed by Anderson and Rubin (1949, AR) constitutes one of the (very
rare) truly pivotal functions proposed for SEM; furthermore, it satisfies all the invariance
properties listed above, so that it may reasonably be viewed as a fundamental building block
for developing reliable inference procedures in the presence of weak instruments;

7. a fairly complete set of inference procedures that allow one to produce tests and confidence
sets for all model parameters can be obtained thrgugjectiontechniques;

8. various extensions and improvements over the AR method are possible, especially in improv-
ing power; however, it is important to note that these often come at the expense of using
large-sample approximations or giving up robustness.

The literature on weak instruments is growing rapidly, and we cannot provide here a complete
review. In particular, we will not discuss in any detail results on estimation, the detection of weak
instruments, or asymptotic theory in this context. For that purpose, we refer the reader to the
excellent survey recently published by Stock, Wright, and Yogo (2002).

The paper is organized as follows. In the next two sections, we review succinctly some basic
notions concerning models (section 2) and statistical theory (section 3), which are important for
our discussion. In section 4, we study testability problems in nonparametric models. In section 5,
we review the statistical difficulties associated with weak instruments. In section 6, we examine a
number of possible solutions in the context of linear SEM, while extensions to nonlinear or non-
Gaussian models are considered in Section 7. We conclude in section 8.

2. Models

The purpose of econometric analysis is to develop mathematical representations of data, which we
call modelsor hypotheseg¢models subject to restrictions). An hypothesis should have two basic
features.



1. It must restrict the expected behavior of observationgpfigmative A non-restrictive hy-
pothesis says nothing and, consequently, does not teach us anythirgmitiigcally empty
void of empirical contentThe more restrictive a model is, the more informative it is, and the
more interesting it is.

2. It must becompatible with available datadeally, we would like it to berue.
However, these two criteria are not always compatible:

1. theinformation criterionsuggests the use parsimoniousnodels that usually take the form
of parametric models based strtong assumptionsiote the information criterion is empha-
sized by an influential view in philosophy of science which strefassiability as a criterion
for the scientific characterof a theory [Popper (1968)];

2. in contrast,compatibility with observed data most easily satisfied byague modelsvhich
impose few restrictions; vague models may take the form of parametric models with a large
number of free parameters apnparametricmodels which involve an infinite set of free
parameters and thus allow faveak assumptions

Models can be classified as being eitlieterministicor stochastic Deterministic models
which claim to make arbitrarily precise predictions, are highly falsifiable but always inconsistent
with observed data. Accordingly, most models used in econometrissafgastic Such models are
unverifiable as with any theory that makes an indefinite number of predictions, we can never be sure
that the model will not be put in jeopardy by new data. Moreover, theyogiieally unfalsifiable
in contrast with deterministic models, a probabilistic model is usually logically compatible with all
possible observation vectors.

Given these facts, it is clear any criterion for assessing whether an hypothesis is acceptable must
involve aconventionalaspect. The purpose bfypothesis testingheory is to supply a coherent
framework for accepting or rejecting probabilistic hypotheses. It is a probabilistic adaptation of the
falsification principle®

3. Statistical notions

In this section, we review succinctly basic statistical notions which are essential for understanding
the rest of our discussion. The general outlook follows modern statistical testing theory, derived
from the Neyman-Pearson approach and described in standard textbooks, such as Lehmann (1986).

3.1. Hypotheses

Consider an observational experiment whose result can be represented by a vector of observations

XM = (X1, ..., Xp) (3.1)

SFor further discussion on the issues discussed in this section, the reader may consult Dufour (2000).



whereX; takes real values, and let

F(x)=F(x1,...,2n) =P[X1 <1, ..., X, < 1) (3.2)

be its distribution, where: = (z1, ..., z,). We denote byF,, the set of possible distribution
functions onR”™ [F' € F,].

For various reasons, we prefer to represent distributions in terrparaimeters There are
two ways of introducing parametens a model. Thdfirst is to define a function from a space of
probability distributions to a vector in some Euclidean space:

0:F, — RP. (3.3)

Examples of such parameters include: the moments of a distribution (mean, variance, kurtosis,
etc.), its quantiles (median, quartiles, etc.). Such functions are also Gafletibnals Thesecond
approach is to define a family of distribution functions which are indexed by a parameteréector

F(z) = Fy(x0) (3.4)

where Fy is a distribution function with a specific form. For example Fif(z | 0) represents a
Gaussian distribution with meanand variance? [e.g, corresponding to a Gaussian law], we have

0 = (u, 02).
A model isparametricif the distribution of the data is specified up to a finite number of (scalar)
parameters. Otherwise, iti@nparametric An hypothesisf, on X (™ is an assertion

Hy: F € Ho, (35)

whereH) is a subset of-,,, the set of all possible distributiolfs,. The setH, may contain: a single
distribution €imple hypothesjsor several distributionssbmposite hypothegisin particular, if we
can writed = (01, 03), H, often takes the following form:

Ho = {F() : F(x) = Fy(x|61,02) andd; = 67} . (3.6)

We usually abbreviate this as:
Hy: 6, =67 . (3.7)

In such a case, we cdll, the parameter of interestandf, a nuisance parametethe parameter

of interest is set byH, but the nuisance parameter remains unknowiy may be interpreted as
follows: there is at least one distribution i, that can be viewed as a representation compatible
with the observed “behavior” ak (™). Then we can say that:

Hy is acceptable<—- ((HF € Hy) Fis acceptabl}z (3.8)
or, equivalently,

Hy is unacceptable— ((VF € Ho) F'is unacceptabDe. (3.9)



It is important to note here that showing thét is unacceptable requires one to show thkht
distributions inH, are incompatible with the observed data.
3.2. Testlevel and size

A test for Hy is a rule by which one decides to reject or accept the hypothesis (or to view it as
incompatible with the data). It usually takes the form:

rejectH if Sp(X1, ..., Xu) >ec, (3.10)
do notrejectdy if S, (X1, ..., X,) <c. '
The test hatevel «a iff
Pr[RejectingHy] < a forall F € H, (3.12)
or, equivalently,
sup Pr[RejectingHy| < «, (3.12)

FeHo

whereP | -] is the function probability measurggiving the probability of an event when the data
distribution function isF. The test hasize« if

sup Pr[RejectingHy| = «. (3.13)
FeHo

Hy is testableif we can find a finite numbet that satisfies the level restriction. Probabilities of
rejecting Hy for distributions outsidé, (i.e., for F' ¢ H,) define thepowerfunction of the test.
Power describes the ability of a test to detect a “false” hypothesis. Alternative tests are typically
assessed by comparing their powers: between two tests with the same level, the one with the highest
power against a given alternative distributibh¢ H, is deemed preferable (at least, under this
particular alternative). Among tests with the same level, we typically like to have a test with the
highest possible power against “alternatives of interest”.

As the setH, gets larger, the test procedure must satisfy a bigger set of constraints: the larger
is the set of distributions compatible with a null hypothesis, the stronger are the restrictions on the
test procedure. In other words, the less restrictive an hypothesis is, the more restricted will be the
corresponding test procedure. It is easy to understand that imposing a large set of restrictions on a
test procedure may reduce its power against specific alternatives. There may be a point where the
restrictions are no longer implementable, in the sense that no procedure which has some power can
satisfy the level constrainfi is non-testableln such a case, we have #irdefined test problem.

In a framework such as the one in (3.6), where we distinguish between a parameter of interest
#, and a nuisance parametgy, this is typically due to heavy dependence of the distribution of
Sy, on the nuisance parametgy. If the latter is specified, we may be able to find a (finite) critical
valuec = ¢(a, 62) that satisfies the level constraint (3.11). But, in ill-defined problerfis, 0-)

"More formally, the power function can be defined as the functiBF) = P r[RejectingHo| for F € H1 \ Ho,
whereH; is an appropriate subset of the set of all possible distributiBpsSometimes, it is also defined on the set
H1 U Ho, in which case it should satisfy the level constraintfoe H, .



depends heavily of,, so that it is not possible to find a useful (finite) critical value for tesfifig

i.e. supc(a, 02) = oo. Besides, even if this is the case, this does not imply that an hypothesis
2

that would fixboth #; and6,, is not testableij.e. the hypothesidT) : (61, 2) = (69, 69) may
be perfectly testable. But only a complete specification of the véétord,) does allow one to
interpret the values taken by the test statistjqnonseparability.

3.3. Confidence sets and pivots

If we consider an hypothesis of the form
Hy(69): 6, =69 (3.14)

and if we can build a different tes,, (6%; X1, ..., X,) for each possible value @ , we can
determine the set of values that can be viewed as compatible with the data according to the tests
considered:

C=1{60:8,(0% X1, ..., X») <c(6])} . (3.15)
If
Pr[RejectingHy(09)] < a forall F e H(F,,0), (3.16)
we have
inf P[0 €C]>1—a. (3.17)
01,02

C is aconfidence sewith level 1 — « for 81 . The setC covers the “true” parameter valde with
probability at least — a. The minimal probability of covering the true valuedf, i.e. inf P[0; €

01,02

(], is called thesizeof the confidence set.

In practice confidence region@r confidence intervajsvere made possible by the discovery of
pivotal functiong(or pivotg: a pivot for6, is a functionsS,,(6,; X1, ..., X,) whose distribution
does not depend on unknown parameters (nuisance parameters); in particular, the distribution does
not depend ord,. More generally, the functioy,,(61; X1, ..., X,) is boundedly pivotalf its
distribution function may depend ébut is bounded over the parameter space [see Dufour (1997)].
When we have a pivotal function (or a boundedly pivotal function), we can find a psirth that:

P[Sn(01; X1, ..., Xn) > <a, VO . (3.18)
For example, ifXy, ..., X, i N|u, 0?], thet-statistic
tn(p) = \/E(Xn — u)/sx (3.19)

whereX,, = ZX /nandsx = Z (X; — X,,)/(n — 1), follows a Student(n — 1) distribution

which does not depend onthe unknown valueg ahdo; hence, itis a pivot. By contrasy/n(X,, —
1) is not a pivot because its distribution dependgroMore generally, in the classical linear model
with several regressors, thetatistics for individual coefficients [say(,3;) = /n(8; — 8;)/65 ]



constitute pivots because their distributions do not depend on unknown nuisance parameters; in
particular, the values of the other regression coefficients disappear from the distribution.

3.4. Testability and identification

When formulating and trying to solve test problems, two types of basic difficulties can arise. First,
there is no valid test that satisfies reasonable properties [such as depending upon the data]: in such
a case, we haveon-testable hypothesian empiricallyempty hypothesisSecond, the proposed
statistic cannot be pivotal for the model considered: its distribution varies too much under the null
hypothesis to determinefmite critical point satisfying the level restriction (3.18).

If an hypothesis is non-testable, we are not able to design a reasonable procedure for deciding
whether it holds (without the introduction of additional data or information). This difficulty is
closely related to the concept iofentificationin econometrics. A parameteéiis identifiableiff

0(F1) # 0(F2) = F1 # F». (3.20)

For 6, # 05, we can, in principle, design a procedure for deciding whetherf; or 8 = 6,. The
values off) aretestable More generally, a parametric transformatigid) is identifiable iff

glo(F1)] # gl0(F2)] = Fy # Fh. (3.21)

Intuitively, these definitions mean that different values of the parameter imply different distributions
of the data, so that we may expect to be able to “tell” the difference by looking at the data. This is
certainly the case when a unique distribution is associated with each parameter value [for example,
we may use the Neyman-Pearson likelihood ratio test to make the decision], but this may not be the
case when a parameter coveeveraldistributions. In the next section, we examine several cases
where this happens.

4. Testability, nonparametric models and asymptotic methods

We will now discuss three examples of test problems that look perfectly well defined and sensible
at first sight, but turn out to be ill-defined when we look at them more carefully. These include:
(1) testing an hypothesis about a mean when the observations are independent and identically dis-
tributed (i.i.d.); (2) testing an hypothesis about a mean (or a median) with heteroskedasticity of
unknown form; (3) testing the unit root hypothesis on an autoregressive model whose order can be
arbitrarily large®

4.1. Procedures robust to nonnormality

One of the most basic problems in econometrics and statistics consists in testing an hypothesis
about a mean, for example, its equality to zero. Tests on regression coefficients in linear regressions

8Further discussion on the issues discussed in this section is available in Dufour (2001). For rrelated discussions, see
also Horowitz (2001), Maasoumi (1992) and Pétscher (2002).



or, more generally, on parameters of models which are estimated by the generalized method of
moments (GMM) can be viewed as extensions of this fundamental problem. If the simplest versions
of the problem have no reasonable solution, the situation will not improve when we consider more

complex versions (as done routinely in econometrics).

The problem of testing an hypothesis about a mean has a very well known and neat solution
when the observations are independent and identically (i.i.d.) distributed according to a normal
distribution: we can useatest. The normality assumption, however, is often considered to be too
“strong”. So it is tempting to consider a weaker (less restrictive) version of this null hypothesis,
such as

Ho(po) : X1, ..., X, arei.i.d. observations with'(X;) = . (4.1)

In other words, we would like to test the hypothesis that the observations havemearder the
general assumption that,, ... , X,, arei.i.d. HereH(u,) is @ nonparametric hypothesis because
the distribution of the data cannot be completely specified by fixifigite number of parameters.
The set of possible data distributions (or data generating processes) compatible with this hypothesis,
i.e.,

H(uy) = {Distribution functions F,, € F,, such thatH,(p,) is satisfied , (4.2)

is much larger here than in the Gaussian case and imposes very strong restrictions on the test.
Indeed, the set{(u,) is so large that the following property must hold.

Theorem 4.1 MEAN NON-TESTABILITY IN NONPARAMETRIC MODELS. If a test has leved for

Ho(p), i-e.
Pr, [RejectingHo(ug)] < o forall F,, € H(ug) , (4.3)

then, for anyu; # p,
Pr, [RejectingHo ()] < aforall F,, € H(p,) - (4.4)
Further, if there is at least one valyg # . such that
Pr, [RejectingHy(119)] > « for at least oneF,, € H(p,) , (4.5)
then, for ally, # uy,
P, [RejectingHo(1y)] = a for all F,, € H(y) . (4.6)

PROOF. See Bahadur and Savage (1956).

In other words [by (4.4)], if a test has levelfor testing Hy(u), the probability of rejecting
Hy(py) should not exceed the level irrespective how far the “true” mean is figniurther [by
(4.6)], if “by luck” the power of the test gets as high as the level, then the probability of rejecting
should be uniformly equal to the level Here, the restrictions imposed by the level constraint are
so strong that the test cannot have power exceeding its level: it should be insensitive to cases where
the null hypothesis does not hold! Axptimal test(say, at level05) in such a problem can be run
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as follows: (1) ignore the data; (2) using a random number generator, produce a realization of a
variableU according to a uniform distribution on the internval 1), i.e, U ~ U(0, 1); (3) reject
Hy if U < .05. Clearly, this is not an interesting procedure. Itis also easy to see that a similar result
will hold if we add various nonparametric restrictions on the distribution, sucHfiai@variance
assumption.

The above theorem also implies that tests based on the “asymptotic distribution” of the usual
statistic foru = ug [tn (1) defined in (3.19)] has size one undég(u,) :

sup Ppg, Utn(uo)\ > c] =1 4.7)
Frn€H(po)

for any finite critical valuec. In other words, procedures based on the asymptotic distribution of a
test statistic have size that deviate arbitrarily from their nominal size.

A way to interpret what happens here is through the distinction betpei@twise convergence
anduniform convergenceSuppose, to simplify, that the probability of rejectifig (1) when it is
true depends on a single nuisance paramgeterthe following way:

Po(7) = Py [[tn(po)] > ¢] = 0.05 4 (0.95)e =11 (4.8)
wherey # 0. Then, for each value of, the test has levél.05 asymptoticallyj.e.

lim P,(y) =0.05, (4.9)

n—oo

but thesizeof the test is one for all sample sizes:

sup P,(v) =1, foralln. (4.10)
v>0

P, (v) converges to a level df.05 pointwise (for eachy), but the convergence is not uniform, so
that the probability of rejection is arbitrarily close to one fpsufficiently close to zero (for all
sample sizes).

Many other hypotheses lead to similar difficulties. Examples include:

1. hypotheses about various momentsxgf:

Hy(o?) : Xy, ..., X, arei.i.d. observations such théir(X;) = o2 ,
Ho(p,) : X1, ..., X, arei.i.d. observations such thatX7) = u, ;

2. most hypotheses on the coefficients of a regression (linear or nonlinear), a structural equation
(as in SEM), or a more general estimating function [Godambe (1960)]:

Ho(00) : g¢(Z¢, 00) =ug, t=1, ..., T, whereuy, ... , up arei.i.d.

In econometrics, models of the forfy () are typically estimated and tested through a variant of
the generalized method of moments (GMM), usually with weaker assumptions on the distribution
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ofui, ..., up;see Hansen (1982), Newey and West (1987a), Newey and McFadden (1994) and
Hall (1999). To the extent that GMM methods are viewed as a way to allow for “weak assumptions”,
it follows from the above discussion that they constitute pseudo-solutions of ill-defined problems.

It is important to observe that the above discussion does not imply that all nonparametric hy-
potheses are non testable. In the present case, the problem of non-testability could be eliminated by
choosing another measure of central tendency, suchresian

HY(mo): Xi, ..., X, arei.i.d. continuous r.v.s such that
Med(Xt):mO, t:1, ey T .

H{3(mg) can be easily tested with a sign test [see Pratt and Gibbons (1981, Chapter 2)]. More
generally, hypotheses on the quantiles of the distribution of observations in random sample remain
testable nonparametrically:

HY(Qpo): Xi, ..., X, arei.id. observations such that
PX;:<Qu]=p,t=1,...,T.

Moments are not empirically meaningful functionals in nonparametric models (unless strong distri-
butional assumptions are added), though quantiles are.

4.2. Procedures robust to heteroskedasticity of unknown form

Another common problem in econometrics consists in developing methods which remain valid in
making inference on regression coefficients when the variances of the observations are not identi-
cal (heteroskedasticity). In particular, this may go as far as looking for tests which are “robust to
heteroskedasticity of unknown form”. But it is not widely appreciated that this involves very strong
restrictions on the procedures that can satisfy this requirement. To see this, consider the prob-
lem which consists in testing whetherobservations are independent with common zero median,
namely:

Hy: Xy,..., X, areindependent random variables

each with a distribution symmetric about zero. (4.11)

Equivalently, H, states that the joint distributioR,, of the observations belongs to the (huge) set
Ho = {F, € F, : F, satisfiesHy} : Hy allows heteroskedasticity of unknown form. In such a
case, we have the following theorem.

Theorem 4.2 CHARACTERIZATION OF HETEROSKEDASTICITY ROBUST TESTS If a test has
levela for Hy, where0 < o < 1, then it must satisfy the condition

P[RejectingHy | | X1, ..., |Xn|] < aunderH . (4.12)
PROOF. See Pratt and Gibbons (1981, Section 5.10) and Lehmann and Stein (£949).

In other words, a valid test with level must be asign test— or, more precisely, its level must
be equal tax conditional on the absolute values of the observations (which amounts to considering
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a test based on the signs of the observations). From this, the following remarkable property follows.

Corollary 4.3 If, for all 0 < o < 1, the condition(4.12) is not satisfied, then the size of the test is
equal to onej.e.
sup Pp,[RejectingHy| =1 . (4.13)
Frn€Ho

In other words, if a test procedure does not satigfy2) for all levels0 < « < 1, then its true
size isoneirrespective of its nominal size. Most so-called “heteroskedasticity robust procedures”
based on “corrected” standard errors [see White (1980), Newey and West (1987b), Davidson and
MacKinnon (1993, Chapter 16), Cushing and McGarvey (1999)] do not satisfy con@tib?) and
consequently have size ofte.

4.3. Procedures robust to autocorrelation of arbitrary form

As a third illustration, let us now examine the problem of testing the unit root hypothesis in the con-
text of an autoregressive model whose order is infinite or is not bounded by a prespecified maximal
order:

p ..
Xe=0o+ Y MXeop +ue, u SN0, 0%, t=1, ..., n, (4.14)
k=1
wherep is not boundeda priori. This type of problem has attracted a lot of attention in recent
yearst® We wish to test:

Hy - Z)\k =1 (4.15)
k=1
or, more precisely,
~ p
Hy: Xi=0g+ > MXep+w,t=1,..., n, forsomep >0,
k=1 (4.16)

P id.d. 9
YA =1 and u ~" N[0, o°].
k=1

About this problem, we can show the following theorem and corollary.

Theorgm 4.4 UNIT ROOT NON-TESTABILITY IN NONPARAMETRIC MODELS. If a test has level
o for Hy, i.e. ) }
Pr, [RejectingHy| < o for all F,, satisfyingH, , (4.17)

then )
Pr, [RejectingHy) < « forall F,, . (4.18)

PROOF. See Cochrane (1991) and Blough (1998).

®For examples of size distortions, see Dufour (1981) and Campbell and Dufour (1995, 1997).
For reviews of this huge literature, the reader may consult: Banerjee, Dolado, Galbraith, and Hendry (1993), Stock
(1994), Tanaka (1996), and Maddala and Kim (1998).
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Corollary 4.5 If, for all 0 < o < 1, the condition(4.18) is not satisfied, then the size of the test is
equal to onei.e. }
sup Pp,[RejectingHy| =1
FneHO

whereH,, is the set of all data distributions;, that satisfyﬁo.

As in the mean problem, the null hypothesis is simply too “large” (unrestricted) to allow testing
from a finite data set. Consequently, all procedures that claim to offer corrections for very general
forms of serial dependence.§, Phillips (1987), Phillips and Perron (1988)] are affected by these
problems: irrespective of the nominal level of the test, the true size under the hypdihésisqual
to one.

To get a testable hypothesis, it is essential to fix jointly the order of the AR processa(
numerical upper bound on the order) and the sum of the coefficients: for example, we could consider
the following null hypothesis where the order of the autoregressive process is equal to 12:

12
H0(12)2 Xt:ﬁo+ Z)\kXt_k+ut, t=1, ..., n,
PR o (4.19)
S>A=1 and u <" N[0, ¢?].
k=1
The order of the autoregressive process is an essential part of the hypothesis: it is not possible to
separate inference on the unit root hypothesis from inference on the order of the process. Similar
difficulties will also occur for most other hypotheses on the coefficients of (4.16). For further
discussion of this topic, the reader may consult Sims (1971a, 1971b), Blough (1992), Faust (1996,
1999) and Pdtscher (2002).

5. Structural models and weak instruments

Several authors in the past have noted that usual asymptotic approximations are not valid or lead to
very inaccurate results when parameters of interest are close to regions where these parameters are
no longer identifiable. The literature on this topic is now considerdble. this section, we shall
examine these issues in the context of SEM.

115ee Sargan (1983), Phillips (1984, 1985, 1989), Gleser and Hwang (1987), Koschat (1987), Phillips (1989), Hillier
(1990), Nelson and Startz (1990a, 1990b), Buse (1992), Choi and Phillips (1992), Maddala and Jeong (1992), Bound,
Jaeger, and Baker (1993, 1995), Dufour and Jasiak (1993, 2001), McManus, Nankervis, and Savin (1994), Angrist and
Krueger (1995), Hall, Rudebusch, and Wilcox (1996), Dufour (1997), Shea (1997), Staiger and Stock (1997), Wang and
Zivot (1998), Zivot, Startz, and Nelson (1998), Hall and Peixe (2000), Stock and Wright (2000), Hahn and Hausman
(2002a, 2002b, 2002c), Hahn, Hausman, and Kuersteiner (2001), Dufour and Taamouti (2000, 2001b, 2001a), Startz,
Nelson, and Zivot (2001), Kleibergen (2001b, 2001a, 2002a, 2002b, 2003), Bekker (2002), Bekker and Kleibergen (2001),
Chao and Swanson (2001, 2003), Moreira (2001, 2003a, 2003b), Moreira and Poi (2001), Stock and Yogo (2002, 2003),
Stock, Wright, and Yogo (2002)], Wright (2003, 2002), Imbens and Manski (2003), Kleibergen and Zivot (2003), Perron
(2003), and Zivot, Startz, and Nelson (2003).
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5.1. Standard simultaneous equations model

Let us consider the standard simultaneous equations model:

y = YB+X1y+u, (5.1)
Y = Xyl + X0l +V, (5.2)

wherey andY areT x 1 andT x G matrices of endogenous variablgs; and X, areT x k;
andT x ko, matrices of exogenous variablgsand~ areG x 1 andk; x 1 vectors of unknown
coefficients[I; andll; arek; x G andk, x G matrices of unknown coefficientg,= (uq, ... , ur)’
isaT x 1 vector of structural disturbances, and= [V4, ..., V] isaT x G matrix of reduced-
form disturbances. Further,

X = [X1, Xg]is afull-column rankl’ x k& matrix (5.3)

wherek = ki + k. Finally, to get a finite-sample distributional theory for the test statistics, we
shall use the following assumptions on the distribution of

u andX are independent; (5.4)
u~ N[0, 02 I7] . (5.5)

(5.4) may be interpreted as the strict exogeneityoiith respect ta.
Note that the distribution oF is not otherwise restricted; in particular, the vectdys... , Vp
need not follow a Gaussian distribution and may be heteroskedastic. Below, we shall also consider
the situation where the reduced-form equation¥omcludes a third set of instrumenis; which
are not used in the estimation:

Y = XqIl + Xolly + X3lIs+V (56)

whereXs is aT x ks matrix of explanatory variables (not necessarily strictly exogenous); in partic-
ular, X35 may be unobservable. We view this situation as important because, in practice, it is quite
rare that one can consider all the relevant instruments that could be used. Even more generally, we
could also assume that obeys a general nonlinear model of the form:

Y = g(Xla X27 X37 ‘/7 H) (57)

whereg(-) is a possibly unspecified nonlinear function aids an unknown parameter matrix.
The model presented in (5.1) - (5.2) can be rewritten in reduced form as:

y = Xym+ Xoma + v, (5.8)
Y = Xyl + Xollb +V, (59)
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wherer, = II15+~v,v=u+ V[, and
mo = II5[3. (5.10)

Suppose now that we are interested in making inference ahout

(5.10) is the crucial equation governing identification in this system: we need to be able to
recover3 from the values of the regression coefficientsand I15. The necessary and sufficient
condition for identification is the well-knowrank conditionfor the identification of5 :

B isidentifiable iff rank(Ily) =G. (5.11)

We have aweak instrument problerwhen eitherrank(I73) < ko (non-identificatiol, or 15 is
close to having deficient rarfke., rank(II5) = ko with strong linear dependence between the rows
(or columns) ofils]. There is no compelling definition of the notion wéar-nonidentificationbut
reasonable characterizations include the conditiond&@t’7} 115) is “close to zero”, or thatl} IT,
has one or several eigenvalues “close to zero”.

Weak instruments are notorious for causing serious statistical difficulties on several fronts: (1)
parameter estimation; (2) confidence interval construction; (3) hypothesis testing. We now consider
these problems in greater detail.

5.2. Statistical problems associated with weak instruments

The problems associated with weak instruments were originally discovered through its conse-
guences for estimation. Work in this area includes:

1. theoretical work on thexact distributionof two-stage least squares (2SLS) and other “con-
sistent” structural estimators and test statistics [Phillips (1983), Phillips (1984), Rothenberg
(1984), Phillips (1985), Phillips (1989), Hillier (1990), Nelson and Startz (1990a), Nelson
and Startz (1990a), Buse (1992), Maddala and Jeong (1992), Choi and Phillips (1992), Du-
four (1997)];

2. weak-instrumen(local to non-identificationpsymptoticdStaiger and Stock (1997), Wang
and Zivot (1998), Stock and Wright (2000)];

3. empirical examples [Bound, Jaeger, and Baker (1995)].
The main conclusions of this research can be summarized as follows.

1. Theoretical results show that the distributions of various estimators depend in a complicated
way on unknown nuisance parameters. Thus, they are difficult to interpret.

2. When identification conditions are not satisfied, standard asymptotic theory for estimators
and test statistics typically collapses.

3. With weak instruments,
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(a) the 2SLS estimator becomes heavily biased [in the same direction as ordinary least
squares (OLS)];

(b) the distribution of the 2SLS estimator is quite far from the normal distributéog, (
bimodal).

4. A striking illustration of these problems appears in the reconsideration by Bound, Jaeger, and
Baker (1995) of a study on returns to education by Angrist and Krueger (1991, QJE). Using
329000 observations, these authors found that replacing the instruments used by Angrist and
Krueger (1991) with randomly generated (totally irrelevant) instruments produced very simi-
lar point estimates and standard errors. This result indicates that the original instruments were
weak.

For a more complete discussion of estimation with weak instruments, the reader may consult Stock,
Wright, and Yogo (2002).

5.3. Characterization of valid tests and confidence sets

Weak instruments also lead to very serious problems when one tries to perform tests or build confi-
dence intervals on the parameters of the model. Consider the general situation where we have two
parameterg; andfs [i.e., 6§ = (6,07)] such tha¥ is no longer identified wheé, takes a certain
value, say); = 69 :

L(y|61,62) = L(y | 6}) - (5.12)

Theorem 5.1 If 65 is a parameter whose value is not bounded, then the confidence @gidth
levell — « for #2 must have the following property:

Po[C' is unboundefl> 0 (5.13)

and, ifd; = 69,
Py[C is unboundep> 1 — «. (5.14)

ProoOF. See Dufour (1997)n

Corollary 5.2 If C' does not satisfy the property given in the previous theorem, its size must be zero.

This will be the case, in particular, for any Wald-type confidence interval, obtained by assuming
that

~

92 — 92 approx
= ~J

= N(0,1), (5.15)
0¢,
which yields confidence intervals of the forfg — cop, < 0y < 0y + cop, , WhereP[|N(0,1)| >
c] < «. By the above corollary, this type of interval has level zero, irrespective of the critical value
c used:

inf Py [0 — 5o, < 02 < B2+ 0392] ~0. (5.16)
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In such situations, the notion of standard error loses its usual meaning and does not constitute a valid
basis for building confidence intervals. In SEM, for example, this applies to standard confidence
intervals based on 2SLS estimators and their asymptotic “standard errors”.

Correspondingly, if we wish to test an hypothesis of fai: 6, = 6, the size of any test of
the form R
6 — 69

~

06,

‘t§2 (93)‘ - > (@) (5.17)

will deviate arbitrarily from its nominal size. No unique large-sample distribution@goman provide
valid tests and confidence intervals based on the asymptotic distributi&gg. &from a statistical
viewpoint, this means thay; is not a pivotal functiorfor the model considered. More generally,
this type of problem affect the validity of alWald-typemethods, which are based on comparing
parameter estimates with their estimated covariance matrix.

By contrast, in models of the form (5.1) - (5.5), the distribution of the LR statistics for most
hypotheses on model parameters can be bounded and cannot move arbitrarily: likelihood ratios are
boundedly pivotal functions and provide a valid basis for testing and confidence set construction
[see Dufour (1997)].

The central conclusion here igsts and confidence sets on the parameters of a structural model
should be based on proper pivots.

6. Approaches to weak instrument problems

What should be the features of a satisfactory solution to the problem of making inference in struc-
tural models? We shall emphasize here four properties: (1) the method should be based on proper
pivotal functions (ideally, a finite-sample pivot); (2) robustness to the presence of weak instruments;
(3) robustness to excluded instruments; (4) robustness to the formulation of the model for the ex-
planatory endogenous variablEswhich is desirable in many practical situations).

In the light of these criteria, we shdiist discuss the Anderson-Rubin procedure, which in our
view is the reference method for dealing with weak instruments in the context of standard SEM,
secondthe projection technique which provides a general way of making a wide spectrum of tests
and confidence sets, atidrdly several recent proposals aimed at improving and extending the AR
procedure.

6.1. Anderson-Rubin statistic

A solution to testing in the presence of weak instruments has been available for more than 50
years [Anderson and Rubin (1949)] and is now center stage again [Dufour (1997), Staiger and
Stock (1997)]. Interestingly, the AR method can be viewed as an alternative way of exploiting
“instruments” for inference on a structural model, although it pre-dates the introduction of 2SLS
methods in SEM [Theil (1953), Basmann (1957)], which later became the most widely used method
for estimating linear structural equations mod€lhe basic problem considered consists in testing

12The basic ideas for using instrumental variables for inference on structural relationships appear to go back to Working
(1927) and Wright (1928). For an interesting discussion of the origin of IV methods in econometrics, see Stock and Trebbi
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the hypothesis
Ho(By) : B= By (6.1)

in model (5.1) - (5.4). In order to do that, we considerariliary regressiorobtained by subtracting
Y 3, from both sides of (5.1) and expanding the right-hand side in terms of the instruments. This
yields the regression

y—YBy=X101+ X202+ ¢ (6.2)

wheref, = v+ I11 (5 — By), 02 = II2(8 — 5y) ande = u+ V(3 — ;) . Under the null hypothesis
Hy(B,), this equation reduces to
y—Ypy=X161 te, (6.3)

so we can test(3,) by testingH(,(3,) : 62 = 0, in the auxiliary regression (6.2). This yields the
following F-statistic — the Anderson-Rubin statistic — which follows a Fisher distribution under
the null hypothesis:

[SS0(By) — SS1(Bp)]/ k2
S§851(80)/(T — k)

whereSSy(8g) = (y — Y By)' M (X1)(y — Y By) andSS1(8g) = (y — Y By)' M (X)(y — Y 5y); for
any full-rank matrixA, we denoteP(A) = A(A’A)~1A’ andM (A) = I—- P(A). What plays the
crucial role here is the fact that we have instruménfs) that can be related t6 but are excluded
from the structural equation. To draw inference on the structural parametee “hang” on the
variables inXs : if we add X, to the constrained structural equation (6.3), its coefficient should be
zero. For these reasons, we shall call the variabléSiauxiliary instruments

Since the latter statistic is a proper pivot, it can be used to build confidence sgts for

AR(ﬁo) =

~ Flks, T — k) (6.4)

Cpla) ={Bo : AR(By) < Fu(kz, T —k)} (6.5)

whereF, (k2, T — k) is the critical value for a test with level based on thé’(ky, T' — k) distri-
bution. When there is only one endogenous explanatory var{éble 1), this set has an explicit
solution involving a quadratic inequatiore.

Cpla) = {By : aBf +bBy + ¢ < 0} (6.6)

wherea = Y'HY, H = M(X1) — M(X) [1 4 koFo(ke, T — k)/(T — k)], b = —2Y'Hy, and

c =y'Hy . The seC;3(«) may easily be determined by finding the roots of the quadratic polynomial

in equation (6.6); see Dufour and Jasiak (2001) and Zivot, Startz, and Nelson (1998) for details.
WhenG > 1, the setCs(«) is not in general an ellipsoid, but it remains fairly manageable

by using the theory ofjuadrics[Dufour and Taamouti (2000)]. When the model is correct and its

parameters are well identified by the instruments uégdq) is a closed bounded set close to an

ellipsoid. In other cases, it can be unbounded or empty. Unbounded sets are highly likely when

the model is not identified, so they pointlexk of identification Empty confidence sets can occur

(with a non-zero probability) when we have more instruments than parameters in the structural

(2003).
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equation (5.1)j.e. the model isoveridentified An empty confidence set means that no value of
the parameter vectgt is judged to be compatible with the available data, which indicates that the
model is misspecified. So the procedure provides as an interesting bypraghesification test®

It is also easy to see that the above procedure remains valid even if the extended reduced form
(5.6) is the correct model fdr. In other words, we can leave out a subset of the instrumexs$
and use onlyX, : the level of the procedure will not be affected. Indeed, this will also hold if
Y is determined by the general — possibly nonlinear — model (5.7). The procedutauist to
excluded instrumentzs well as to thepecification of the model far. The power of the test may
be affected by the choice df,, but its level is not. Since it is quite rare an investigator can be sure
relevant instruments have not been left out, this is an important practical consideration.

The AR procedure can be extended easily to deal with linear hypotheses which invatse
well. For example, to test an hypothesis of the form

Ho(Bg, v0) : B = Py andy =g, (6.7)

we can consider the transformed model

Since, undetdy(8y, 7o),
y—YBy— X1y =¢, (6.9)

we can test (3, 7o) by testingHy (5, 7o) : 61 = 0 andf, = 0 in the auxiliary regression (6.8);
see Maddala (1974). Tests for more general restrictions of the form

Hﬂ(ﬁ07 VO) : ﬁ = ﬁO andR’Y =Vo, (610)

whereR is ar x K fixed full-rank matrix, are discussed in Dufour and Jasiak (2001).

The AR procedure thus enjoys several remarkable features. Namely, it is: (1) pivotal in finite
samples; (2) robust to weak instruments; (3) robust to excluded instruments; (4) robust to the spec-
ification of the model fo®y” (which can be nonlinear with an unknown form); further, (5) the AR
method provides asymptotically “valid” tests and confidence sets under quite weak distributional
assumptions (basically, the assumptions that cover the usual asymptotic properties of linear regres-
sion); and (6) it can be extended easily to test restrictions and build confidence sets which also
involve the coefficients of the exogenous variables, suddAg,,, o) in (6.10).

But the method also has its drawbacks. The main ones are: (1) the tests and confidence sets
obtained in this way apply only to the full vectgior (3’, v')']; what can we do, iff has more than
one element? (2) power may be low if too many instruments are addelgs too many variables)
to perform the test, especially if the instruments are irrelevant; (3) error normality assumption is
restrictive and we may wish to consider other distributional assumptions; (4) the structural equations
are assumed to be linear. We will now discuss a number of methods which have been proposed in
order to circumvent these drawbacks.

3For further discussion of this point, see Kleibergen (2002b).
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6.2. Projections and inference on parameter subsets

Suppose now that [or (3, 7')’] has more than one component. The fact that a procedure with a
finite-sample theory has been obtained for “joint hypotheses” of the #s(,,) [or Ho(8, 7o)]
is not due to chance: since the distribution of the data is determined by the full parameter vector,
there is no reason in general why one should be able to decide on the value of a component of
06 independently of the others. Such a separation is feasible only in special situatmnas,the
classical linear model (without exact multicollinearity). Lack of identification is precisely a situation
where the value of a parameter may be determined only after various restrigignshe values
of other parameters) have been imposed. So parametric nonseparability arises here, and inference
should start from a simultaneous approach. If the data generating process corresponds to a model
where parameters are well identified, precise inferences on individual coefficients may be feasible.
This raises the question how one can move from a joint inferengetorts components.

A general approach to this problem consists in using a projection technique. If

P[5 € Cp(a)) 2 1~ a, (6.11)

then, for any functiory(3),
Plg(B) € g[Ca(a)]] > 1 —a. (6.12)

If g(/3) is a component of or (more generally) a linear transformatigf) = w’(3, the confidence
set for a linear combination of the parameters,saytakes the usual forrhu’@ — 02, w’BJr&za]
with 3 a k-class type estimator ¢f see Dufour and Taamouti (2008.
Another interesting feature comes from the fact that the confidence sets obtained in this way are
simultaneousn the sense of Scheffé. More precisely{ é.(3) : a € A} is a set of functions of,
then
Plga(B) € g[Cs(a)] forallac A] > 1 —a. (6.13)

If these confidence intervals are used to test different hypotheses, an unlimited number of hypotheses
can be tested without losing control of the overall level.

6.3. Alternatives to the AR procedure

In view of improving the power ofAR procedures, a number of alternative methods have been
recently suggested. We will now discuss several of them.

a. Generalized auxiliary regression A general approach to the problem of testiig(5,) con-
sists in replacingXs in the auxiliary regression

y—YBy= X101 + Xa02 +¢ (6.14)

144 [Cs()] takes the form of a bounded confidence interval as soon as the confidende&'sét:)] is unbounded.
For further discussion of projection methods, the reader may consult Dufour (1990, 1997), Campbell and Dufour (1997),
Abdelkhalek and Dufour (1998), Dufour, Hallin, and Mizera (1998), Dufour and Kiviet (1998), and Dufour and Jasiak
(2001).
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by an alternative set of auxiliary instruments, séayf dimensionT x k.. In other words, we
consider the generalized auxiliary regression

y—YBy= X101+ Z0s + ¢ (6.15)

wheref, = 0 underHy(3,). So we can testl,(3,) by testingds = 0 in (6.15). Then the problem
consists in selecting so that the level can be controlled and power may be improved with respect
to the AR auxiliary regression (6.14). For example, it is easy to see that the power of the AR test
could become low if a large set of auxiliary instruments is used, especially if the latter are weak.
So several alternative procedures can be generated by reducing the number of auxiliary instruments
(the number of columns ix).

At the outset, we should note that, if (5.8) were the correct modelland [I1;, II5] were
known, then an optimal choice from the viewpoint of power consists in chodging X, Ils;
see Dufour and Taamouti (2001b). The practical problem, of course, igfithast unknown. This
suggests that we replaéé I1> by an estimate, such as

Z = X,II, (6.16)

wherell, is an estimate of the reduced-form coefficiéht in (5.2). The problem then consists in
choosing!I. For that purpose, it is tempting to use the least squares estidﬁaiol(X’X)—lX’Y.
However,IT ande are not independent and we continue to face a simultaneity problem with messy
distributional consequences. Ideally, we would like to select an estifiatehich is independent

of e.

b. Split-sample optimal auxiliary instruments If we can assume that the error vectors
(ug, V), t =1, ..., T, are independent, this approach to estimafihgray be feasible by using
a split-sample technique: a fraction of the sample is used to obfand the rest to estimate the
auxiliary regression (6.15) with = X5 IT,. Under such circumstances, by conditioninglénwe
can easily see that the standdfdest ford, = 0 is valid. Further, this procedure is robust to weak
instruments, excluded instruments as well as the specification of the modél[fa., under the
general assumptions (5.6) or (5.7)], as long as the independence betivaeds can be main-
tained. Of course, using a split-sample may involve a loss of the effective number of observations
and there will be a trade-off between the efficiency gain from using a smaller number of auxiliary
instruments and the observations that are “sacrificed” tdlg@etter results tend to be obtained by
using a relatively small fraction of the sample to obt&in— 10% for example — and the rest for
the main equation. For further details on this procedure, the reader may consult Dufour and Jasiak
(2001) and Kleibergen (20028).

A number of alternative procedures can be cast in the framework of equation (6.15).

c. LM-type GMM-based statistic If we takeZ = Zy; with

Zwyz = P[M(X1)Xa]Y = P[M(X1)Xo]M(X1)Y = [M(X1)Xo)Il,,  (6.17)

15gplit-sample techniques often lead to important distributional simplifications; for further discussion of this type of
method, see Angrist and Krueger (1995) and Dufour and Torres (1998, 2000).
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Iy = [X5M(X1)Xo] ' X5M(X1)Y, (6.18)

the F-statistic [sayFaa(8,)] for 62 = 0 is a monotonic transformation of the LM-type statistic
LMeanrn(By) proposed by Wang and Zivot (1998). Namely,

(T =k — G LMcarn(Bo)
Fonmm(By) = < o7 > T (/) LMo (Bo) (6.19)
wherev; =T — k1 — G and
LMgarnt (5) = 4 Y B0)' P[Zwz](y = Y By) (6.20)

(y =Y Bo)M(X1)(y —YBo) /T

Note that/T, above is the ordinary least squares (OLS) estimatddpfrom the multivariate re-
gression (5.2), so thdtgasa(8,) can be obtained by computing the F-statistic#r= 0 in the
regression

y—Y By = X105 + (XoIl2)05 + u. (6.21)

Whenky > G, the statisticEara () can also be obtained by testifg® = 0 in the auxiliary
regression R
y—YBy=X107 + Y05 +u (6.22)

whereY = XTI. It is also interesting to note that the OLS estimates6and6;*, obtained by
fitting the latter equation, are identical to the 2SLS estimaté$'odndds™ in the equation

Y=Y By = X107 + Y05 +u. (6.23)

The LM¢a s test may thus be interpreted as an approximation to the optimal test based on re-
placing the optimal auxiliary instrumetis 1> by XoII. The statisticL Maarar(Bg) is also nu-
merically identical to the corresponding LR-type and Wald-type tests, based on the same GMM
estimator (in this case, the 2SLS estimatopof

As mentioned above, the distribution of this statistic will be affected by the factthat, and
u are not independent. In particular, it is influenced by the presence of weak instruments. But
Wang and Zivot (1998) showed that the distributionZa¥/ s (5,) is bounded by the?(ks)
asymptotically. Wherky, = G (usually deemed the “just-identified” case, although the model may
be under-identified in that case), we see easily [from (6.21)] Haat s (5,) is (almost surely)
identical with the AR statistid,e.

so thatFga i (Bg) follows an exact' (G, T' — k) distribution, while forks > G,

T—k -G

< - -
G Famm(Bo) < <T— fa—

) ks AR(y), (6.25)

so that the distribution of. M aras(5,) can be bounded in finite samples by the distribution of a
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monotonic transformation of B(ky, T — k) variable [which, forT large, is very close to the?(k2)
distribution]. But, forT" reasonably larged R(3,) will always reject wherFgasas (5,) rejects (at a
given level), so the power of the AR test is uniformly superior to that ofithé;,,, bound test®

d. Kleibergen's K test  If we takeZ = Zx with

Zx = P(X) Y—(y—m):z((gg)) = XI1(By) = Y (Bo) (6.26)
(By) = ﬁ—ﬁ(ﬂo)ii‘;((gg;, = (x'X)"'xy, (6.27)
70 = (XXX Y6, swlBo) = - YO MX)Y, (629

sunly) = WY MOy = Vi) (6.26)

we obtain a statistic, which reduces to the one proposed by Kleibergen (2002a)$of. More
precisely, withk; = 0, the F-statisticF (3,) for f2 = 0 is equal to Kleibergen’s statisti& (3,,)
divided byG :

Fr(By) = K(Bo)/G - (6.30)

This procedure tries to correct the simultaneity problem associated with the u3e iof
the LMgyrpr Statistic by “purging” it from its correlation withu [by subtracting the term
7(Bo)sev (Bo)/s=e(By) In Zk] . In other words Fi (5,) and K (5y) = G Fk(5,) can be obtained
by testingd, = 0 in the regression

y—YBy= X101+ Y (By)02 +u (6.31)

where the fitted \{aluefsi wbich appear in the auxiliary regression (6.22) for e ;s test, have
beenreplaced by (5)) =Y — X7 (06y)sev (8y)/s:2(8y), which are closer to being orthogonal with
u.

If k2 = G, we haveFk (5,) = AR(S,) ~ F(G, T — k), while in the other case@: > G),
we can see easily that the bound 1ot/ () in (6.25) also applies t&'x (5,) :

T—-k -G

G Fk(By) < <TklkZ

> ko AR(B,) , (6.32)
Kleibergen (2002a) did not supply a finite-sample distributional theory but showed (assuming
k1 = 0) that K(3,) follows a x?(G) distribution asymptotically undek(3,), irrespective of
the presence of weak instruments. This entails that/flig,) test will have power higher than
the one of LMgis test [based on the?(k2) bound], at least in the neighborhood of the null
hypothesis, although not necessarily far away from the null hypothesis.

It is also interesting to note that the inequality (6.32) indicates that the distributirt @f) =

%The x?(k2) bound also follows in a straightforward way from (6.25). Note that Wang and Zivot (1998) do not provide
the auxiliary regression interpretation (6.21) - (6.22) of their statistics. For details, see Dufour and Taamouti (2001b).
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G Fk(B,) can be bounded in finite samples byeg(T'— k1 — G) /(T — k)| F'(ke, T —k) distribution.
However, because of the stochastic dominancd Bf3,), there would be no advantage in using
the bound to get critical values féf (), for the AR test would then have better power.

In view of the fact that the above procedure is based on estimating the medil lusing
X IT) and the covariances between the errors in the reduced forin fardu [using s.1-(3,)], it
can become quite unreliable in the presence of excluded instruments.

e. Likelihood ratio test  The likelihood ratio (LR) statistic fo6 = 3, was also studied by Wang
and Zivot (1998). The LR test statistic in this case takes the form:

LRz =T [In(k(By)) — IH(K(BLIML))] (6.33)
WhereBLIML is the limited information maximum likelihood estimator (LIML) gfand
(y = YB) M(X1)(y — Y )
(y=YB)M(X)(y-Y3)

Like LMgyu, the distribution of LRy ;, depends on unknown nuisance parameters under
Hoy(B,), but its asymptotic distribution ig?(k2) whenks = G and bounded by thg? (k) dis-
tribution in the other cases [a result in accordance with the general LR distributional bound given in
Dufour (1997)]. This bound can also be easily derived from the following inequality:

k(B) = (6.34)

LRrivr < (Tik) k2 AR(By) , (6.35)

so that the distribution of R 15/, is bounded in finite samples by the distribution &, /(T —
k)|F(ke, T — k) variable; for details, see Dufour and Khalaf (2000). Foreasonably large, this
entails that theAR(3,) test will have power higher than the one bRy, test [based on the
x2(k2) bound)], at least in the neighborhood of the null hypothesis. So the power of the AR test is
uniformly superior to the one of theR}, 15, bound test. Because the LR test depends heavily on
the specification of the model faf, it is not robust to excluded instruments.

f. Conditional tests A promising approach was recently proposed by Moreira (2003a). His sug-
gestion consists in conditioning upon an appropriately selected portion of the sufficient statistics for
a gaussian SEM. On assuming that the covariance matrix of the errors is known, the corresponding
conditional distribution of various test statistics iy (/3,) does not involve nuisance parameters.

The conditional distribution is typically not standard but may be established by simulation. Such
an approach may lead to power gains. On the other hand, the assumption that error covariances
are known is rather implausible, and the extension of the method to the case where the error co-
variance matrix is unknown is obtained at the expense of using a large-sample approximation. Like
Kleibergen’s procedure, this method yields an asymptotically similar test. For further discussion,
see Moreira and Poi (2001) and Moreira (2003b).

g. Instrument selection procedures Systematic search methods for identifying relevant instru-
ments and excluding unimportant instruments have been discussed by several authors; see Hall,
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Rudebusch, and Wilcox (1996), Hall and Peixe (2000), Dufour and Taamouti (2001a), and Donald
and Newey (2001). In this setup, the power of AR-type tests depends on a function of model param-
eters called theoncentration coefficienDne way to approach instrument selection is to maximize
the concentration coefficient towards maximizing test power. Robustness to instrument exclusion
is very handy in this context. For further discussion, the reader may consult Dufour and Taamouti
(20014a).

To summarize, in special situations, alternatives to the AR procedure may allow some power
gains with respect to the AR test with an unreduced set of instruments. They themselves may have
some important drawbacks. In particular, (1) only an asymptotic distributional theory is supplied,
(2) the statistics used are not pivotal in finite samples, although Kleibergen’s and Moreira’s statistics
are asymptotically pivotal, (3) they are not robust to instrument exclusion or to the formulation of
the model for the explanatory endogenous variables. It is also of interest to note that finite-sample
versions of several of these asymptotic tests may be obtained by using split-sample methods.

All the problems and techniques discussed above relate to sampling-based statistical methods.
SEM can also be analyzed through a Bayesian approach, which can alleviate the indeterminacies
associated with identification via the introduction of a prior distribution on the parameter space.
Bayesian inferences always depend on the choice of prior distribution (a property viewed as undesir-
able in the sampling approach), but this dependence becomes especially strong when identification
problems are present [see Gleser and Hwang (1987)]. This paper only aims at discussing prob-
lems and solutions which arise within the sampling framework, and it is beyond its scope to debate
the advantages and disadvantages of Bayesian methods under weak identification. For additional
discussion on this issue, see Kleibergen and Zivot (2003) and Sims (2001).

7. Extensions

We will discuss succinctly some extensions of the above results to multivariate setups (where several
structural equations may be involved), models with non-Gaussian errors, and nonlinear models.

7.1. Multivariate regression, simulation-based inference and nonnormal errors

Another approach to inference on a linear structural equation model is based on observing that the
structural model (5.1) - (5.4) can be put in the form of a multivariate linear regression (MLR):

VY =XB+U (7.1)

whereY = [y, Y], B =[x, II|,U = [u, V] = [Uy, ..., Ur), 7 = [z, ab)/, I = [IT}, II}),
71 = I, f+~ andry = II,4.17 This model is linear except for the nonlinear restriction= 11 3.
Let us now make the assumption that the errors in the different equations for each obseliation,
satisfy the property:
U=JW,, t=1,...,T, (7.2)

"Most of this section is based on Dufour and Khalaf (2000, 2001, 2002).
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where the vectow = vec(W1, ... , W,) has a known distribution and is an unknown nonsin-
gular matrix (which enters into the covariance mattixof the error vector#/;). This distributional
assumption is, in a way, more restrictive than the one made in section 5.1 — because of the assump-
tion on V' — and in another way, less restrictive, because the distributianisfnot taken to be
necessarilyV [0, o2 I7] .

Consider now an hypothesis of the form

Hy: RBC =D (7.3)

whereR, C andD are fixed matrices. This is calleclaiform linear (UL) hypothesjgor example,
the hypothesig = (3, tested by the AR test can be written in this form [see Dufour and Khalaf
(2000)]. The corresponding gaussian LR statistic is

LR(Hy) = Tn(|Z|/|2)]) (7.4)

whereX = U'U/T and %, = U}U,/T are respectively the unrestricted and restricted estimates of
the error covariance matrix. The AR test can also be obtained as a monotonic transformation of a
statistic of the formLR(H,). An important feature of.R(Hy) in this case is that its distribution
under Hy does not involve nuisance parameters and may be easily simulated (it is a pivot); see
Dufour and Khalaf (2002). In particular, its distribution is completely invariant to the unknown
J matrix (or the error covariance matrix). In such a case, even though this distribution may be
complicated, we can usdonte Carlo test techniques- a form of parametric bootstrap — to obtain
exact test proceduré8. Multivariate extensions of AR tests, which impose restrictions on several
structural equations, can be obtained in this way. Further, this approach allows one to consider any
(possibly non-gaussian) distribution an

More generally, it is of interest to note that the LR statistic for about any hypothedisaam
be bounded by a LR statistic for an appropriately selected UL hypothesis: dettingc(B) and

Hy: Rbe Ay (7.5)

whereR an arbitraryg x k(G + 1) matrix and4 is an arbitrary subset d&?, the distribution of

the corresponding LR statistic can be bounded by the LR statistic for a UL hypothesis (which is
pivotal). This covers as special cases all restrictions on the coefficients of SEM (as long as they are
written in the MLR form). To avoid the use of such bounds (which may be quite conservative), it is
also possible to usmaximized Monte Carltests [Dufour (2002)].

All the above procedures are valid for parametric models that specify the error distribution up to
an unknown linear transformation (tblematrix) which allows an unknown covariance matrix. It is
easy to see that these (including the exact procedures discussed in section 6) yield “asymptotically
valid” procedures under much weaker assumptions than those used to obtain finite-sample results.
However, in view of the discussion in section 4, the pitfalls and limitations of such arguments should
be remembered: there is no substitute for a provably exact procedure.

If we aim at getting tests and confidence sets for nonparametric versions of the SEM (where the

18For further discussion of Monte Carlo test methods, see Dufour and Khalaf (2001) and Dufour (2002).
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error distribution involves an infinite set of nuisance parameters), this may be achievable by looking
at distribution-free procedures based on permutations, ranks or signs. There is very little work on
this topic in the SEM. For an interesting first look, however, the reader should look at an interesting
recent paper by Bekker (2002).

7.2. Nonlinear models

It is relatively difficult to characterize identification and study its consequences in nonlinear struc-
tural models. But problems similar to those noted for linear SEM do arise. Nonlinear structural
models typically take the form:

ft(yt, T, 9) = U¢, Eg[ut ’ Zt] = 0, t, ey T, (76)

wheref;(-) is a vector of possibly nonlinear relationshipsis a vector endogenous variablegjs

a vector of exogenous variablésis vector of unknown parameters; is a vector of conditioning
variables (or instruments) — usually with a number of additional distributional assumptions — and
Ey[ -] refers to the expected value under a distribution with parameter ¢almesuch modelsg

can be viewed as identifiable if there is only one valué fffay,d = 6] that satisfies (7.6), and we
haveweak identificatiorfor weak instruments) when the expected valigg; (v:, x¢, 0) | Z:] =0,

t, ..., T, are “weakly sensitive” to the value 6f

Research on weak identification in nonlinear models remains scarce. Nonlinearity makes it dif-
ficult to construct finite-sample procedures even in models where identification difficulties do not
occur. So it is not surprising that work in this area has been mostly based on large-sample approx-
imations. Stock and Wright (2000) studied the asymptotic distributions of GMM-based estimators
and test statistics under conditions of weak identification (and weak “high level” asymptotic distri-
butional assumptions). While GMM estimatorsdofiave nonstandard asymptotic distributions, the
objective function minimized by the GMM procedure follows an asymptotic distribution which is
unaffected by the presence of weak instruments: it is asymptotically pivotal. So tests and confidence
sets based on the objective function can be asymptotically valid irrespective of the presence of weak
instruments. These results are achieved for the full parameter dter for hypotheses of the
form 6 = 0, and the corresponding joint confidence sets. This is not surprising: parametric non-
separability arises here for two reasons, model nonlinearity and the possibility of non-identification.
Of course, once a joint confidence set fidnas been built, inference on individual parameters can
be drawn via projection methods. Other contributions in this area include papers by Kleibergen
(20014, 2003), who proposed an extension of Ahg,) test, and Wright (2003, 2002) proposed
tests of underidentification and identification.

In view the discussion in section 4, the fact that all these methods are based on large-sample ap-
proximations without a finite-sample theory remains a concern. However, a first attempt at deriving
finite-sample procedures is available in Dufour and Taamouti (2001b). Under parametric assump-
tions on the errors, the hypothesis-= 6, is tested by testing = 0 in an auxiliary regression of the
form:

ft(ye, 21, 00) = (00, O1)y +e, t, ..., T, (7.7)
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where thez, (6, 01) are instruments in a way that maximizes power against a reference alternative
(point-optimal instrumenjs One gets in this way point-optimal tests [see King (1988) and Dufour
and King (1991)]. Inference on nonlinear regressions are also covered by this setup. As in the case
of linear SEM, sample-split techniques may be exploited to approximate optimal instruments, and
projection methods can be used to draw inference on subvectérs of

8. Conclusion

By way of conclusion, we will summarize the main points made in this paper.

1. There are basic pitfalls and limitations faced in developing inference procedures in economet-
rics. If we are not careful, we can easily be led ittalefined problemsnd find ourselves:

(a) trying totest a non-testable hypothesisich as an hypothesis on a moment in the context
of an insufficiently restrictive nonparametric model, or an hypothe&sg @ unit root
hypothesis) on a dynamic model while allowing a dynamic structure with an unlimited
(not necessatrily infinite) number of parameters;

(b) trying to solve an inference problem using a technique that cannot deliver a solution
because of the very structure of the technjcagein (i) testing an hypothesis on a mean
(or median) under heteroskedasticity of unknown form, via standard least-square-based
“heteroskedasticity-robust” standard errors, or (ii) building a confidence interval for a
parameter which is not identifiable in a structural model, via the usual technique based
on standard errors. In particular, this type of difficulty arises for Wald-type statistics in
the presence aofieak instrumentéor weakly identifiednodels)

2. In many econometric problems (such as, inference on structural models), several of the intu-
itions derived from the linear regression model and standard asymptotic theory can easily be
misleading.

(a) Standard errors do not constitute a valid way of assessing parameter uncertainty and
building confidence intervals.

(b) In many models, such as structural models where parameters may be underidentified,
individual parameters in statistical models are not generally meaningful, but parameter
vectors can be (at least in parametric models). We called this phenorparaemetric
nonseparability As a result, restrictions on individual coefficients may not be testable,
while restrictions on the whole parameter vector are. This feature should play a central
role in designing methods for dealing with weakly identified models.

3. The above difficulties underscore the pitfalls of large-sample approximations, which are typ-
ically based on pointwise (rather than uniform) convergence results and may be arbitrarily
inaccurate in finite samples.
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4. Concerning solutions to such problems, and more specifically in the context of weakly iden-
tified models, we have emphasized the following points.

(a) In accordance with basic statistical theory, one should always lookifmts as the
fundamental ingredient for building tests and confidence sets.

(b) Pivots are not generally available for individual parameters, but they can be obtained in
a much wider set of cases for appropriately selected vectors of parameters.

(c) Given a pivot for a parameter vector, we can construct valid tests and confidence sets
for the parameter vector.

(d) Inference on individual coefficients may then be derived through projection methods.
5. In the specific example of SEM, the following general remarks are in our view important.

(a) Besides being pivotal, the AR statistic enjoys several remarkable robustness properties,
such as robustness to the presence of weak instruments, to excluded instruments or to
the specification of a model for the endogenous explanatory variables.

(b) Itis possible to improve the power of AR-type procedures (especially by reducing the
number of instruments), but power improvements may come at the expense of using a
possibly unreliable large-sample approximation or losing robustness (such as robustness
to excluded instruments). As usual, there is a trade-off between power (which is typi-
cally increased by considering more restrictive models) and robustness (which involves
considering a wider hypothesis).

(c) Trying to adapt and improve AR-type procedures (without ever forgetting basic statisti-
cal principles) constitutes the most promising avenue for dealing with weak instruments.
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