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1 Introduction

It has long been appreciated that in some circumstances likelihood functions may not be available
and the focus of parametric inference is only on a limited number of structural parameters associated
to the data generating process (DGP) by a structural econometric model. Hansen (1982) has
fully settled the theory to use efficiently the informational content of such moment conditions
about unknown structural parameters while Chamberlain (1987) showed that the semiparametric
efficiency bound for conditional moment restriction models is attained by optimal GMM.

However, and somewhat surprisingly, the pre-1990 GMM literature seems to have forgotten
that moment restrictions, when they overidentify the structural parameters of interest, may bring
useful information about other characteristics of the DGP. To see this, let us consider that we have
at our disposal n i.i.d. observations (Xi, Zi), i = 1, · · · , n of a random vector (X,Z) on IRk × IRd.
The focus of our interest in this paper is the information content of either q unconditional moment
restrictions:

E
£
Ψ(X, θ0)

¤
= 0 (1.1)

or q conditional moment restrictions

E
£
Ψ(X, θ0) |Z ¤ = 0 (1.2)

which, in both cases, are assumed to define the true unknown value θ0 of a vector θ ∈ Θ ⊂ IRp of
p unknown parameters, while Ψ : IRk × Θ −→ IRq is a known function. When q > p in case (1.1)
or irrespective of the value of q in case (1.2), only one part of the informational content of these
moment restrictions is actually used by traditional GMM approaches to estimate θ efficiently. The
usefulness of residual information due to overidentification is overlooked.

Actually, following Hansen (1982), efficient estimation of θ0 from (1.1) goes through a prelimi-
nary consistent estimation of a matrix M

¡
θ0
¢
of optimal selection of estimating equations:

M(θ0) = E

·
∂Ψ0

∂θ
(X, θ0)

¸
V ar−1

£
Ψ(X, θ0)

¤
(1.3)

while, as surveyed by Newey (1993), efficient estimation of θ0 from (1.2) rests upon a preliminary
consistent estimation of a matrix M(Z, θ0) of optimal instruments:

M(Z, θ0) = E

·
∂Ψ0

∂θ
(X, θ0) |Z

¸
V ar−1

£
Ψ(X, θ0) |Z ¤ (1.4)

The important idea that such overidentified moment restrictions should also lead us to revise
our empirical views about the DGP has first been put forward by the empirical likelihood literature
(Owen (1990), (1991), Qin and Lawless (1994)) for a classical approach, and by Zellner’s Bayesian
Method of Moments (BMOM) for a Bayesian one (Zellner (1991), Zellner and Tobias (2001)).
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Typically, as clearly explained in Zellner (2003), the idea is to seek the least informative density
function in terms of expected distance subject to the moment conditions. But, while Zellner
considers expected distances with respect to priors, we are going to consider distances with respect
to empirical probability distributions, that put weights 1/n on the n observed values Xj , j = 1, · · ·n
in case (1.1) and smoothed kernel weights ωij on the n observed values Xj , j = 1, · · ·n given the
possible conditioning values Zi, i = 1, · · ·n, in case (1.2).

In other words, following Maasoumi (1993), the distance between observed empirical distribution
and an hypothetical probability distribution conformable to the moment restrictions will be the
unifying tool of this paper. While computing such implied probability distributions should be of
interest for a variety of econometric applications like asset pricing, forecasting or simulations, the
focus of our interest in this paper is more estimation of the structural parameters θ. However,
we show that implied probabilities precisely afford an efficient use of the informational content of
estimating equations to learn about any population expectation Eg(X) in case (1.1.) or E [g(X) |Z ]
in case (1.2) for any test function g.

We actually argue that it is precisely this efficient use which allows us to efficiently estimate the
optimal selection matrix (1.3) in case (1.1) as well as the optimal instruments (1.4) in case (1.2).
More precisely, we show that implied probabilities provided by some Euclidean empirical likeli-
hood approach, both in the unconditional and conditional cases, define estimators of E [g(X)] and
E [g(X) |Z ] which make use of the moment conditions Ψ(X, θ0) as control variates. In other words,
our estimators have less variance than simple empirical counterparts of E [g(X)] or E [g(X) |Z ]
(empirical mean for the former, kernel estimator for the latter) because covariation between g(X)
and moment conditions is exploited.

When applied to estimation of expectations of ∂Ψ0
∂θ (X, θ

0) and Ψ(X, θ0)Ψ0(X, θ0) (to get rid of
(1.3) or (1.4)), this control variates approach precisely addresses an issue pointed out by several
authors (see in particular Altonji and Segal (1996)) to explain the poor finite sample performance
of standard GMM. This is precisely because we have deleted any perverse correlation between our
estimators of M(θ0) or M(Z, θ0) and moment conditions that we will improve the small sample
properties of GMM.

While this control variates improvement is so natural and user-friendly, one may wonder why
so much emphasis has recently been put on one-step procedures based on empirical likelihood or
Kullback-Leibler information criterion (see Kitamura and Stutzer (1997), Imbens (1997), Imbens,
Spady and Johnson (1998), Newey and Smith (2004) for the unconditional case, Kitamura, Tripathi
and Ahn (2000), Donald, Imbens, Newey (2001) for the conditional case). We show in this paper
that the main advantage of one-step empirical likelihood approaches is to provide estimating equa-
tions for θ where the optimal matrices M(θ0) or M(Z, θ0) are implicitely efficiently estimated. In
particular, contrary to what is sometimes said, the issue is not to avoid nonparametric estimation
of optimal instruments but just do it simultaneously with estimation of θ.

However, the practical drawback of empirical likelihood is well known. Implied probabilities
can be only numerically computed, through a high dimensional convex optimization program. This
problem is especially detrimental in the case of conditional implied probabilities since the dimension
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of the needed optimization program grows proportionally to the sample size. By contrast, maxi-
mization of Euclidean empirical likelihood provides closed form formulas for implied probabilities
and natural control variates interpretations of associated estimated expectations. Moreover, we
show that the Euclidean empirical likelihood estimator of θ coincides with continuously updated
GMM (CUE-GMM) as first proposed by Hansen, Heaton and Yaron (1996). While this result is
not really surprising in the unconditional case, it sheds some light on some new conditional versions
of CUE-GMM. This interpretation is related to the work of Ai and Chen (2001). They propose a
conditional version of efficient two-stage GMM (2S-GMM) by minimizing a well-chosen norm of a
kernel estimation of the conditional moments (1.2). By considering the profile criterion for θ of a
smoothed version of Euclidean empirical likelihood, we get a similar conditional CUE-GMM.

Finally, we propose an answer to two criticisms often given against Euclidean empirical likeli-
hood by contrast with empirical likelihood.

First, it is known at least in the unconditional case (see Newey and Smith (2004)) that, while
a one-step empirical likelihood maximization amounts, in terms of estimation of θ, to an efficient
estimation of the optimal selection matrix M(θ0) (or, as we show, of the optimal instruments
M(Z, θ0) in the conditional case), the drawback of one step Euclidean empirical likelihood is to omit
the information content of estimation equations to estimate the variance matrix V ar

£
Ψ(X(X, θ0)

¤
,

while this information is taken into account to estimate the Jacobian matrix E
h
∂Ψ0
∂θ (X, θ

0)
i
(and

similarly in the conditional case). But we argue that nothing prevents us to introduce an additional
step of estimation to compute the efficient control variates estimators of these matrices. In order
to minimize the computational burden, we then propose a three step estimators: one step to get a
consistent estimator, a second step to get an efficient estimation and a third step to get an estimator
with similar higher order properties as empirical likelihood, while only quadratic minimizations
program are involved.

A second often maintained criticism against Euclidean empirical likelihood is to provide implied
probabilities the non-negativity of which is not guaranteed in finite sample. However, we argue
that a simple shrinkage towards empirical probabilities may hedge against this risk without any
asymptotic efficiency loss.

The paper is organized as follows.
We consider in section 2 the general issue of minimization of power divergence statistics, ele-

ments of the Cressie-Read family of divergences. Empirical Likelihood (EL) and Euclidean Em-
pirical Likelihood are particular cases. We show that, when minimized subject to unconditional
moment restrictions (1.1), these divergence statistics take implicitly advantage of the overidenti-
fying restrictions to improve estimation of the optimal selection of estimating equations. As a
byproduct, such a minimization provide a projection of the empirical probability distribution on
the set of probability distributions conformable to the moment restrictions. Among the variety of
power divergence statistics, the Euclidean Empirical Likelihood, based on a chi-square distance,
is the only one yielding a closed-form formula for projected (or implied) probabilities. As far as
estimation of θ is concerned, all the estimators resulting from a minimization of a power diver-
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gence statistics are first-order asymptotically equivalent. However, consideration of higher order
asymptotics points out better properties for empirical likelihood.

We focus in section 3 on the case of Euclidean Empirical Likelihood. We show that the cor-
responding implied probabilities amount to estimate population expectations by using the overi-
dentifying restrictions as control variables. Moreover, implied probabilities are asymptotically all
positive with probability one. A simple shrinkage procedure solves the negativity problem in finite
sample. In terms of estimation of θ, it is shown that Euclidean Empirical Likelihood minimization
coincides with CUE-GMM. Moreover we propose a three-step estimator, the computation of which
does not involve more than quadratic programming while its higher order asymptotics properties
coincide with the ones of Empirical Likelihood.

Section 4 is devoted to extend the results of previous sections to the case of conditional moment
restrictions (1.2). We first consider the general issue of minimization of a localized version of
power divergence statistics, when the object of interest are now conditional probabilities of the
values Xj given Zi. The idea is a projection of the kernel smoothed version of the conditional
empirical probability distribution on the set of conditional probability distributions conformable
to the conditional moment restrictions. We show that, in terms of estimation of θ, minimization
of such localized divergence subject to the conditional moment restrictions amounts to a non-
parametric estimation of optimal instruments. But, by contrast with naïve kernel smoothing, this
estimation takes advantage of the informational content of conditional moment restrictions. In the
case of conditional Euclidean Empirical Likelihood, the improvement amounts to use the moment
restrictions as conditional control variables. Several versions of a conditional extension of CUE-
GMM, which are suggested by the profile criterion of conditional Euclidean Empirical Likelihood,
are discussed. A three step extension is also proposed to get the same higher order properties as
Empirical Likelihood.

Section 5 concludes. The main proofs are gathered in a appendix.

2 Implied probabilities in minimum discrepancy estimators

2.1 The first order conditions

To describe the estimators, let Xi, (i = 1, · · · , n) be i.i.d. observations on a random vector X.
Consider the moment indicator Ψ (X, θ) =

¡
Ψj (X, θ)

¢
1≤j≤q, a q-vector of functions of the data

observation X and the p-vector θ of unknown parameters, with q ≥ p. It is assumed that the true
parameter vector θ0 satisfies the moment conditions:

E
£
Ψ
¡
X, θ0

¢¤
= 0, θ0²Θ ⊂ IRq. (2.1)
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Following Corcoran (1998), let us consider the optimization problem:

Min
π1,··· ,πn,θ

nX
i=1

h (πi)

nX
i=1

πiΨ (Xi, θ) = 0 (2.2)

nX
i=1

πi = 1

where h(π) is a differentiable convex function of a nonnegative scalar π that measures the dis-
crepancy between π and the empirical probability 1/n of a single observation, that can depend
on n. Typically, when the optimization problem (2.2) admits a unique solution π̂1, · · · , π̂n, θ̂ with
nonnegative π̂is, these can be interpreted as probabilities that minimize the discrepancy with the
empirical measure subject to moment conditions.

The following result will allow us to relate minimum discrepancy estimators to standard theory
of estimating equations:

Theorem 2.1 Assume that (2.2) uniquely defines estimators π̂1, · · · , π̂n, θ̂ with nonnegative π̂is.
Then θ̂ is characterized as solution of the first order conditions:"

nX
i=1

π̂i
∂Ψ0i
∂θ
(θ̂)

#"
nX
i=1

π̂iΨi(θ̂)Ψ
0
i(θ̂)

#−1 nX
i=1

hπ (π̂i) π̂iΨi

³
θ̂
´
= 0 (2.3)

where Ψi(θ) denotes Ψ(Xi, θ) and hπ(·) the first derivative of the function h.

Note that the required existence and unicity of a solution of (2.2) is likely to be fulfilled for
large n, under standard regularity conditions, insofar as the moment conditions satisfy the following
identification assumption which will be maintained hereafter:

Assumption 2.1 (i) EΨ (X, θ) = 0 =⇒ θ = θ0.

(ii) Γ
¡
θ0
¢
= E

∂Ψ

∂θ0
(X, θ)|θ=θ0 is of rank p = dim θ.

(iii) Ω (θ) = E [Ψ (X, θ)Ψ0(X, θ)] non singular matrix for all θ²Θ.

Another approach to combining estimating functions is to consider p-dimensional vectors of
estimating functions ϕ (X, θ) = A(θ)Ψ(X, θ) (where A(θ) is a p × q matrix of real functions of θ)
which are linear combinations of the q estimating functions Ψj(X, θ), j = 1, · · · , q. In estimating
function theory (e.g. see Godambe and Thompson (1989)), an estimating function ϕ∗ (X, θ) is
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called optimum if the estimator θ̂n from 1
n

nP
i=1

ϕ∗
³
Xi, θ̂n

´
= 0 has minimum asymptotic variance.

It is known that the optimal linear combination is given by:

ϕ∗(X, θ) = Γ0 (θ)Ω−1(θ)Ψ(X, θ). (2.4)

The matrices Γ
¡
θ0
¢
and Ω

¡
θ0
¢
are unknown but can be consistently estimated at any value of

θ, respectively by:

Γn (θ) =
1

n

nX
i=1

∂Ψi
∂θ0

(θ)

and

Ωn (θ) =
1

n

nX
i=1

Ψi (θ)Ψ
0
i (θ) .

Then, the most common strategy is to evaluate these matrices at any first step consistent
estimate θ̃n of θ0. We then get the consistent asymptotically normal estimator θ∗n with minimum
asymptotic variance by solving:

Γ0n
³
θ̃n

´
Ω−1n

³
θ̃n

´
Ψ̄n (θ

∗
n) = 0 (2.5)

where

Ψ̄n (θ) =
1

n

nX
i=1

Ψi (θ) .

More generally, we are going to call in the sequel asymptotically efficient estimator any estimator
θ̂n of θ0 first-order asymptotically equivalent to θ∗n, that is such that

√
n
³
θ̂n − θ∗n

´
= oP (1) (2.6)

It is easy to check that a necessary and sufficient condition for (2.6) is:

√
n
³
θ̂n − θ0

´
= −Σ−1Γ0Ω−1√nΨ̄n

¡
θ0
¢
+ oP (1) (2.7)

with Σ = (Γ0Ω−1Γ). In such expressions, the matrices Γ,Ω and Σ should actually be denoted
Γ
¡
θ0
¢
, Ω

¡
θ0
¢
and Σ

¡
θ0
¢
. The dependence on the true unknown value θ0 is omitted for the sake

of notational simplicity.
Among the asymptotically efficient estimators of θ0, one may also consider the one-step esti-

mator θ̂n defined by:
Γ0n(θ̂n)Ω

−1
³
θ̂n

´
Ψ̄n

³
θ̂n

´
= 0. (2.8)
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Although in general less computationally convenient than θ∗n, θ̂n defined by (2.9) is worth com-
paring to the minimum discrepancy estimators θ̂ defined by theorem 2.1. One similarity and two
differences are striking: In both cases, a left multiplication by a consistent estimator of the opti-
mal selection matrix Γ0(θ0)Ω−1

¡
θ0
¢
is applied to some weighting average of the sample estimating

functions. However, both these consistent estimators and these weighted averages are different in
general. First, while the common efficient estimation strategies (2.5) or (2.8) make use of the un-
constrained estimates Γn (θ) and Ωn (θ), the minimum discrepancy estimator resorts to constrained
estimates:

Γπ̄ (θ) =
nX
i=1

π̂i
∂Ψi
∂θ0

(θ)

and

Ωπ̄ (θ) =
nX
i=1

π̂iΨi (θ)Ψ
0
i (θ) .

One may expect that the latter are more accurate than the former since they take advantage
of the information provided by the estimating equations. More precisely, Γπ̄

³
θ̂
´
and Ωπ̄

³
θ̂
´
are

sample counterparts of the population moments Γ
¡
θ0
¢
and Ω

¡
θ0
¢
which are computed with sample

weights π̂i that are by definition conformable to the moment restrictions:
nP
i=1

π̂iΨi

³
θ̂
´
= 0. By

contrast, Γn(θ) and Ωn (θ) are computed from the empirical distribution, that is equally weighted
observations with weights 1/n, which are in general inconsistent with the moment restrictions:

1

n

nX
i=1

Ψi (θ) = Ψ̄n (θ) 6= 0 for all θ.

The second difference between (2.5)/(2.8) and minimum discrepancy estimators is that the con-
sistent estimate of the optimal selection matrix is applied to two different weighted averages of
the sample estimating functions. While (2.5)/(2.8) resorts to the common empirical mean Ψ̄n(θ),
the minimum discrepancy estimator is computed from a more bizarre weighted average, namely
nP
i=1
hπ (π̂i) π̂iΨi(θ̂). However, the two estimators are going to coincide when hπ (πi) is proportional

to 1/πi, that is when the chosen discrepancy function h(π) is an affine function of Log (π). This
particular case corresponds to the so-called empirical likelihood (EL) estimator, as first character-
ized by Qin and Lawless (1994), who already put forward its asymptotic efficiency by reference to
the theory of optimal estimating functions.

We are going to focus more generally in all the sequel on homogeneous discrepancy functions:
hπ (πi) proportional to π−λi for some non-zero real number λ.

9



2.2 Implied probabilities associated to power—divergence statistics

Cressie and Read (1984) introduced a family of power-divergence statistics as:

Iλ =
1

λ (λ− 1)
nX
i=1

h
(nπi)

1−λ − 1
i
, (2.9)

defined for any real λ, including the two limit cases λ −→ 0 and λ −→ 1. For λ /∈ {0, 1}, the
minimization of the divergence Iλ with respect to (πi)1≤i≤n under the constraints:

nP
i=1

πi = 1

nP
i=1

πiΨ (Xi, θ) = 0

is obviously equivalent to the minimum discrepancy optimization problem (2.2) with an homoge-
neous discrepancy function:

h (π) = π1−λ (2.10)

Notice that, for 0 < λ < 1, one must actually consider h(π) = −π1−λ to get a convex discrepancy
function. This change of sign does not play any role in the first order conditions of interest and will
not be made explicit in the sequel. The empirical likelihood case (h(π) = Logπ) is also included in
this framework by the limit case λ −→ 1:

Lim
λ−→1

1

λ− 1
h
(nπi)

1−λ − 1
i
= −Log(nπi).

However, the limit case λ −→ 0

µ
I0 = −

nP
i=1

πiLogπi

¶
is not included since it does not corre-

spond to any discrepancy function h (π) with hπ (πi) proportional to π−λi . This is the reason why
the so-called exponential tilting estimator as studied by Kitamura and Stutzer (1997) will not be
considered here.

We are going to focus on all other estimators
³
(π̂i,λ)1≤i≤n , θ̂n,λ

´
associated to some Cressie and

Read power divergence statistics Iλ, for some λ 6= 0.
By application of theorem 2.1, we know that the estimator θ̂n,λ is characterized by a set of p

first order conditions that can be written:½
Ên,λ

·
∂Ψ0i
∂θ

³
θ̂n,λ

´¸¾n
V̂n,λ

h
Ψi(θ̂n,λ)

io−1 nX
i=1

(π̂i,λ)
1−λΨi

³
θ̂n,λ

´
= 0 (2.11)

where sample counterparts of population moments are defined by:

Ên,λg (X) =
nX
i=1

π̂i,λg (Xi) (2.12)
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V̂n,λg (X) =
nX
i=1

π̂i,λ

h
g (Xi)− Ên,λg(X)

i
g0 (Xi) .

As far as the estimates π̂i,λ are concerned, they are characterized by the following first order
conditions:

Theorem 2.2 There exist a non-zero real number µn,λ and a vector αn,λ of q reduced Lagrange
multipliers such that:

π̂−λi,λ = µn,λ
h
1 + α0n,λΨi

³
θ̂n,λ

´i
.

The components of αn,λ are termed “reduced Lagrange multipliers” since the product µn,λαn,λ is
actually the vector of Lagrange multipliers associated to the moment restrictions. The real number

µn,λ, Lagrange multiplier associated to the constraint
nP
i=1

πi = 1, is non-zero. The following lemma

about the reduced Lagrange multipliers αn,λ will often be useful:

Lemma 2.3:
√
nαn,λ = λΩ−1n

³
θ̂n,λ

´√
nΨ̄n

³
θ̂n,λ

´
+OP (1/

√
n)

Note that lemma 2.3 means in particular that αn,λ = OP (1/
√
n). This property is important

since it implies that the quantities
h
1 + α0n,λΨi

³
θ̂n,λ

´i
are almost surely positive for large n. More

precisely:

Theorem 2.4 For all θ²Θ and ε > 0, P
·
Min
1≤i≤n

h
1 + α0n,λΨi (θ)

i
> 1− ε

¸
−→
n=∞ 1

Theorem 2.4 leads easily to three useful corollaries:

Corollary 2.5: Asymptotically almost certainly:

π̂i,λ =

h
1 + α0n,λΨi

³
θ̂n,λ

´i−1/λ
nP
j=1

h
1 + α0n,λΨj

³
θ̂n,λ

´i−1/λ .
Then, first order conditions (2.11) can be rewritten:

Corollary 2.6: The estimator θ̂n,λ is, asymptotically almost certainly, characterized by the p first
order conditions:½

Ên,λ

·
∂Ψ0i
∂θ
(θ̂n,λ)

¸¾n
V̂n,λ

h
Ψi

³
θ̂n,λ

´io−1 nX
i=1

h
1 + α0nΨi

³
θ̂n,λ

´iλ−1
λ ·Ψi

³
θ̂n,λ

´
= 0
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To interpret these first order conditions, it is worth noticing that by lemma 2.3:

1√
n

nX
i=1

h
1 + α0n,λΨi

³
θ̂n,λ

´iλ−1
λ ·Ψi

³
θ̂n,λ

´
=
√
nΨ̄n

³
θ̂n,λ

´
+

λ− 1
λ

· 1
n

nX
i=1

Ψi

³
θ̂n,λ

´
Ψ0i
³
θ̂n,λ

´
αn +OP

¡
1/
√
n
¢

=
√
nΨ̄n

³
θ̂n,λ

´
+ (λ− 1)√nΨ̄n

³
θ̂n,λ

´
+OP

¡
1/
√
n
¢

= λ
√
nΨ̄n

³
θ̂n,λ

´
+OP

¡
1/
√
n
¢
.

This first order expansion shows that the first order conditions of corollary 2.6 can be seen as
a consistent estimation of optimal estimating equations (2.4), that is:

Γ0(θ0)Ω−1
¡
θ0
¢√
nΨ̄n

³
θ̂n,λ

´
= OP

¡
1/
√
n
¢
.

By (2.7) and lemma 2.3, this leads to:

Corollary 2.7: For all λ²IR∗,√
n
³
θ̂n,λ − θ0

´
= −Σ−1Γ0Ω−1√nΨ̄n

¡
θ0
¢
+OP (1/

√
n)√

nαn,λ = λP
√
nΨ̄n

¡
θ0
¢
+OP (1/

√
n)√

nΨ̄n

³
θ̂n,λ

´
= ΩP

√
nΨ̄n(θ

0) +OP (1/
√
n)

with
Σ = Γ0Ω−1Γ
and P = Ω−1 − Ω−1ΓΣ−1Γ0Ω−1.
Corollary 2.7 implies in particular that for all λ²IR∗, the estimator θ̂n,λ associated to the power

divergence statistics (2.9) is asymptotically efficient. This property is actually well known, at least
since Imbens, Spady and Johnson (1998). In order to better characterize the difference between
various estimators associated to various choices of λ, we are going to consider now higher order
expansions of first order conditions.

2.3 Stochastic expansions of first order conditions

Theorem 2.8 below provides an higher order expansion of the first order conditions put forward by
corollary 2.6:

12



Theorem 2.8

1√
n

nX
i=1

h
1 + α0n,λΨi

³
θ̂n,λ

´iλ−1
λ
Ψi(θ̂n,λ)

= λ
√
nΨ̄n

³
θ̂n,λ

´
+

λ(λ− 1)
2

1√
n

qX
j=1

βjn(θ
0)ej +OP (1/n)

where for j = 1, · · · , q, ej denotes the q-dimensional vector with all coefficients equal to zero,
except the jth one equal to one, and:

βjn(θ
0) =

√
nΨ̄0n

¡
θ0
¢
P 0E

£
Ψ(X, θ0)Ψ0

¡
X, θ0

¢
Ψj
¡
X, θ0

¢¤
P
√
nΨ̄n

¡
θ0
¢
= OP (1)

In other words, for all λ 6= 0, θ̂n,λ is defined by first order conditions stochastically expanded
as: ½

Ên,λ
∂Ψ0i
∂θ
(θ̂n,λ)

¾n
V̂n,λ

h
Ψi(θ̂n,λ)

io−1√nΨ̄n ³θ̂n,λ´+ λ− 1
2
√
n

qX
j=1

βjn(θ
0)ej

 = OP (1/n)

(2.13)
It means that, up to some OP (1/n), the first order conditions defining θ̂n,λ are different from

the ones of empirical likelihood (case λ = 1) when the random variable
qP
j=1

βjn(θ
0)ej is not zero in

probability.
Note that each βjn(θ

0), j = 1, · · · , q, is asymptotically a quadratic form on a standardized
Gaussian vector of dimension q: Tn

¡
θ0
¢
= Ω−1/2

¡
θ0
¢√
nΨ̄n(θ

0). This quadratic form is zero if
and only if:

E
£
Ψ(X, θ0)Ψ0

¡
X, θ0

¢
Ψj
¡
X, θ0

¢¤
P = 0.

This condition is fulfilled in particular when third moments of Ψ
¡
X, θ0

¢
are zero:

E
h
Ψj
¡
X, θ0

¢
Ψk(X, θ0)Ψl(X, θ0)

i
= 0 for j, k, l = 1, · · · , q. (2.14)

As noticed by Newey and Smith (2004), this third moment condition will hold in an IV setting,
when disturbances are symmetrically distributed. More precisely, Newey and Smith (2004) (see
their theorem 4.1 and their comments after corollary 4.4) state that:

First, the higher order bias of θ̂n,λ with respect to empirical likelihood is zero when:

E
£
Ψ
¡
X, θ0

¢
Ψ0
¡
X, θ0

¢
PΨ

¡
X, θ0

¢¤
= 0. (2.15)

Second, when the zero third moments condition holds, one can actually show the stronger result
that:

θ̂n,λ − θ̂n,1 = OP
³
n−3/2

´
. (2.16)
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This stronger result will be shown in section 3 below to be a corollary of theorem 2.8 when the
βjn

¡
θ0
¢
, j = 1, · · · , q are all zero, that is:

E
£
Ψ
¡
X, θ0

¢
Ψ0
¡
X, θ0

¢
PΨj

¡
X, θ0

¢¤
= 0 for j = 1, · · · , q (2.17)

Note that this condition, although possibly slightly weaker than the zero third moments condi-
tion, is actually stronger than the Newey and Smith’s zero-bias condition (2.15).

3 Euclidean Empirical Likelihood

3.1 Continuously updated GMM

As already announced in section 2, higher order properties of the estimators θ̂n,λ should lead to
prefer the case λ = 1 (empirical likelihood) among all the possible Cressie-Read divergence statistics.
However, this case may be computationally demanding. To see this, let us just remind that by
corollary 2.5, implied probabilities in that case are asymptotically almost certainly proportional

to
h
1 + α0n,1Ψi

³
θ̂n,1

´i−1
. Then, the vector αn,1 of Lagrange multipliers should be computed as

solution of the following system of q nonlinear equations:

nX
i=1

Ψi

³
θ̂n,1

´
1 + α0n,1Ψi(θ̂n,1)

= 0. (3.1)

Convex duality is useful to solve these nonlinear equations (see Owen (2001) section 3.14 for
details) since (3.1) can be seen as first order conditions of the following convex minimization pro-
gram:

Min
α
−

nX
i=1

Log
h
1 + α0Ψi

³
θ̂n,1

´i
. (3.2)

The main difficulty is that the dimension of this optimization problem is q, the dimension of
Ψ. This may be actually a very high dimensional problem, in particular in the case of conditional
moment restrictions. As shown by Kitamura, Tripathi and Ahn (2000) (see also section 4 below),
nonparametric smoothing of conditional expectations at each point of the observed sample leads to
an effective number q of constraints (dimension of the vector α of Lagrange multipliers) proportional
to the sample size.

This gives a strong motivation to look for a less computationally demanding estimator because
the vector αn,λ of Lagrange multipliers will be easier to recover. The simplest case is (λ = −1)
since, by corollary 2.5, the Lagrange multipliers αn,−1 are determined as solutions of the system of
q linear equations:

nX
i=1

h
1 + α0n,−1Ψi

³
θ̂n,−1

´i
Ψi

³
θ̂n,−1

´
= 0 (3.3)
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From (2.9), the case (λ = −1) corresponds to the so-called Euclidean empirical likelihood:

I−1 =
1

2

nX
i=1

£
(nπi)

2 − 1¤ . (3.4)

Notice that I−1 is well defined even if some πi s are negative. For any given θ, its minimization
with respect to (πi)1≤i≤n under the constraints (2.2) is a quadratic program under linear restrictions

which defines profile functions πi (θ) , i = 1, · · · , n. We will denote by θ̂
Q
n = θ̂n,−1 the Euclidean

empirical likelihood estimator of θ.
We first characterize the profile implied probabilities in function of the two alternative estimators

of the covariance function Ω
¡
θ0
¢
= E

£
Ψ
¡
X, θ0

¢
Ψ0
¡
X, θ0

¢¤
:

Uncentered second moments: Ωn (θ) =
1
n

nP
i=1
Ψi (θ)Ψ

0
i (θ) (3.5)

Second moments in mean deviation form: Vn (θ) =
1
n

nP
i=1

£
Ψi (θ)− Ψ̄n (θ)

¤
Ψ0iθ (3.6)

Theorem 3.1 For all θ²Θ and i = 1, · · · , n:
πi (θ) is proportional to 1 + α0n (θ)Ψi (θ) and to 1 + γ0n (θ)

£
Ψi (θ)− Ψ̄n (θ)

¤
with:

αn (θ) = −Ω−1n (θ) Ψ̄n (θ) and γn (θ) = −V −1n (θ) Ψ̄n (θ) .

In particular:

πi (θ) =
1

n
− 1
n
Ψ̄0n (θ)V

−1
n (θ)

£
Ψi (θ)− Ψ̄n (θ)

¤
.

Note that by contrast with any other Cressie-Read divergence statistics, the Euclidean likelihood
provides closed form formulas for implied probabilities πi (θ) , i = 1, · · · , n. This convenience rests
upon the linearity of equations like (3.3) to determine Lagrange multipliers. Moreover, the almost
sure positivity property of theorem 2.4 allows us to state:

Corollary 3.2: Asymptotically almost certainly:

π̂i,−1 = πi

³
θ̂
Q
n

´
≥ 0 for all i.
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The profile functions πi (θ) , i = 1, · · · , n, give us two interesting characterizations of the profile
criterion defining the Euclidean empirical likelihood estimator θ̂

Q
n :

Corollary 3.3:

nX
i=1

π2i (θ) =
1

n

£
1 + Ψ̄0n (θ)V

−1
n (θ) Ψ̄n (θ)

¤
=
1

n

£
1− Ψ̄0n (θ)Ω−1n (θ) Ψ̄n (θ)

¤−1
.

Corollary 3.3 shows that the continuous updating estimator (CUE) of Hansen, Heaton and Yaron

(1996) numerically coincides with the Euclidean empirical likelihood estimator θ̂
Q
n . However, while

closed-form formulas for CUE-GMM may be computationally involved when analyzed at the profile
level, they are amazingly straightforward in the Euclidean empirical likelihood framework. For
instance, the simple fact that implied probabilities πi (θ) are proportional to both [1 + α0n (θ)Ψi (θ)]
and

£
1 + γ0n (θ)

¡
Ψi (θ)− Ψ̄n (θ)

¢¤
implies the important relationship:

1 +QV (θ) =
£
1−QΩ (θ)

¤−1
(3.7)

between the two possible forms of the criterion to minimize for CUE-GMM:

QV (θ) = Ψ̄0n (θ)V
−1
n (θ) Ψ̄n (θ) (3.8)

or
QΩ (θ) = Ψ̄0n (θ)Ω

−1
n (θ) Ψ̄n (θ) . (3.9)

Newey and Smith (2004) already mentioned relationship (3.7). Even more importantly, the fact
that both forms Ω−1 (θ) or V −1n (θ) of the weighting matrix, in uncentered moments form or in
mean deviation form, are valid for CUE-GMM, is true not only at the criterion level:

Min
θ
QV (θ)⇐⇒Min

θ
QΩ (θ) (3.10)

but also in terms of first order conditions. While the latter is far to be an obvious implication of
the former, it is stated by corollary 3.4. below:

Corollary 3.4: The Euclidean empirical likelihood estimator (CUE-GMM) θ̂
Q
n is characterized as

solution of any of the two following systems of first order conditions:

i)

"
nX
i=1

πi(θ̂
Q
n )

∂Ψ̄0i
∂θ
(θ̂
Q
n )

#
Ω−1n (θ̂

Q
n )Ψ̄n(θ̂

Q
n ) = 0

ii)

"
nX
i=1

πi(θ̂
Q
n )

∂Ψ̄0i
∂θ
(θ̂
Q
n )

#
V −1n (θ̂

Q
n )Ψ̄n(θ̂

Q
n ) = 0
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Corollary 3.4 is still a straightforward implication of the two possible forms αn (θ) and γn (θ)
of the vector of reduced Lagrange multipliers. Newey and Smith (2004), theorem 2.3, put forward
the first form of these first order conditions. In comparing the empirical likelihood first order
conditions ((2.11) with λ = 1) and CUE-GMM first order conditions, they stress that, while both
use the relevant constrained estimator of the Jacobian matrix Γ

¡
θ0
¢
by taking into account implied

probabilities π̂i,λ, CUE-GMM has the drawback to use an unconstrained estimator of the weighting
matrix Ω

¡
θ0
¢
. This criticism may however be mitigated in two respects:

First, as shown by (2.13), the difference between the two estimators can be interpreted in a
different way, where the weighting matrix is well-estimated in both cases, but symmetry properties
of the moment conditions are at stake.

Second, the form (ii) of first order conditions in corollary 3.4 shows that the weighting matrix
estimator may be seen in its mean deviation form. It is important to stress that this is a second
advantage, besides the estimation of the Jacobian matrix, of CUE-GMM with respect to common
use of two-stage GMM (2S-GMM).

Two-stage GMM is actually defined, since Hansen (1982), as the minimization over θ of:

Q∗Ω (θ) = Ψ̄0n (θ)Ω
−1
n

³
θ̃n

´
Ψ̄n (θ) (3.11)

for a given consistent first step estimator θ̃n of θ.
However, Hall (2000) argues that the mean deviation form should be preferred, leading to the

minimization over θ of:
Q∗V (θ) = Ψ̄0n (θ)V

−1
n

³
θ̃n

´
Ψ̄n (θ) (3.12)

First order conditions associated to (3.11) define a two-step GMM estimator θ̂
2SΩ
n as solution

of:
∂Ψ̄0n
∂θ

³
θ̂
2SΩ
n

´
Ω−1n

³
θ̃n

´
Ψ̄n

³
θ̂
2SΩ
n

´
= 0. (3.13)

Another two-step GMM estimator θ̂
2SV
n is defined by the first order conditions of (3.12):

∂Ψ̄0n
∂θ

³
θ̂
2SV
n

´
V −1n

³
θ̃n

´
Ψ̄n

³
θ̂
2SV

´
= 0. (3.14)

It is worth realizing that, by contrast with corollary 3.4, there is no reason to imagine that

equations (3.13) and (3.14) are equivalent. In other words, the common 2S-GMM estimator θ̂
2SG
n

should have less nice properties than CUE-GMM not only because it uses more biased estimator
of the Jacobian matrix but also because it does not use the estimator of the covariance matrix
in its mean deviation form. By contrast, the 2S-GMM estimator in mean deviation form θ̂

2SV
n is

expected to have better properties and actually coincides with CUE-GMM in the particular case
of separable moment conditions:

Ψ (X, θ) = ϕ(X)− k(θ). (3.15)
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Notice that in such a case, there is no issue of estimation of the Jacobian matrix. As far as the
bias in the estimation of this matrix is concerned for more general moment conditions, it is worth

interpreting the constrained estimator
nP
i=1

πi

³
θ̂
Q
n

´
∂Ψi
∂θ0

³
θ̂
Q
n

´
used by CUE-GMM (see corollary 3.4)

in the light of corollary 3.5 below:

Corollary 3.5: For any integrable real function g(X), Eg(X) can be estimated by:

ĝn

³
θ̂
Q
n

´
=

nX
i=1

πi

³
θ̂
Q
n

´
g(Xi)

= ḡn − Covn
h
g(Xi),Ψi(θ̂

Q
n )
i h
Vn

³
θ̂
Q
n

´i−1
Ψ̄n(θ̂

Q
n )

where:

ḡn =
1

n

nX
i=1

g (Xi)

Covn

h
g(Xi),Ψi(θ̂

Q
n )
i
=

1

n

nX
i=1

[g (Xi)− ḡn]Ψ0i(θ̂
Q
n )

The intuition behind the estimator ĝn
³
θ̂
Q
n

´
is very clear. If we knew the true value θ0 of θ, we

would get an unbiased estimator of Eg (X) by considering ḡn−a0Ψ̄n
¡
θ0
¢
for any given q-dimensional

vector a. The minimum variance estimator is obtained for:

a = Cov
£
g (X) ,Ψ

¡
X, θ0

¢¤ ¡
V ar

£
Ψ
¡
X, θ0

¢¤¢−1
(3.16)

and it will be made feasible by replacing a by its sample counterpart:

ân = Covn
£
g (Xi) ,Ψi

¡
θ0
¢¤ £
Vn
¡
θ0
¢¤−1

. (3.17)

This is nothing but the well known principle of control variates as defined for instance by Fieller

and Hartley (1954). Moreover, since we don’t know the true value θ0, the estimator ĝn
³
θ̂
Q
n

´
just

proposes an extension of the control variates principle where θ0 is replaced by θ̂
Q
n . In this respect,

the choice of Euclidean empirical likelihood to estimate the implied probability distribution appears
to be fairly conformable to classical strategies for survey sampling or Monte Carlo experiments.
The above control variates interpretation complements the jackknife interpretation of CUE-GMM
proposed by Donald and Newey (2000).
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3.2 Efficient use of the informational content of estimating equations

The general focus of empirical likelihood kind of approach is the efficient use of the informational
content of moment conditions EΨ (X, θ) = 0 about not only the unknown parameters θ but also
the unknown probability distribution of X. Our knowledge about the probability distribution of
X is actually well encapsulated in our way to estimate Eg (X) for any real function g.

In the particular case of a one-dimensional variable X, Smith (2000) proposes to summarize
this knowledge by the empirical likelihood cumulative distribution function, that is the estimation
of the set of numbers Ega (X), a²IR, where ga denotes the indicator function of the half-line ]−∞, a],
that is ga (x) = 1 if x ≤ a, 0 otherwise. More generally, one can for instance use the estimation of
Eg (X) for any function g to characterize the probability distribution of X through its Fourier or
Laplace transform.

As far as Euclidean empirical likelihood is concerned, we have already shown that it provides a

control variates kind of estimator ĝn
³
θ̂
Q
n

´
of Eg (X). We are going to show now that this estimator

is asymptotically efficient in terms of semiparametric efficiency. Theorem 3.6 characterizes its
asymptotic probability distribution:

Theorem 3.6 For any integrable real function g(X) and ĝn
³
θ̂
Q
n

´
=

nP
i=1

πi

³
θ̂
Q
n

´
g (Xi)

we have: √
n
h
ĝn

³
θ̂
Q
n

´
−Eg (X)

i d
−−−−→n =∞N [0, R (g)]

where:
R (g) = V ar g (X)−Cov £g (X) ,Ψ ¡X, θ0¢¤PCov £Ψ ¡X, θ0¢ , g¤

Interpreting theorem 3.6. is straightforward. If θ0 were known, the control variates estimator
of Eg (X), as residual of the affine regression of g (X) on Ψ

¡
X, θ0

¢
would have the asymptotic

variance:
V ar g (X)− Cov £g (X) ,Ψ ¡X, θ0¢¤Ω ¡θ0¢−1Cov £Ψ ¡X, θ0¢ , g (X)¤ .

However, since θ0 is unknown, the efficiency gain with respect to the unconstrained estimator

variance V ar g (X) has to be reduced in proportion of the role of θ̂
Q
n in the estimation of Ψ

³
X, θ̂

Q
n

´
;

this leads to the additional term:

Cov
£
g,Ψ

¡
X, θ0

¢¤
Ω−1ΓΣ−1Γ0Ω−1Cov

£
Ψ
¡
X, θ0

¢
, g
¤

= Cov
£
g,Ψ

¡
X, θ0

¢¤ ³
Ω (θ0)

−1 − P
´
Cov

£
Ψ
¡
X, θ0

¢
, g
¤
.

Notice that similar formulas have already been proposed in the empirical likelihood literature
(see e.g. Smith (2000) theorem 2 p. 127) but without the control variates interpretation which
is specific to Euclidean empirical likelihood. As far as first order asymptotics are concerned, all
the Cressie-Read based estimators are actually equivalent. This can be deduced from the following
result:
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Theorem 3.7 Let
³
π̂i,λ, i = 1, · · · , n, θ̂n,λ

´
denote the estimator associated to the power divergence

statistics Iλ,λ 6= 0, and some moment conditions EΨ (X, θ) = 0. Define the augmented set of

moment conditions: EΨ
˜

µ
X, θ

˜

¶
= 0, where:

θ
˜

= (θ0, ξ)0

Ψ
˜

µ
X, θ

˜

¶
=

¡
Ψ0 (X, θ) , g(X)− ξ

¢
for some real integrable function g.

Let
µ
π̂
˜ i,λ
, i = 1 · · ·n, θ̂

˜n,λ

¶
the estimator associated to Iλ and the augmented set of moment

conditions. Then:

π̂
˜ i,λ

= π̂i,λ for i = 1, · · ·n

θ̂
˜n,λ

=
³
θ̂
0
n,λ, ξ̂n,λ

´0
with

ξ̂n,λ =
nX
i=1

π̂i,λ g(Xi) = Ên,λg (X)

Theorem 3.7 ensures some internal consistency to the estimation approach and, from corollary
2.7, implies the first order asymptotic equivalence of the various estimators of g (X):

Corollary 3.8: For all λ 6= 0
√
n
³
Ên,λg(X)− ĝn(θ̂Qn )

´
= oP (1)

Moreover, the Euclidean likelihood based interpretation of CUE-GMM leads to:

Corollary 3.9: With the notations of theorem 3.7:

ξ̂
Q
n =

nX
i=1

π̂i

³
θ̂
Q
n

´
g (Xi) = ĝn(θ̂

Q
n )

corresponds to the CUE-GMM estimator θ̂
˜

Q

n
=
³
θ̂
Q0
n , ξ̂

Q
n

´0
defined by the augmented set of

moment conditions EΨ
˜

µ
X, θ

˜

¶
= 0.

It is worth reminding that Back and Brown (1993) had already derived a similar result in
the context of 2S-GMM. However, the framework of Euclidean empirical likelihood makes the
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argument even more straightforward. Moreover, the GMM kind of interpretation allows us to refer
to the GMM literature (see e.g. Chamberlain (1987)) to conclude that the informational content of
estimating equations has been used in an efficient way to estimate not only the parameters θ but
also the probability distribution of X:

Corollary 3.10: ξ̂
Q
n =

nP
i=1

π̂i(θ̂
Q
n )g (Xi), and more generally Ên,λg (X) for any λ 6= 0, are consis-

tent estimators of ξ = Eg (X) which are semiparametrically asymptotically efficient with respect to
the information EΨ (X, θ) = 0.

Among the various asymptotically equivalent efficient estimators of the probability distribution
of X through expectations Eg (X), the main drawback of Euclidean empirical likelihood is that

it allows negativity of some implied probabilities π(θ̂
Q
n ). However, we know from the asymptotic

almost sure positivity property of theorem 2.4 that positivity is not really an issue. More precisely,

since Min
1≤i≤n

πi(θ̂
Q
n ) is asymptotically nonnegative with probability one, some well tuned shrinkage

may restore nonnegativity in finite sample without introducing any asymptotic efficiency loss. Let
us consider the following shrinkage:

π∗i (θ̂
Q
n ) =

1

1 + εn(θ̂
Q
n )

πi(θ̂
Q
n ) +

εn(θ̂
Q
n )

1 + εn(θ̂
Q
n )
· 1
n
, (3.18)

with:

εn (θ) = −nMin
·
Min
1≤i≤n

πi (θ) , 0

¸
(3.19)

Then : π∗i (θ̂
Q
n ) ≥ 0 for all i and:

Corollary 3.11: Let

g∗n(θ̂
Q
n ) =

nX
i=1

π∗i (θ̂
Q
n )g (Xi)

=
1

1 + εn(θ̂
Q
n )
ĝn(θ̂

Q
n ) +

εn(θ̂
Q
n )

1 + εn(θ̂
Q
n )
ḡn.

Then g∗n(θ̂
Q
n ) and ĝn(θ̂

Q
n ) are asymptotically equivalent efficient estimators of Eg (X):

√
n
h
g∗n(θ̂

Q
n )− ĝn(θ̂

Q
n )
i
= oP (1) .

Such a shrinkage of implied probabilities is going to appear particularly relevant in finite sample
when they are actually used to estimate some covariance matrix. In this respect, our approach is
similar in spirit to the one of Ledoit and Wolf (2001) who propose such a shrinkage to restore
positivity of constrained estimates of covariance matrices. This issue will be at stake in subsection
3.3 below.
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3.3 A three step Euclidean likelihood

The main message of stochastic expansions of first order conditions (theorem 2.8 and formula
(2.13)) is that, except in the case of some zero third moments, Cressie-Read divergences other than
empirical likelihood introduce a parasite term in first order conditions. A similar parasite term
has been put forward by Newey and Smith (2004) and stressed as responsible for unambiguous
better higher properties of empirical likelihood with respect to Cressie-Read contenders. However,
as already explained, empirical likelihood may be involved, in computational grounds. This is the
reason why Newey and Smith (2004) also noticed that, similarly to Robinson (1988), after three
iterations that start at an initial root-n consistent estimator, numerical procedures for solving
empirical likelihood first order conditions will produce an estimator with the same leading terms
in the stochastic expansions.

We also propose in this subsection to use Robinson (1988) to characterize a three-step estimator
with the same leading terms as genuine EL. But our approach does not go through empirical
likelihood optimization, even through numerical iterations. We argue instead that, since all the
Taylor expansions of Cressie-Read type of first order conditions are based on quadratic terms
corresponding to Euclidean Empirical likelihood, it is even more convenient to remain true to
quadratic programming, all along the three steps.

Our first two steps are actually devoted to get an asymptotically efficient estimator θ̃n of θ0,
that is θ̃n conformable to (2.7). Note that a common 2S-GMM can do the job with two consecutive
quadratic optimizations. While iterated GMM would consist in applying for a third time this GMM
optimization device without any well-documented finite sample improvement (see Hansen, Heaton
and Yaron (1996)) or higher order advantage, we propose here another third step which affords a
genuine improvement and is even easier to perform.

Since the drawback of 2S-GMM and iterated GMM as well is to solve first order conditions
where the Jacobian matrix Γ and the covariance matrix Ω are just replaced by their unconstrained
inefficient estimators, that suggests to use the efficient estimator θ̃n to efficiently estimate these
matrices with a control variables kind of principle, according to corollary 3.5 and corollary 3.10. In
other words, the unconstrained estimators:

Γn

³
θ̃n

´
=

1

n

nX
i=1

∂Ψi
∂θ0

³
θ̃n

´
(3.20)

Ωn

³
θ̃n

´
=

1

n

nX
i=1

Ψi

³
θ̃n

´
Ψ0i
³
θ̃n

´
are improved as:

Γ̂Qn

³
θ̃n

´
= Γn

³
θ̃n

´
−K 0

n

³
θ̃n

´
(3.21)

Ω̂Qn

³
θ̃n

´
= Ωn

³
θ̃n

´
−Hn

³
θ̃n

´
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where the jth columns, j = 1, · · · , q of the matrices Kn
³
θ̃n

´
and Hn

³
θ̃n

´
are respectively defined

by:

Kj
n

³
θ̃n

´
= Covn

"
∂Ψji
∂θ

³
θ̃n

´
,Ψi

³
θ̃n

´# h
Vn

³
θ̃n

´i−1
Ψ̄n

³
θ̃n

´
(3.22)

and
Hj
n

³
θ̃n

´
= Covn

h
Ψi

³
θ̃n

´
Ψji

³
θ̃n

´
,Ψi

³
θ̃n

´i h
Vn

³
θ̃n

´i−1
Ψ̄n

³
θ̃n

´
.

Notice that, as confirmed by theorem 3.12 below, this improvement in the estimation of the jth

column of the matrix Ω
¡
θ0
¢
would be useless if:

Cov
h
Ψi
¡
θ0
¢
Ψji
¡
θ0
¢
,Ψi

¡
θ0
¢i
= E

h
Ψi
¡
θ0
¢
Ψ0i
¡
θ0
¢
Ψji
¡
θ0
¢i
= 0 (3.23)

This actually confirms the intuition provided by stochastic expansions of first order conditions
in theorem 2.8 and formula (2.13). While CUE-GMM shares with 2S-GMM the drawback of a
biased estimator of the covariance matrix used in first order conditions (see corollary 3.4), this
bias vanishes when third moments are zero as in (3.23). The deep reason for this higher order
equivalence between CUE-GMM and empirical likelihood with kind of symmetric errors is that, in
that case, the control variables principle based on the information “EΨ

¡
X, θ0

¢
= 0” does not allow

to improve the estimation of the covariance matrix; the cross-product terms Ψj
¡
X, θ0

¢
Ψl
¡
X, θ0

¢
the expectation of which defines the covariance matrix are actually uncorellated with the random
vector Ψ

¡
X, θ0

¢
.

On the contrary, when the zero third moment conditions is not fulfilled, our control variates
improvement of Ωn(θ̃n) by Ω̂

Q
n (θ̃n) is exactly what is needed to protect against the bias of 2S-

GMM well-documented in small samples. For example, in a simulation study, Altonji and Segal
(1996) demonstrated that “the bias arises because sampling errors in the moments are correlated
with sampling errors in the estimate of the covariance matrix of the sample moments”. Since Ω̂Qn
and Γ̂Qn are defined from residuals of affine regressions on the moments of interest, such perverse
correlations have precisely been deleted. As far as higher order equivalence between empirical
likelihood and a suitably corrected quadratic procedure is concerned, it will be obtained thanks to
the following result:

Theorem 3.12 Let θ̃n be an asymptotically efficient estimator of θ0:

θ̃n − θ̃n,λ = Op (1/n) for all λ 6= 0.
Let θ̂n defined as solution of p equations:

Γ̂Q0n
³
θ̃n

´ h
Ω̂Qn

³
θ̃n

´i−1
Ψ̄n

³
θ̂n

´
= OP

¡
1/n
√
n
¢
.

Then
θ̂n − θ̂n,1 = OP

¡
1/n
√
n
¢
.
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In other words, the third step estimator θ̂n is higher-order asymptotically equivalent to the
empirical likelihood estimator θ̂n,1. While this result corresponds to Taylor expansions of first-
order conditions, it would allow under quite general conditions (see e.g. Bhattacharya and Ghosh
(1978)) to conclude on higher order identity of Edgeworth expansions. Following Rothenberg
(1984), Newey and Smith (2004) even argue that conclusions can be drawn in terms of higher order
bias and variance of the estimators.

Note that the three step estimator that we put forward in this section is actually defined by
the equality to zero:

Γ̂Q0n
³
θ̃n

´ h
Ω̂Qn

³
θ̃n

´i−1
Ψ̄n

³
θ̂n

´
= 0 (3.24)

where θ̃n is a 2S-GMM estimator. However, it is worth realizing that the right hand side of (3.24)
may be OP (1/n

√
n) instead of exactly zero without modifying the conclusion. This is for instance

useful to deduce from theorem 2.8 and (2.13) that, when the third moments (2.14) are all zero, any
Cressie-Read estimator θ̂n,λ,λ 6= 0, is higher order equivalent to empirical likelihood θ̂n,1.

The reason why it only matters to have OP (1/n
√
n) on the right hand side of the defining

equation of θ̂n is that the order of magnitude of θ̂n − θ̂n,1 is actually deduced, by application of

Robinson (1988), theorem 1 p. 533, from the order of magnitude of gn
³
θ̂n,1

´
, when gn defines θ̂n

by the p equations:gn
³
θ̂n

´
= 0.

24



4 Conditional implied probabilities

4.1 Smoothed power divergence statistics

Let (Xi, Zi) , (i = 1, · · · , n) be i.i.d observations on a random vector (X,Z) on IRl× IRd. We consider
as in previous sections Ψ (X, θ) =

¡
Ψj (X, θ)

¢
1≤j≤q, a q-vector of functions of the data observation

X and the p-vector θ of unknown parameters. But it is now assumed that the true parameter
vector θ0 satisfies the conditional moment restrictions:

E
£
Ψ
¡
X, θ0

¢ |Z ¤ = 0, θ0 ∈ Θ ⊂ IRp (4.1)

Of course, any choice of a vector g(Z) of instruments would allow to apply the results of previous
sections to unconditional moment restrictions:

E
£
g(Z)⊗Ψ ¡X, θ0¢¤ = 0

However, efficient estimation of θ0 from (4.1) would then rest upon a selection of optimal
instruments (see e.g. Newey (1993)). Moreover, we are also interested in estimating conditional
implied probabilities of X given Z taking advantage of the informational content of conditional
restrictions (4.1). For these two reasons, we propose in this section alternative estimation techniques
which avoid estimating optimal instruments in a preliminary step, while allowing one step efficient
estimation of both θ and the conditional distribution of X given Z.

While estimation of optimal instruments would involve nonparametric estimation of conditional
expectations given Z of ∂Ψ

∂θ0
¡
X, θ0

¢
and Ψ

¡
X, θ0

¢
Ψ0(X, θ0), kernel smoothing of probabilities given

Z will be introduced here from the beginning through implied probabilities and corresponding
discrepancy statistics. The starting point is a localized version of the Cressie and Read (1984)
power divergence family of statistics. While it involves in (2.9) the relative differences between the
perceived probabilities (see Bera and Bilias (2002) for more intuition about this) as:µ

πj
wj

¶1−λ
− 1

where πj and wj = 1
n denote respectively the implied and the empirical probabilities for the possible

(that is observed) values Xj of X, it will involve now the relative differences:µ
πij
wij

¶1−λ
− 1 (4.2)

where πij and wij denote respectively the implied and the empirical conditional probabilities for
the possible (observed) values Xj of X, given Z = Zi.

Of course, when the conditioning variable Z is continuous, the so-called empirical conditional
probabilities must be defined through smoothing. In all the sequel, kernel smoothing will be per-
formed with a Rosenblatt-Parzen kernel K which is a probability density function on IRd, symmetric
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about the origin and continuously differentiable. Under standard regularity conditions not detailed
here (see e.g. Ai and Chen (2003) and Kitamura, Tripathi and Ahn (2001)), well-suited asymp-
totic theory of kernel estimators including uniform convergence will be valid. Then, localization is
carried out through the positive weights:

wij =
Kij
nP
l=1

Kil

(4.3)

where:

Kij = K

µ
Zi − Zj
bn

¶
and bn is a bandwidth sequence of positive numbers such that bn −→

n=∞ 0 and nb
d
n −→n=∞∞. For the

sake of notational simplicity, the dependence of wij and Kij upon n is suppressed.
Then, the localized version of the Cressie and Read divergence statistic Iλ defined in (2.9) is:

Iλ =
1

λ (λ− 1)
nX
i=1

nX
j=1

wij

"µ
πij
wij

¶1−λ
− 1
#

(4.4)

To interpret (4.4), it is worth seeing the ith term of the first summation operator as correspond-
ing to conditioning by Z = Zi. Then the relative differences (4.2) between perceived conditional
probabilities πij and wij of possible values Xj , j = 1, · · ·n, given Z = Zi, are weighted by kernel
weights wij which assign smaller weights to those Xj ’s which are farther away from Xi. Of course,
if the weight were by chance all identical, they would be all equal to (1/n) and (4.4) would become
exactly similar to (2.9).

For λ /∈ {0, 1}, the minimization of the divergence Iλ with respect to (πij)1≤i,j≤n is equivalent
to the optimization of a discrepancy statistic:

nX
i=1

nX
j=1

wλ
ijh

(λ) (πij) (4.5)

where h(λ)(π) = π1−λ as in (2.10). As in section 2, we do not make explicit that h(λ)(π) = −π1−λ
should rather be considered for minimization in the case 0 < λ < 1. Moreover, by contrast with
(2.10), the weights wλ

ij are not all equal and thus, depend explicitly upon λ.
The smoothed empirical likelihood case

¡
h(1)(π) = log π

¢
, as studied by Kitamura, Tripathi and

Ahn (2001), is also nested in this framework by the limit case λ −→ 1 since:

Lim
λ−→1

1

λ− 1

"µ
πij
wij

¶1−λ
− 1
#
= − log πij

wij

26



and (4.5) becomes:
nX
i=1

nX
j=1

wijLog (πij) .

In summary, for all λ 6= 0, we consider the following family of smoothed discrepancy statistics:
nX
i=1

nX
j=1

wλ
ijh

(λ) (πij) (4.6)

with a first derivative h(λ)π (π) = π−λ, that is

h(λ)(π) =

½
π1−λ if λ /∈ {0, 1}
Logπ if λ = 1

(4.7)

Similarly to (2.2), we are interested in the optimization of (4.6) under the constraints:
nP
j=1

πijΨ (Xj,θ) = 0 for i = 1, · · · , n
nP
j=1

πij = 1 for i = 1, · · · , n
(4.8)

When the optimization problem of (4.6) under (4.8) admits a unique solution (π̂i,j,λ)1≤i,j≤n , θ̂n,λ
with nonnegative π̂i,j,λs, the n numbers π̂i,j,λ, j = 1, · · · , n (for any given i = 1, · · ·n) can be
interpreted as conditional probabilities of the values Xj given Z = Zi. The constraints (4.8) simply
mean that the implied probabilities sum to one and meet the conditional moment restrictions. More

generally, for any integrable function g(X),
nP
j=1

π̂i,j,λg (Xj) defines an estimator of the conditional

expectation E [g(X) |Z = Zi ] that takes advantage of the information carried out by the conditional
moment restrictions. By analogy with previous sections, we will denote by

Ên,λ [g(X) |Zi ] =
nX
j=1

π̂i,j,λg(Xj) (4.9)

this constrained estimator while the unconstrained estimator is nothing but the Nadaraya-Watson
kernel estimator:

Ên [g(X) |Zi ] = ḡi,n =
nX
j=1

wi,jg(Xj) (4.10)

The following result is the exact analog of theorem 2.1:
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Theorem 4.1 Assume that the optimization of (4.6) under (4.8) uniquely defines estimators π̂i,j,λ, 1 ≤
i, j ≤ n, θ̂n,λ with nonnegative π̂i,j,λs. Then θ̂n,λ is characterized as solution of the first order con-
ditions:

nX
i=1

Ên,λ

∂Ψ0
³
X, θ̂n,λ

´
∂θ

|Zi
³Ên,λ hΨ³X, θ̂n,λ´Ψ0 ³X, θ̂n,λ´ |Zi i´−1 nX

j=1

wλ
i,jπ̂

1−λ
i,j,λΨ

³
Xj , θ̂n,λ

´
= 0

(4.11)

Note that, since by (4.9) and (4.10), π̂i,j,λ and wij are both localization weights allowing us to
estimate conditional expectations given Z = Zi, the last term of (4.11) can also be interpreted as
a nonparametric estimator of the conditional moment restriction of interest. We will denote it:

Ẽn,λ

h
Ψ
³
X, θ̂n,λ

´
|Zi
i
=

nX
j=1

wλ
ijπ̂

1−λ
i,j,λΨ

³
Xj , θ̂n,λ

´
(4.12)

It coincides with the kernel estimator (4.10) in the particular case of smoothed empirical like-
lihood that is λ = 1. In any case, it is worth noticing that the first order conditions (4.11) to
compute the estimator θ̂n,λ can be interpreted, with shortened notations, as:

1

n

nX
i=1

½
Ên,λ

·
∂Ψ0

∂θ

³
θ̂n,λ

´
|Zi
¸
V̂ −1n,λ

h
Ψ
³
θ̂n,λ

´
|Zi
i
Ẽn,λ

h
Ψ
³
θ̂n,λ

´
|Zi
i¾
= 0 (4.13)

This interpretation has several interesting consequences. First, it points out the identification
assumptions which are relevant to extend assumption 2.1 to the conditional framework:

Assumption 4.1
(i) E [Ψ (X, θ) |Z ] = 0⇐⇒ θ = θ0

(ii) ΩZ(θ) = E [Ψ (X, θ)Ψ0 (X, θ) |Z ]
is, for all θ ∈ Θ, a nonsingular matrix with probability one.

(iii) ΓZ(θ0) = E
·
∂Ψ

∂θ0
(X, θ)|θ=θ0 |Z

¸
is such that:

I
¡
θ0
¢
= E

£
Γ0Z
¡
θ0
¢
Ω−1Z (θ

0)ΓZ(θ
0)
¤

is a nonsingular matrix.

28



Moreover, (4.13) can be seen as an empirical counterpart of the moment restrictions:

E
£
Γ0Z
¡
θ0
¢
Ω−1Z

¡
θ0
¢
Ψ (X, θ)

¤
= 0, (4.14)

since, by the law of iterated expectations, these moment restrictions can also be written:

E
£
Γ0Z
¡
θ0
¢
Ω−1Z

¡
θ0
¢
E [Ψ (X, θ) |Z ]¤ = 0. (4.15)

With respect to the standard efficient treatment of conditional moment restrictions (see e.g.
Newey (1993)), estimating equations (4.13) have important similarities and differences which are
secondary, in terms of first order asymptotics. The important similarity is that the optimal matrix
of instruments Γ0Z

¡
θ0
¢
Ω−1Z

¡
θ0
¢
has been replaced by a nonparametric estimator which will be

consistent under standard regularity conditions. Actually, following Newey (1993), an efficient
estimator θ̂n of θ would be obtained by solving the p equations:

1

n

nX
i=1

½
Ên

·
∂Ψ0

∂θ

³
θ̃n

´
|Zi
¸
V̂ −1n

h
Ψ
³
θ̃n

´
|Zi
i
Ψ
³
Xi, θ̂n

´¾
= 0 (4.16)

where Ên, V̂n denote standard kernel estimators and θ̃n is a first step consistent estimator of θ.
It is then quite clear that, under standard regularity conditions, the differences between (4.13)

and (4.16) will not matter as far as first order asymptotics are concerned. Both these equations
will provide an asymptotically efficient estimator of θ, that is an estimator such that:

√
n
³
θ̂n − θ0

´
= −I ¡θ0¢−1√nϕ̄n ¡θ0¢+ op(1) (4.17)

where:
ϕ (Xi, Zi, θ) = Γ

0
Zi(θ)Ω

−1
Zi
(θ)Ψ (Xi, θ) .

For sake of simplicity, sufficient regularity conditions to ensure (4.17) for all the estimators of
interest are not discussed here in details. Convenient smoothness and moment existence conditions
can be found in Newey (1993). In any case, a maintained assumption is weak consistency of the
kernel estimators of interest:

Assumption 4.2 The kernel estimators Ên

·
∂Ψ0

∂θ
(X, θ0) |Z

¸
, Ên

£
Ψ
¡
X, θ0 |Z ¢¤ and

Ên
£¡
X, θ0

¢
Ψ0
¡
X, θ0

¢ |Z ¤ are weakly consistent estimators of corresponding conditional expecta-
tions.

By definition, all asymptotically efficient estimators θ̂n are such that the asymptotic probability
distribution of

√
n
³
θ̂n − θ0

´
is N

h
0, I

¡
θ0
¢−1i

. However, by analogy with the arguments put
forward in the unconditional case, one may expect that higher order asymptotic properties and
finite sample properties as well are better for estimators θ̂n,λ deduced from equations like (4.13) than
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for more standard estimators θ̂n like in (4.16). The reason for that is that the optimal instrumental
matrix Γ0Z

¡
θ0
¢
Ω−1Z

¡
θ0
¢
, although consistently estimated in both cases, is better estimated in (4.13)

since its constrained estimator

Ên,λ

·
∂Ψ0

∂θ

³
θ̂n,λ

´
|Z
¸
V̂ −1n,λ

h
Ψ
³
θ̂n,λ

´
|Z
i

takes into account the informational content of conditional moment restrictions by using the implied
probabilities Π̂i,j,λ. The actual computation of these probabilities will be based on the following
expression of first order conditions:

Theorem 4.2 For i = 1, · · · , n there exist a non-zero real number µi,n,λ and a vector αi,n,λ of q
reduced Lagrange multipliers such that:

π̂−λi,j,λ = µi,n,λw
−λ
i,j

h
1 + α0i,n,λΨj

³
θ̂n,λ

´i
From arguments of asymptotic almost sure nonnegativity similar to the ones put forward in the

unconditional case, one can deduce from theorem 4.2 that asymptotically almost certainly:

π̂i,j,λ =
wij

h
1 + α0i,n,λΨj

³
θ̂n,λ

´i−1/λ
nP
l=1

wil

h
1 + α0i,n,λΨl

³
θ̂n,λ

´i−1/λ (4.18)

As already pointed out, the computation of reduced Lagrange multipliers αi,n,λ from (4.18)
and conditional moment restrictions will in general be involved, except in the case of Euclidean
empirical likelihood (λ = −1) where the equations to solve appear to be linear. As far as empirical
likelihood (λ = 1) is concerned, it amounts to the resolution of n convex minimization programs of
size q according to:

Min
αi,n
−

nX
j=1

wi,jLog
h
1 + α0i,nΨj

³
θ̂n,1

´i
for i = 1, · · · , n.

In other words, the actual size of the computational problem is nq. This is the reason why we
choose to focus below on the simplest case of Euclidean empirical likelihood.

4.2 Two conditional versions of continuously updated GMM

We focus here on the quadratic version of the minimization problem (4.6) under constraints (4.8),
that is the case λ = −1: 

Min
πi,j,,θ

nP
i=1

nP
j=1

π2ij
wij

nP
j=1

πijΨj(θ) = 0 ∀i = 1, · · · , n
nP
j=1

πij = 1 ∀i = 1, · · · , n

(4.19)
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Similarly to what has been done in the unconditional case, we first consider the minimization
problem (4.19) with respect to the πi,j s, for a given value of θ. We so characterize profile functions
πi,j(θ) by using the two alternative estimators of the conditional covariance function ΩZ(θ0) =
E
£
Ψ
¡
X, θ0

¢
Ψ0
¡
X, θ0

¢ |Z ¤:
Uncentered second moments:

Ωn (θ |Zi ) =
nX
j=1

wijΨj(θ)Ψ
0
j(θ) (4.20)

Second moments in mean deviation form:

Vn (θ |Zi ) =
nX
j=1

wijΨj(θ)
£
Ψj(θ)− Ψ̄i(θ)

¤0 (4.21)

with:

Ψ̄i(θ) =
nX
j=1

wijΨj(θ). (4.22)

Note that Ωn (θ |Zi ) , Vn (θ |Zi ) and Ψ̄i (θ) are nothing but Nadaraya-Watson kernel estimators
of conditional expectations of interest.

Theorem 4.3 For all θ ∈ Θ and i = 1, · · ·n:
πi,j(θ), j = 1, · · · , n, is proportional to 1 + α0i,n(θ)Ψj(θ) and to

1 + γ0in(θ)
£
Ψj(θ)− Ψ̄i(θ)

¤
with:

αin(θ) = −Ω−1n (θ |Zi ) Ψ̄i (θ) and γin(θ) = −V −1n (θ |Zi ) Ψ̄i(θ).
In particular:

πi,j(θ) = wij − wijΨ̄0i(θ)V −1n (θ |Zi )
£
Ψj(θ)− Ψ̄i(θ)

¤
.

Ţhe profile functions πi,j(θ), i, j = 1, · · · , n give us two interesting characterizations of the
profile criterion defining the Euclidean empirical likelihood estimator θ̂

Q
n = θ̂n,−1:

Corollary 4.4:
nX
i=1

nX
j=1

π2i,j(θ)

wij
=

nX
i=1

£
1− Ψ̄0i(θ)Ω−1n (θ |Zi ) Ψ̄i (θ)

¤−1
=

nX
i=1

£
1 + Ψ̄0i(θ)V

−1
n (θ |Zi ) Ψ̄i (θ)

¤
.

Corollary 4.4 shows that the Euclidean conditional empirical likelihood estimator θ̂
Q
n numerically

coincides with a conditional generalization of the CUE-GMM estimator of Hansen, Heaton and
Yaron (1996):

θ̂
Q
n = ArgMin

θ

nX
i=1

Ψ̄0i(θ)V
−1
n (θ |Zi ) Ψ̄i (θ) (4.23)
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It is worth noticing that (4.23) fully coincides in spirit with CUE-GMM since the kernel esti-
mators Ψ̄0i(θ), i = 1, 2 · · ·n are known to be asymptotically independent. In other words, by seeing
the nq-dimensional vector

¡
Ψ̄i (θ)

¢
1≤i≤n as the sample counterpart of conditional moment restric-

tions, this vector has a block diagonal asymptotic covariance matrix which a posteriori justifies the
additively separable form of its squared norm minimized in (4.23).

Note that the two summation forms of the profile function provided by corollary 4.4 actually
coincide term by term since:£

1 + Ψ̄0i(θ)V
−1
n (θ |Zi ) Ψ̄i(θ)

¤ £
1− Ψ̄0i(θ)Ω−1n (θ |Zi ) Ψ̄i(θ)

¤
= 1 (4.24)

as it can be seen by developing the product in a sum of four terms and noticing that:

Ψ̄i (θ) Ψ̄
0
i(θ) = Ωn (θ |Zi )− Vn (θ |Zi ) .

(4.24) can actually be seen as a generalization of (3.7) to the case of weighted averages. How-
ever, by contrast with the results of section 3, the two possible ways to perform CUE-GMM in a
conditional setting do not numerically coincide, even though they are asymptotically equivalent:

θ̂
Q
n 6= ArgMin

θ

nX
i=1

Ψ̄0i(θ)Ω
−1
n (θ |Zi ) Ψ̄i (θ) (4.25)

We can just say from (4.24) that:

Min
θ

nX
i=1

Ψ̄0i(θ)Ω
−1
n (θ |Zi ) Ψ̄i (θ)

⇐⇒

Min
θ

nX
i=1

Ψ̄0i(θ)V −1n (θ |Zi ) Ψ̄i (θ)
1 + Ψ̄0i(θ)V

−1
n (θ |Zi ) Ψ̄i (θ)

While (4.23) and (4.25) define two natural extensions of CUE-GMM in a conditional setting, a
2S-GMM version of (4.25) had already been proposed by Ai and Chen (2001) as:

Min
θ

nX
i=1

Ψ̄0i(θ)Ω
−1
n

³
θ̃n |Zi

´
Ψ̄i (θ) (4.26)

where θ̃n is a first step consistent estimator of θ.
As in the unconditional case, we argue that, when computed in its Euclidean conditional empir-

ical likelihood form (4.23), conditional CUE-GMM should have better properties than its competi-
tors (4.25) and (4.26) since it makes a more efficient use of the informational content of estimating
equations to estimating optimal instruments. Therefore, the terminology conditional CUE-GMM

will be used in the following only for θ̂
Q
n as defined by (4.23):
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Corollary 4.5:
The Euclidean conditional empirical likelihood estimator (conditional CUE-GMM) θ̂

Q
n is char-

acterized as solution of following system of first order conditions:

nX
i=1

ÊQn

·
∂Ψ0

∂θ

³
X, θ̂

Q
n

´
|Zi
¸
V −1n

³
θ̂
Q
n |Zi

´
Ψ̄i

³
θ̂
Q
n

´
= 0

where, for any integrable function g(X), ÊQn [g(X) |Zi ] = Ên,−1 [g(X) |Zi ] denotes the estimation of
E [g(X) |Z = Zi ] deduced from quadratic implied probabilities π̂i,j

³
θ̂
Q
n

´
as defined by theorem 4.3.

By comparison with theorem 4.1 in the case λ = 1, corollary 4.5 shows that the drawback
of Euclidean empirical likelihood (λ = −1) with respect to empirical likelihood (λ = 1) is that
implied probabilities are not used to improve the estimation of the covariance matrix. This is going
to motivate the introduction of a three step Euclidean likelihood estimator.

4.3 Efficient use of the informational content of estimating equations

The focus of interest of this section is to assess the informational content of the conditional moment
restrictions:

E
£
Ψ
¡
X, θ0

¢ |Z ¤ = 0,
not only about the true unknown value θ0 of the parameters but also about the conditional prob-
ability distribution of X given Z.

Similarly to what has been done in section 3.2 in the unconditional case, our knowledge about the
conditional distribution ofX given Z is summarized by the way to estimate conditional expectations
E [g(X) |Z ], for any real test function g.

Even though all Cressie-Read power divergence statistics provide first-order asymptotically
equivalent estimators, the advantages of the Euclidean empirical likelihood approach are even more
striking in the conditional case. As already noticed, theorem 4.3 provides closed-form formulas for
implied probabilities in the Euclidean case, while such formulas are not available in other cases.
But, even more importantly, we can apply the same formulas for conditional probabilities given any
possible value z of Z, without being limited to the observed values Zi, i = 1, · · · , n. More precisely,
a straightforward extension of theorem 4.3 suggests to define the conditional implied probabilities
of observed values Xj , j = 1, · · · , n given Z = z by:

π̂j(z) = wj(z)− wj(z)Ψ̄0z
³
θ̂
Q
n

´
V −1n

³
θ̂
Q
n |z

´ h
Ψj

³
θ̂
Q
n

´
− Ψ̄z

³
θ̂
Q
n

´i
where:

wj(z) =
Kj(z)
nP
l=1

Kl(z)
,Kj(z) = K

µ
z − Zj
bn

¶
,
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Ψ̄z

³
θ̂
Q
n

´
=

nX
j=1

wj(z)Ψj

³
θ̂
Q
n

´
(4.27)

Vn

³
θ̂
Q
n |z

´
=

nX
j=1

wj(z)Ψj

³
θ̂
Q
n

´ h
Ψj

³
θ̂
Q
n

´
− Ψ̄z

³
θ̂
Q
n

´i0
.

With a similar definition of Covn
h
g(Xj),Ψj

³
θ̂
Q
n

´
|z
i
, we then deduce easily:

Theorem 4.6 For any integrable real function g(X), E [g(X) |Z = z ] can be estimated by:

ÊQn [g(X) |Z = z ] =
nX
j=1

π̂j(z)g(Xj)

= ḡz − Covn
h
g(Xj),Ψj

³
θ̂
Q
n

´
|z
i
V −1n

³
θ̂
Q
n |z

´
Ψ̄z

³
θ̂
Q
n

´
where:

ḡz =
nX
j=1

wj(z)g(Xj)

is the Nadaraya-Watson kernel estimator.

The intuition behind the proposed estimator is very clear. We improve, through a control
variates strategy, the naive kernel estimator ḡz by taking into account the information content of
the conditional moment restrictions E

£
Ψ(X, θ0) |Z ¤ = 0.

More precisely, if we knew the true unknown value θ0, we would replace the estimation problem
of E [g(X) |Z ] by the more favourable problem of estimation of E £g(X)− a0Ψ(X, θ0) |Z ¤. In order
to minimize the conditional variance of the resulting estimator, the optimal value of the coefficient
a is given by conditional affine regression:

a0(Z, θ0) = Cov
£
g(X),Ψ(X, θ0) |Z ¤ ¡V ar £Ψ(X, θ0) |Z ¤¢−1 (4.28)

The estimator put forward by theorem 4.6 is nothing but:

E [g(X) |Z = z ]− a0(z, θ0)E £Ψ(X, θ0) |Z = z ¤
after replacement of population conditional expectations by their kernel counterpart and of θ0 by

θ̂
Q
n . It is worth noticing that, by contrast with the empirical likelihood case, the availability of
closed-form formulas allows us to take advantage of the information content of conditional moment
restrictions even for conditioning values not observed in sample. In particular, it is easy to check
that for any z:

ÊQn [Ψ(X, θ) |Z = z ] = 0 for θ = θ̂
Q
n .
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In this respect, we can claim that we have made an efficient use of the informational content
of conditional moment restrictions about the conditional probability distribution of X given Z.
To make this claim more precise, theorem 4.5 below makes explicit the efficiency gain in terms of
asymptotic variance with respect to the naive kernel estimator of E [g(X) |Z ].

This theorem is valid under any set of assumptions which ensures asymptotic normality with
zero bias for kernel estimators of E [g(X) |Z = z ] and E £Ψ ¡X, θ0¢ |Z = z ¤ :
Assumption 4.3
(i) Z is absolutely continuous with respect to the Lebesgue measure on IRd with a density function
f which is twice continuously differentiable in a neighborhood of z, interior point of the support of
Z.
(ii) K is a Parzen-Rosenblatt kernel with in particular:Z

K(u)du = 1 ,

Z
u K(u)du = 0,Z

|K(u)|2+δ du < +∞ for some δ > 0.

(iii) bn is bandwith sequence such that:

nbdn −→n=∞∞ and nbd+4n −→
n=∞ 0

(iv)
p
nbdn [ḡz −E [g(X) |Z = z ]] is asymptotically distributed as a normal with zero mean and vari-

ance:
σ2(z)

f(z)

Z
K2(u)du.

(v)
p
nbdn

£
Ψ̄z(θ

0)−E £Ψ ¡X, θ0¢ |Z = z ¤¤ is asymptotically distributed as a normal with zero mean
and variance:

Ωz(θ
0)

f(z)

Z
K2(u)du.

Then, we have:

Theorem 4.7 Under assumptions 4.1, 4.2, 4.3 and standard regularity assumptions:q
nbdn

³
ÊQn [g(X) |Z = z ]−E [g(X) |Z = z ]

´
is asymptotically distributed as a normal with zero mean and variance:

1

f(z)

µZ
K2(u)du

¶¡
σ2(z)− η2(z)

¢
with:

η2(z) = Cov
£
g(X),Ψ

¡
X, θ0

¢ |Z = z ¤Ω−1z (θ0)Cov £Ψ(X, θ0), g(X) |Z = z ¤
35



Note that if θ0 were known, theorem 4.5 would be a straightforward consequence of the affine
regression argument put forward by theorem 4.6. Of course, θ0 must actually be replaced by its

consistent estimator θ̂
Q
n to compute ÊQn [g(X) |Z = z ]. But, since θ̂

Q
n is root-n consistent, this

estimation error does not play any role with respect to the main estimation error in theorem 4.7
which goes to zero at the slower rate

p
nbdn. This is the reason why theorem 4.7 is even simpler

that its analog theorem 3.6 in the unconditional case. The efficiency gain with respect to the

unconstrained estimator ḡz, as measured by
η2(z)

f(z)

¡R
K2(u)du

¢
has not to be reduced in proportion

of the estimation error
³
θ̂
Q
n − θ0

´
.

In this respect, one can argue that, in the same way a conditional expectation E [g(X) |Z ] can
be seen as efficiently estimated by its kernel counterpart (see e.g. Severini and Tripathi (2001),
section 7), we have efficiently estimated this conditional expectation when taking into account the
additional information:

E
£
Ψ(X, θ0) |Z ¤ = 0.

As explained above, the kernel estimator of E
£
g(X)− a0(Z, θ0)Ψ ¡X, θ0¢ |Z ¤ is, in some sense,

the best that we can do. However, as far as semiparametric efficiency is concerned, for the purpose
of estimation of the conditional expectation functional m(z) = E [g(X) |Z = z ], we know (see
Severini and Tripathi (2001) for several illustrations of this approach) that we should focus on
estimation of associated parameters:

β =

Z
D
m(z)ω(z)dz (4.29)

where D is some compact region of integration and ω(z) is an arbitrary weighting function such
that: Z

D
ω2(z)dz < +∞.

The idea is that, since β is a one-dimensional parameter, it admits root-n consistent estimators
such that it makes sense to compare estimators through their asymptotic variances.

In other words, we must assess the accuracy of our estimator m̂n(z) = ÊQn [g(X) |Z = z ] by
considering the associated plug-in estimator of β:

β̂n =

Z
D
m̂n(z)ω(z)dz (4.30)

Of course, since β̂n has a root-n rate of convergence, the role of the estimation error in θ is
restored and we get the following result:

Theorem 4.8 Under assumptions of theorem 4.7,
√
n
³
β̂n − β

´
d−−−→n=∞N [0,WD +HD] with:

WD = E

·
σ2(Z)− η2(Z)

f2(z)
ω2(Z)1D(Z)

¸
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and

HD = E

·
a0(Z, θ0)ΓZ(θ0)

ω(Z)1D(Z)

f(Z)

¸
I−1(θ0)E

·
Γ0Z(θ

0)a(Z, θ0)
ω(Z)1D(Z)

f(Z)

¸
Theorem 4.8 is a natural extension of Severini and Tripathi (2001) efficiency bound for estima-

tion of a conditional expectation functional as summarized by the formula they give at the bottom
of page 43. More precisely, the asymptotic variance WD +HD can be seen as the result of three
steps of reasoning. First, E

h
σ2(Z)
f2(z)

ω2(Z)1D(Z)
i
is, as shown by Severini and Tripathi (2001), the

semiparametric efficiency bound associated to the kernel estimator ḡz of m (z). Second, as shown
by theorem 4.7, we improve this kernel estimator by computing instead the kernel estimator of
E
£
g(X)− a0(Z, θ0)Ψ(X, θ0) |Z ¤.
In other words, the Severini and Tripathi (2001) efficiency bound becomes

E

·
σ2(Z)− η2(Z)

f2(z)
ω2(Z)1D(Z)

¸
where η2(z) represents the gain in variance obtained thanks to the use of Ψ(X, θ0) as conditional
control variates. Finally, the additional positive term HD is the price we must pay for not knowing

θ0 and plugging in the estimator θ̂
Q
n . This is the reason why this term HD is the exact analog, with

a fairly similar expression, of the additional term put forward in the comments of theorem 3.6.
With these three steps of reasoning, the proof of theorem 4.8 appears to be fairly straightforward

and the efficiency claim is fully warranted. Of course, all the efficiency arguments put forward in
this section are only about first order asymptotics and one may wonder whether empirical likelihood
should not be preferred for higher order asymptotics. However, nothing prevents us to propose a
three-step Euclidean likelihood approach in order, as it has been done in the unconditional case,
to mimic the properties of empirical likelihood, without involving the same computational burden.
In other words, from a two-step efficient estimator θ̃n of θ, we compute a third-step estimator θ̂n
of θ by solving:

1

n

nX
i=1

ÊQn

·
∂Ψ0

∂θ
(θ̃n) |Z

¸ h
V̂ Qn

h
Ψ(θ̃n) |Zi

ii−1
Ψ
³
Xi, θ̂n

´
= 0 (4.31)

where ÊQn
h
∂Ψ0
∂θ (θ̃n) |Zi

i
and V̂ Qn

h
Ψ(θ̃n) |Zi

i
denote here conditional control variate estimators of

E
h
∂Ψ0
∂θ (X, θ

0) |Zi
i
and V

£
Ψ
¡
X, θ0

¢ |Zi ¤ obtained by application of the formula of theorem 4.6,

either with θ̃n = θ̂
Q
n or, if preferred, with another efficient estimator θ̃n.

To figure out the advantages of this three-step estimator θ̂n, several remarks are in order.
First, equations (4.31) mimic equations (4.16) which define the efficient 2S-GMM estimators

with optimal instruments. But, by contrast with (4.16), optimal instruments have been computed
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by taking advantage of the informational content of conditional moment restrictions. In particular,
through the control variates principle, any perverse covariation between estimated optimal instru-
ments and moment conditions has been deleted. Second, even though empirical likelihood first
order conditions (see theorem 4.1 with λ = 1) share similar advantages, they involve two important
computational drawbacks. Not only implied probabilities are much more difficult to compute, but,
in addition, (4.11) introduces with respect to (4.31) an additional smoothing of moment conditions
which does not appear to be necessary.

Finally, while the only finite-sample drawback of Euclidean empirical likelihood implied prob-
abilities is that their positivity is not guaranteed, a shrinkage similar to the one proposed in the
unconditional case may be introduced to ensure positivity. This appears to be especially important
for the estimation of the covariance matrix.

5 Conclusion

In this paper we have presented a unified framework for learning from i.i.d. data when the only
available prior information about the DGP is encapsulated in some moment conditions either
conditional or unconditional. We have put a special emphasis on the usefulness of this learning
process to estimate the unknown structural parameters θ defined by the moment conditions. The
main message is that the widely documented poor finite-sample performance of two-step GMM is
due likely to an inefficient use of the information contained in the moment restrictions in the first
step.

Indeed, both θ and implied probabilities should be the focus of the first step, to efficiently
estimate the optimal selection matrix or the optimal instruments. Moreover, we argue that chi-
square distances and associated control variables estimation of expectations may be much more
user-friendly than contenders, like empirical likelihood or Kullback-Leibler information criterion,
without any efficiency loss, even at higher orders.

As far as other applications of the proposed implied probabilities are concerned, we expect that
they should work remarkably well in practice to perform constrained Monte-Carlo simulations, to
compute asset prices conformable to some pricing kernel model and to forecast out of sample. In
particular, by contrast with their contenders, the proposed implied probabilities admit closed form
formulas that can be used even with out-of-sample conditioning values.
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APPENDIX

Proof of Theorem 2.1
The Lagrangian of problem (2.2) can be written:

L =
nX
i=1

h (πi)− β0
nX
i=1

πiΨi(θ)− µ
Ã

nX
i=1

πi − 1
!
.

Then, the estimator π̂1, · · · , π̂n,θ̂ are characterized, for well-suited values βn and µn of the Lagrange
multipliers, by the following first order conditions:

hπ (π̂i) = β0nΨi
³
θ̂
´
+ µ, i = 1, · · · , n (A.1)

β0n
nX
i=1

π̂i
∂Ψi
∂θ0

³
θ̂
´
= 0 (A.2)

When multiplying equation i of (A.1) by π̂iΨ0i
³
θ̂
´
and summing over i = 1, · · · , n one gets:

nX
i=1

hπ (π̂i) π̂iΨ
0
i

³
θ̂
´
= β0n

nX
i=1

π̂iΨi

³
θ̂
´
Ψ0i
³
θ̂
´

since, by definition:
nX
i=1

π̂iΨ
0
i

³
θ̂
´
= 0.

Therefore, the q-vector of Lagrange multipliers associated to the moment restrictions is:

βn =

"
nX
i=1

π̂iΨi

³
θ̂
´
Ψ0i
³
θ̂
´#−1 nX

i=1

hπ (π̂i) π̂iΨi

³
θ̂
´

By virtue of (A.2), this gives the announced result.

Proof of theorem 2.2:

With hπ (πi) proportional to π−λi , (A.1) can be rewritten:

π̂−λi,λ = µn,λ + β0n,λΨi
³
θ̂n,λ

´
, i = 1, · · ·n. (A.3)
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When multiplying equation i of (A.3) by π̂i,λ and summing over i = 1, · · · , n one gets:
nX
i=1

π̂1−λi,λ = µn,λ.

Therefore, µn,λ 6= 0 and, by denoting αn,λ = βn/µn,λ, we rewrite (A.3) as:

π̂−λi,λ = µn,λ
h
1 + α0n,λΨi

³
θ̂n,λ

´i
, i = 1, · · · , n. (A.4)

Proof of lemma 2.3 and theorem 2.4 and corollaries:
Proofs of this subsection can be seen as extensions of the proof of the so-called “empirical

likelihood theorem” (Owen (2001), Theorem 2.2, p. 16). We start from a generalization of Owen
(2001), lemma 11.2, p. 218:

Lemma A.1: Let Yi be real-valued random variables with a common distribution and finite
variance. Then,

1√
n
Max
1≤i≤n

|Yi| = oP (1)

Proof of lemma A.1 is based on the following textbook formula (see e.g. Durrett (1996) p. 43)
for computing expectations of positive random variables:

EY 21 =

Z ∞

0
P
£
Y 21 > u

¤
du ≥

∞X
n=0

P
£
Y 21 > n

¤
.

Then, if we consider the sequence of events An =
£
Y 2n > n

¤
, we get:

∞X
n=0

P (An) =
∞X
n=0

P
£
Y 21 > n

¤
< +∞.

Thus, by application of Borel-Cantelli lemma:

P [limSup An] = 0.

It is worth noticing that, for any ε > 0, the same result applies to Aε
n =

£
Y 2n > nε

2
¤
:

P [limSupAε
n] = 0.

To see this, it suffices to apply the previous argument to the sequence of random variables (Yi/ε)
which have a common distribution and finite variance. This will allow us to get the convergence
result of lemma A.1, that is:

P

·
Max
1≤i≤n

|Yi| > ε
√
n

¸
n =∞−−−−→ 0
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for all ε > 0.
Let η > 0. We want to show that there exists some n0 such that:

n ≥ n0 =⇒ P
£∃i = 1, · · ·n, Y 2i > nε

2
¤
< η

For any given N < n, we can decompose:

P
£∃i = 1, · · ·n Y 2i > nε

2
¤

≤ P
£∃i = 1, · · · , N , Y 2i > nε

2
¤

+P
£∃i = N + 1, · · · , n , Y 2i > nε

2
¤

≤ P

·
Max
1≤i≤N

Y 2i > nε
2

¸
+ P

£∃i = N + 1, · · · , n , Y 2i > iε
2
¤

≤ P

·
Max
1≤i≤N

Y 2i > nε
2

¸
+ P

·
∪
i>N

Aε
i

¸
.

From P [Lim Sup Aε
n] = 0, we deduce that for some N0(η) :

P

"
∪Aε

i
i>N0(η)

#
<

η

2
.

Then, since for given N0(η), Max
1≤i≤N0(η)

Y 2i is bounded in probability, we can find some n1(η) such

that:

n > n1(η) =⇒ P

·
Max

1≤i≤N0(η)
Y 2i > nε

2

¸
<

η

2
.

Thus:

n > Max [N0 (η) , n1 (η)]

=⇒ P
£∃i = 1, · · · , n , Y 2i > nε

2
¤
< η.

This completes the proof of lemma A.1. We deduce from this lemma that for all θ²Θ and ε > 0,

P

·
Min
1≤i≤n

£
1 + α0n,λΨi (θ)

¤
> 1− ε

¸
= 1− P £∃i = 1, · · ·n, α0n,λΨi (θ) < −ε

¤
≥ 1− P

·°°√nαn,λ°° 1√
n
Max
1≤i≤n

kΨi (θ)k > ε

¸
.

This shows that theorem 2.4 will be implied by lemma A.1 applied to Yi = kΨi (θ)k insofar as√
nαn,λ is bounded in probability.
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Regularity properties ensuring that αn,λ and θ̂n,λ − θ0 are OP (1/
√
n) are well-known (see e.g.

Imbens, Spady and Johnson (1998)) and will not be made explicit here. Under these maintained
assumptions, the required positivity is thus guaranteed asymptotically almost certainly. Then,
corollary 2.5 is directly implied by theorem 2.2 and implies in turn corollary 2.6 by application of
(2.11).

As far as lemma 2.3 is concerned, note that since the Lagrange multipliers αn,λ are characterized
by the moment restrictions:

nX
i=1

π̂i,λΨi

³
θ̂n,λ

´
= 0

with π̂i,λ given by corollary 2.5, we have asymptotically almost certainly:

1√
n

nX
i=1

h
1 + α0n,λΨi

³
θ̂n,λ

´i−1/λ
Ψi

³
θ̂n,λ

´
= 0

By a Taylor expansion:

1√
n

nX
i=1

Ψi

³
θ̂n,λ

´
− 1

λ

"
1

n

nX
i=1

Ψi

³
θ̂n,λ

´
Ψ0i
³
θ̂n,λ

´#√
nα̂n,λ = OP

¡
1/
√
n
¢

Thus: √
nα̂n,λ = λΩ−1n

³
θ̂n,λ

´√
nΨ̄n

³
θ̂n,λ

´
+OP

¡
1/
√
n
¢
,

which, ex post, confirms that α̂n,λ is OP (1/
√
n) and thus, from (2.7):

√
n
³
θ̂n,λ − θ0

´
= −Σ−1Γ0Ω−1√nΨ̄n

¡
θ0
¢
+OP

¡
1/
√
n
¢
.

Then, the above expansion of
√
nα̂n,λ can be rewritten:

√
nα̂n,λ = λΩ−1n

³
θ̂n,λ

´√
nΨ̄n

¡
θ0
¢

+λΩ−1n
³
θ̂n,λ

´ ∂Ψ̄n
∂θ0

¡
θ0
¢ ·√n³θ̂n,λ − θ0

´
+OP

¡
1/
√
n
¢

Or:
√
nα̂n,λ = λΩ−1

√
nΨ̄n

¡
θ0
¢

+λΩ−1Γ
√
n
³
θ̂n,λ − θ0

´
+OP

¡
1/
√
n
¢
.

By plugging into the above expansion of
√
n
³
θ̂n,λ − θ0

´
we get:

√
nα̂n,λ = λ

£
Ω−1 − Ω−1ΓΣ−1Γ0Ω−1¤√nΨ̄n ¡θ0¢+OP ¡1/√n¢
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which completes the proof of corollary 2.7. Q.E.D

Proof of theorem 2.8: The proof is based on the following lemma:

Lemma A.2:
nX
i=1

³
α0n,λΨi(θ̂n,λ)

´2
Ψi(θ̂n,λ)

= λ2
qX
i=1

βjn
¡
θ0
¢
ej +OP

¡
1/
√
n
¢

To see this, just note that by plugging into:

1

n

nX
i=1

³√
nα0n,λΨi

³
θ̂n,λ

´´2
Ψi

³
θ̂n,λ

´
the expansion of

√
nαn,λ given by corollary 2.7, we get:

λ2

n

nX
i=1

√
nΨ̄0n

¡
θ0
¢
P 0Ψi

³
θ̂n,λ

´
Ψ0i
³
θ̂n,λ

´
P
√
nΨ̄n

¡
θ0
¢
Ψi

³
θ̂n,λ

´
+OP

¡
1/
√
n
¢

= λ2
qX
j=1

√
nΨ̄0n

¡
θ0
¢
P 0
"
1

n

nX
i=1

Ψi

³
θ̂n,λ

´
Ψ0i
³
θ̂n,λ

´
Ψji

³
θ̂n,λ

´#
P
√
nΨn

¡
θ0
¢
ej +OP

¡
1/
√
n
¢

since: Ψi

³
θ̂n,λ

´
=

qP
j=1
Ψji

³
θ̂n,λ

´
ej .

This completes the proof of lemma A.2 by noting that:

1

n

nX
i=1

Ψi

³
θ̂n,λ

´
Ψ0i
³
θ̂n,λ

´
Ψji

³
θ̂n,λ

´
= E

£
Ψ
¡
X, θ0

¢
Ψ0
¡
X, θ0

¢
Ψj
¡
X, θ0

¢¤
+OP

¡
1/
√
n
¢

Lemma A.2 allows us to push the expansion of lemma 2.3 one step further. Since α̂n,λ is defined
asymptotically almost certainly by the q equations:

1√
n

nX
i=1

h
1 + α0n,λΨi

³
θ̂n,λ

´i−1/λ
Ψi

³
θ̂n,λ

´
= 0

We get:

√
nΨ̄n

³
θ̂n,λ

´
− 1

λ

"
1

n

nX
i=1

Ψi

³
θ̂n,λ

´
Ψ0i
³
θ̂n,λ

´#√
nαn,λ

+
1

2
√
n

µ
−1
λ

¶µ
−1
λ
− 1
¶ nX
i=1

³
α0n,λΨi

³
θ̂n,λ

´´2
Ψi

³
θ̂n,λ

´
= OP (1/n) .
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Therefore, by lemma A.2:

Ωn

³
θ̂n,λ

´√
nαn,λ (A.5)

= λ
√
nΨ̄n

³
θ̂n,λ

´
+

1

2
√
n

λ+ 1

λ

qX
j=1

βjn
¡
θ0
¢
ej +OP (1/n) .

Let us then consider:

1√
n

nX
i=1

h
1 + α0n,λΨi

³
θ̂n,λ

´iλ−1
λ
Ψi

³
θ̂n,λ

´
=
√
nΨ̄n

³
θ̂n,λ

´
+

λ− 1
λ

"
1

n

nX
i=1

Ψi

³
θ̂n,λ

´
Ψ0i
³
θ̂n,λ

´#√
nαn,λ

− 1

2
√
n

λ− 1
λ2

nX
i=1

³
α0n,λΨi

³
θ̂n,λ

´´2
Ψi

³
θ̂n,λ

´
+OP (1/n) .

By plugging in the above formula the stochastic expansions given by lemma A.2 and by (5.1),
we get after regrouping similar terms:

1√
n

nX
i=1

h
1 + α0n,λiΨi

³
θ̂n,λ

´iλ−1
λ
Ψi

³
θ̂n,λ

´
= λ

√
nΨ̄n

³
θ̂n,λ

´
+

λ (λ− 1)
2

1√
n

qX
j=1

βjn
¡
θ0
¢
ej +OP (1/n) .

Proof of theorem 3.1 and corollaries
Since we can minimize (3.4) without taking care of positivity constraints, we get from (A.4)

with λ = −1:
πi (θ) proportional to

£
1 + α0n (θ)Ψi (θ)

¤
.

Moreover, notice that:

πi (θ) = µ
£
1 + α0n (θ)Ψi (θ)

¤
=⇒ 1 = nµ+ nµα0n (θ) Ψ̄n (θ) (A.6)

Thus, with γn (θ) = nµαn (θ):

πi (θ) = µ+
γ0n (θ)
n
Ψi (θ)

=
1

n

£
nµ+ γ0n (θ) Ψ̄n (θ) + γ0n (θ)

¡
Ψi (θ)− Ψ̄n (θ)

¢¤
=

1

n

£
1 + γ0n (θ)

¡
Ψi (θ)− Ψ̄n (θ)

¢¤
.
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To summarize:

πi (θ) = µ
£
1 + α0n (θ)Ψi (θ)

¤
(A.7)

=
1

n

£
1 + γ0n (θ)

¡
Ψi (θ)− Ψ̄n (θ)

¢¤
.

From the moment conditions:
nX
i=1

πi (θ)Ψi (θ) = 0

we then deduce:
αn (θ) = −Ω−1n (θ) Ψ̄n (θ)

and
γn (θ) = −V −1n (θ) Ψ̄n (θ) .

Thus, by plugging this value of γn (θ) into (5.1):

πi (θ) =
1

n
− 1
n
Ψ̄0n (θ)V

−1
n (θ)

£
Ψi (θ)− Ψ̄n (θ)

¤
.

To get corollary 3.3, we compute
nP
i=1

π2i (θ) from the two alternative expressions (5.1) of πi (θ):

nX
i=1

π2i (θ)

= nµ2
£
1 + 2α0n (θ) Ψ̄n (θ) + α0n (θ)Ωn (θ)αn (θ)

¤
=

1

n

£
1 + γ0n (θ)Vn (θ) γn (θ)

¤
that is, by plugging into the above expressions of αn (θ) and γn (θ):

nX
i=1

π2i (θ) = nµ2
£
1− Ψ̄0n (θ)Ω−1n (θ) Ψ̄n (θ)

¤
=

1

n

£
1 + Ψ̄n (θ)V

−1
n (θ) Ψ̄n (θ)

¤
.

This gives the two announced formulas when taking into account that from (5.1):

nµ =
£
1 + α0nΨ̄n (θ)

¤−1
=

£
1− Ψ̄0n (θ)Ω−1n (θ) Ψ̄n (θ)

¤−1
.
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Moreover, since both αn

³
θ̂
Q
n

´
and γn

³
θ̂
Q
n

´
are proportional to the vector of Lagrange multi-

pliers, we know from (A.2) that the first order conditions for θ can be written:

α0n
³
θ̂
Q
n

´ nX
i=1

πi

³
θ̂
Q
n

´ ∂Ψi
∂θ0

³
θ̂
Q
n

´
= 0

or

γ0n
³
θ̂
Q
n

´ nX
i=1

πi

³
θ̂
Q
n

´ ∂Ψi
∂θ0

³
θ̂
Q
n

´
= 0,

which gives the formulas of corollary 3.4 when replacing αn (θ) and γn (θ) by their above expression.

Corollary 3.5 is a straightforward implication of the expression of πi
³
θ̂
Q
n

´
given by theorem

3.1.

Proof of theorem 3.6:
With the notations of (A.4) and (5.1):

√
n
³
ĝn(θ̂

Q
n )−Eg(X)

´
=
√
n (ḡn −Eg(X))− â0n

√
nΨ̄n(θ̂

Q
n ) + oP (1)

=
√
n (ḡn −Eg(X))− a0ΩP

√
nΨ̄n(θ

0) + oP (1)

where the last equality is deduced from corollary 2.7. Thus, since:

ΩP = Id− ΓΣ−1Γ0Ω−1,

we get:

√
n
³
ĝn(θ̂

Q
n )−Eg(X)

´
√
n
¡
ḡn − a0Ψ̄n

¡
θ0
¢−Eg(X)¢+ a0ΩΣ−1Γ0Ω−1√nΨ̄n(θ0) + oP (1)

Moreover, by definition of a, the two asymptotically normal variables
√
n
¡
ĝn − a0Ψn(θ0)

¢
and

√
nΨ̄n(θ

0) are asymptotically independent. We can then conclude that
√
n
³
ĝn(θ̂

Q
n )−Eg(X)

´
converges in distribution toward a zero-mean normal distribution with variance Σ1 +Σ2 where:

Σ1 = V ar g (X)− Cov
£
g(X),Ψ(X, θ0)

¤
Ω−1Cov

£
Ψ
¡
X, θ0

¢
, g (X)

¤
is the asymptotic variance of

√
n
¡
ḡn − a0Ψ̄n

¡
θ0
¢¢

and
Σ2 = a

0ΓΣ−1Γ0Ω−1ΓΣ−1Γ0a
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is the asymptotic variance of
a0ΓΣ−1Γ0Ω−1

√
nΨ̄n(θ

0).

Therefore, we will get the announced formula of theorem 3.6 if we check that:

Ω−1ΓΣ−1Γ0Ω−1ΓΣ−1Γ0Ω−1 = Ω−1 − P

that is:

Ω−1 − P = ¡Ω−1 − P¢Ω ¡Ω−1 − P¢
or:

Id− ΩP = (Id− ΩP ) (Id− ΩP ) .
This equality is fulfilled since (Id− ΩP ) is a projection matrix:

Id− ΩP = Γ ¡Γ0Ω−1Γ¢−1 Γ0Ω−1

is a projection on the vectorial space spanned by the columns of Γ.

Proof of theorem 3.7 and corollaries:

From (A.1) and (A.2), the augmented set of moment conditions defines estimators
µ
π̂
˜ i,,λ

, θ̂
˜n,λ

¶
and Lagrange multipliers

µ
β
˜n

, µ
˜n

¶
such that:

π̂
˜ i,λ

= β
˜

0
nΨi
˜

µ
θ̂
˜n,λ

¶
+ µn

˜

β
˜

0
n

·
nX
i=1

π̂
˜ i,λ

∂Ψi
˜

∂θ0
˜

µ
θ̂
˜n,λ

¶
= 0

With β
˜n

= (β0n, δn)0, the second set of equations can be decomposed in:
β
˜

0
n

nP
i=1

π̂
˜ i,λ

∂Ψi
∂θ0

³
θ̂n,λ

´
= 0

δn
nP
i=1

π̂
˜ i,λ

= 0
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Therefore δn = 0 and the above first order conditions can be rewritten:
π̂
˜ i,λ

= β0nΨi
³
θ̂n,λ

´
+ µn

β0n ·
nP
i=1

π̂
˜ i,λ

∂Ψi
∂θ0

(θ̂n,λ) = 0

They coincide with (A.1) and (A.2), and jointly with the corresponding constraints, define the

same estimators
³
π̂i,λ, θ̂n,λ

´
and multipliers (βn, µn). Finally, ξ̂n,λ is defined by the additional

constraint
nX
i=1

π̂i,λ

h
g (Xi)− ξ̂n,λ

i
= 0

which completes the proof of theorem 3.7. Corollaries 3.8, 3.19 and 3.10 are obvious implications.
Finally:

√
n
h
g∗n(θ̂

Q
n )− ĝn(θ̂

Q
n )
i

=
εn(θ̂

Q
n )

1 + εn(θ̂
Q
n )

√
n
h
ḡn − ĝn(θ̂Qn )

i
.

But, since all the πi(θ̂
Q
n ), i = 1, · · · , n are asymptotically nonnegative with probability 1:

εn(θ̂
Q
n ) = oP (1)

Since: √
n
h
ḡn − ĝn(θ̂Qn )

i
= OP (1)

We can conclude that: √
n
h
g∗n(θ̂

Q
n )− ĝn(θ̂

Q
n )
i
= oP (1) .

Proof of theorem 3.12:
We want to compare the two estimators θ̂n and θ̂n,1 defined respectively by:

gn

³
θ̂n

´
= 0 and fn

³
θ̂n,1

´
= 0

where:

fn (θ) =

·
Ên,1

∂Ψ0i
∂θ

(θ)

¸ h
V̂n,1Ψi (θ)

i−1
Ψ̄n (θ)

and
gn (θ) =

h
Γ̂Q0n

³
θ̃n

´i h
Ω̂Q0n

³
θ̃n

´i−1
Ψ̄n (θ) +OP (1/n

√
n).
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In order to apply Robinson (1988), theorem 1, we need to check that the two properties of his
assumption (A.2) are fulfilled. A first condition is:

∂gn
∂θ0

¡
θ0
¢
= G+ oP (1)

with G nonsingular matrix. This condition is fulfilled here with:

G = 2Γ0
¡
θ0
¢ £
Ω
¡
θ0
¢¤−1

Γ
¡
θ0
¢
.

A second condition is akin to a kind of asymptotic continuity of
∂gn
∂θ0

(θ) at the point θ0. This

assumption will be maintained here.
Then, we can conclude from Robinson (1988) that:

θ̂n − θ̂n,1 = OP
³°°°gn ³θ̂n,1´°°°´

= OP
³°°°gn ³θ̂n,1´− fn ³θ̂n,1´°°°´ .

Since
√
nΨ̄n

³
θ̂n,1

´
= OP (1), we will then get the announced result if we show that:°°°°Γ̂Qn ³θ̃n´− Ên,1∂Ψi∂θ0

³
θ̂n,1

´°°°° = OP (1/n)
and °°°Ω̂Qn ³θ̃n´− V̂n,1Ψi ³θ̂n,1´°°° = OP (1/n) .

Since θ̃n − θ̃
Q
n = OP (1/n), a simple Taylor expansion argument actually gives:°°°Γ̂Qn ³θ̃n´− Γ̂Qn (θ̂Qn )°°° = OP (1/n)

and °°°Ω̂Qn ³θ̃n´− Ω̂Qn (θ̂Qn )°°° = OP (1/n) .
Therefore, by a triangle inequality argument, we conclude that we just need to show that:°°°°Γ̂Qn (θ̂Qn )− Ên,1∂Ψi∂θ0

(θ̂n,1)

°°°° = OP (1/n)
and °°°Ω̂Qn ³θ̂Qn ´− V̂n,1Ψi ³θ̂n,1´°°° = OP (1/n) .

This is a straightforward consequence of corollary 3.8.
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Proof of Theorem 4.1:
When optimizing (4.6) under the constraints (4.8), the Lagrangian can be written:

` =
nX
i=1

nX
j=1

wλ
ijh

(λ) (πi,j)

−
nX
i=1

β0i
nX
j=1

πijΨj (θ)

−
nX
i=1

µi

 nX
j=1

πij − 1
 .

Then, the estimators π̂i,j,λ, θ̂n,λ are characterized, for well-suited values βin and µin of the
Lagrange multipliers, by the following first order conditions:

wλ
ijπ̂

−λ
i,j,λ = β0inΨj

³
θ̂n,λ

´
+ µin, i, j = 1, · · · , n, (A.8)

nX
i=1

β0in
nX
j=1

π̂i,j,λ
∂Ψj
∂θ0

³
θ̂n,λ

´
= 0 (A.9)

When multiplying equation (i, j) of (A.8) by π̂i,j,λΨ
0
j

³
θ̂n,λ

´
and summing over j = 1, · · · , n

one gets, for i = 1, · · · , n:
nX
j=1

wλ
ijπ̂

1−λ
i,j,λΨ

0
j

³
θ̂n,λ

´
= β0in

nX
j=1

π̂i,j,λΨj

³
θ̂n,λ

´
Ψ0j
³
θ̂n,λ

´
,

since, by definition:
nX
j=1

π̂i,j,λΨ
0
j

³
θ̂n,λ

´
= 0.

Therefore, the q-vector of Lagrange multipliers associated to the conditional moment restrictions
given Z = Zi is:

βin =

 nX
j=1

π̂i,j,λΨj

³
θ̂n,λ

´
Ψ0j
³
θ̂n,λ

´−1 nX
j=1

wλ
ijπ̂

1−λ
i,j,λΨj

³
θ̂n,λ

´
.

By virtue of (A.9), this gives the announced result.

Proof of theorem 4.2:
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From (A.8), we have:

π̂−λi,j,λ = w
−λ
i,j

h
µin + β0inΨj

³
θ̂n,λ

´i
(A.10)

when multiplying equation (i, j) of (A.10) by wλ
i,jπ̂i,j,λ and summing over j = 1, · · · , n, one gets:

nX
j=1

wλ
i,jπ̂

1−λ
i,j,λ = µi,n.

Therefore, µi,n 6= 0 and, by denoting µi,n = µi,n,λ and αi,n,λ = βi,n/µi,n, we rewrite (A.10) as:

π̂−λi,j,λ = µi,n,λw
−λ
i,j

h
1 + α0i,n,λΨj

³
θ̂n,λ

´i
. (A.11)

Proof of theorem 4.3 and corollaries:
Since we can minimize (4.19) without taking care of positivity constraints, we get from theorem

4.2 with λ = −1: For i = 1, · · · , n the πi,j(θ), j = 1, · · · , n, are proportional to:

wij
£
1 + α0i,n(θ)Ψj(θ)

¤
.

Moreover, notice that:

πi,j(θ) = µiwij
£
1 + α0i,n(θ)Ψj(θ)

¤
=⇒ 1 = µi + µiα

0
i,n(θ)Ψ̄j(θ). (A.12)

Thus, with γi,n(θ) = µiαi,n(θ):

πi,j(θ) = µiwij + wijγ
0
i,n(θ)Ψ̄i(θ) + wijγ

0
i,n(θ)

£
Ψj(θ)− Ψ̄i(θ)

¤
wij +wijγ

0
i,n(θ)

£
Ψj(θ)− Ψ̄i(θ)

¤
.

From the moment conditions
nX
j=1

πi,j(θ)Ψj(θ) = 0

We then deduce:

αi,n(θ) = −Ω−1n (θ |Zi )Ψ̄i(θ)
and

γi,n(θ) = −V −1n (θ |Zi )Ψ̄i(θ).

Thus, by plugging this value of γi,n(θ) into the above expression of πi,j(θ) we get:

πi,j(θ) = wij − wijΨ̄0j(θ)V −1n (θ |Zi )
£
Ψj(θ)− Ψ̄i(θ)

¤
.
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To get corollary 4.4, we compute
nP
i=1

nP
j=1

π2i,j(θ)

wij
from the two alternative expressions of πi,j(θ):

X
i,j

π2i,j(θ)

wij
=

nX
i=1

µ2i

nX
j=1

wij
£
1− Ψ̄0i(θ)Ω−1n (θ |Zi )Ψ̄j(θ)

¤2
=

nX
i=1

nX
j=1

wij
£
1− Ψ̄0i(θ)V −1n (θ |Zi )

¡
Ψj(θ)− Ψ̄i(θ)

¢¤2
.

Therefore: X
i,j

π2i,j(θ)

wij
=

nX
i=1

µ2i
£
1− Ψ̄0i(θ)Ω−1n (θ |Zi )Ψ̄j(θ)

¤
=

nX
i=1

£
1 + Ψ̄0i(θ)V

−1
n (θ |Zi )Ψ̄i(θ)

¤
.

Since by (A.12):

µi =
£
1 + α0i,n(θ)Ψ̄i(θ)

¤−1
=
£
1− Ψ̄0i(θ)Ω−1n (θ |Zi )Ψ̄j(θ)

¤−1
we conclude that:

nX
i=1

µ2i
£
1− Ψ̄0i(θ)Ω−1n (θ |Zi )Ψ̄i(θ)

¤
=

nX
i=1

£
1− Ψ̄0i(θ)Ω−1n (θ |Zi )Ψ̄i(θ)

¤−1

By comparing (A.8) and (A.12), we see that βin = γin, so that plugging the value of γin in first
order conditions (A.9) provides the characterization of corollary 4.5.
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