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Résumé / Abstract 
 
Il y a eu un regain d'intérêt récemment pour l'apprentissage semi-supervisé, à cause du grand nombre 
de bases de données comportant de très nombreux exemples non étiquetés et seulement quelques 
exemples étiquetés. Cet article poursuit le travail fait sur les algorithmes non paramétriques qui 
fournissent une étiquette continue estimée pour les exemples non-étiquetés. Il les étend à des 
algorithmes d'induction fonctionnelle qui correspondent à la minimisation d'un critère de régularisation 
appliqué à un exemple hors-échantillon, et qui ont la forme d'un régresseur à fenêtre de Parzen. 
L'avantage de cette extension est qu'elle permet de prédire l'étiquette d'un nouvel exemple sans avoir à 
résoudre de nouveau un système de dimension 'n' (le nombre d'exemples d'entraînement total), qui peut 
être de l'ordre de O(n^3). Les expériences montrent que l'extension fonctionne bien, en ce sens que 
l'étiquette prédite est proche de celle qui aurait été obtenue si l'exemple de test avait fait partie de 
l'ensemble non étiqueté. Cette procédure d'induction fonctionnelle relativement efficace peut 
également être utilisée, lorsque 'n' est grand, pour estimer la solution en l'écrivant seulement en 
fonction d'une expansion à noyau avec 'm' << 'n', et en la réduisant à un système linéaire avec 'm' 
équations et 'm' inconnues. 
 

Mots clés : modèles non paramétriques, classification, régression, apprentissage 
semi-supervisé 
 
 
 

There has been an increase of interest for semi-supervised learning recently, because of the many 
datasets with large amounts of unlabeled examples and only a few labeled ones. This paper follows up 
on proposed non-parametric algorithms which provide an estimated continuous label for the given 
unlabeled examples. It extends them to function induction algorithms that correspond to the 
minimization of a regularization criterion applied to an out-of-sample example, and happens to have 
the form of a Parzen windows regressor. The advantage of the extension is that it allows predicting the 
label for a new example without having to solve again a linear system of dimension 'n' (the number of 
unlabeled and labeled training examples), which can cost O(n^3). Experiments show that the extension 
works well, in the sense of predicting a label close to the one that would have been obtained if the test 
example had been included in the unlabeled set. This relatively efficient function induction procedure 
can also be used when 'n' is large to approximate the solution by writing it only in terms of a kernel 
expansion with 'm' << 'n' terms, and reducing the linear system to 'm' equations in 'm' unknowns. 
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learning. 
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1. Introduction

In many applications of machine learning, the labeled
examples only represent a small fraction of all the
available data. This situation has created a spur of
research activity in the area of semi-supervised learn-
ing algorithms, that can take advantage of both types
of examples. We refer to (Seeger, 2001) for a good
overview of the issues involved. Most approaches to
semi-supervised learning make some implicit or ex-
plicit assumption about the joint distribution of the
input and output variables. An exception is the set
of regularization methods (e.g. as in (Schuurmans &
Southey, 2002)) that use the unlabeled data to discover
overfitting. Among the other approaches one would
traditionally characterize the methods as parametric
or non-parametric, and as using an explicit generative
model (e.g. considering the labels as hidden variables
in a graphical model, see (McCallum & Nigam, 1998))
or not. Interestingly, with explicit parametric assump-
tions of the class-conditional input distribution (Coz-
man et al., 2003), one can show that these assumptions
(if not perfectly valid) yield both a decrease in vari-
ance and an increase in bias, and the more so when
the relative amount of unlabeled data increases. To us
this strongly suggests that good results could be ob-
tained with non-parametric methods when the amount
of unlabeled data is large and little prior information
on the input distribution is available.

Fortunately, in the very recent past, several non-
parametric approaches to semi-supervised learning
have been introduced, e.g. in (Szummer & Jaakkola,
2002; Chapelle et al., 2003; Belkin & Niyogi, 2003;
Zhu et al., 2003a; Zhu et al., 2003b; Zhou et al., 2004).
They rely on weak implicit assumptions on the gener-
ating data ditribution, e.g. smoothness of the target
function with respect to a given notion of similarity
between examples (represented by a kernel function)1.
For classification tasks this amounts to assuming that
the target function is constant within the region of
input space (or “cluster” (Chapelle et al., 2003)) as-
sociated with a particular class. All of these previous
non-parametric approaches exploit the idea of build-
ing and smoothing a graph in which each example is
associated with a node, and arcs betweeen two nodes
are associated with a similarity function applied on
the input part of the corresponding two examples. For
some of these methods one first builds a representation
(e.g. (Belkin & Niyogi, 2003)) or a kernel (Chapelle
et al., 2003) using the input part of the data (of both
labeled and unlabeled cases), and then trains a super-

1See also (Kemp et al., 2004) for a hierarchically struc-
tured notion of a priori similarity.

vised learning algorithm with the labeled examples but
relying on the representation or kernel induced using
the unlabeled examples. In the other methods (Szum-
mer & Jaakkola, 2002; Zhu et al., 2003a; Zhu et al.,
2003b; Zhou et al., 2004) one solves an optimization
problem in which both the labeled and unlabeled cases
intervene: the idea is to propagate the label informa-
tion from the labeled cases in the graph, with stronger
propagation between similar examples.

It is not always clear with these graph-based kernel
methods for semi-supervised learning how to general-
ize to previously unseen test examples. In (Zhu et al.,
2003b) it is proposed to assign to the test case the
label (or inferred label) of the nearest neighbor from
the training set (labeled or unlabeled). In this paper
we derive from the training criterion an inductive for-
mula that is in fact a cousin of the nearest neighbor
solution. In general the above graph-based approaches
have been designed for the transductive setting, in
which the input part of the test examples must be
provided before doing the expensive part of training.
This typically requires solving a linear system with n
equations and n parameters, where n is the number of
labeled and unlabeled examples. In a truly inductive
setting where new examples are given one after the
other and a prediction must be given after each exam-
ple, it can be very computationally costly to solve such
a system anew for each of these test examples. This
paper starts from this problem and proposes a natu-
ral generalization of the graph-based semi-supervised
learning algorithms that allows one to cheaply per-
form function induction, i.e. for a computational cost
that is O(n). The main idea is to apply the same
smoothness criterion that is behind the original semi-
supervised algorithm, adding the terms corresponding
to the new example, but keeping the predictions fixed
for the training examples (both the labeled and unla-
beled ones).

In addition to providing a cheap alternative for doing
function induction, the proposed approach opens the
door to efficient approximations even in the transduc-
tive setting. Since we know the analytic functional
form of the prediction at a point x in terms of the pre-
dictions at a set of training points (it turns out to be
a Parzen windows predictor) we can use it to express
all the predictions in terms of a small subset of m � n
examples (i.e. a low-rank approximation) and solve a
linear system with O(m) variables and equations.

In the next section we formalize a family of smoothness
criteria giving rise to already proposed non-parametric
semi-supervised learning algorithms. In section 3 we
justify and derive the function induction formula. In



section 4.2.1 we show in experiments that the out-
of-sample induction is very close to the transductive
prediction. In section 4.2.2 we compare variants of
the proposed semi-supervised algorithm with two very
closely related previously proposed ones (Zhu et al.,
2003a; Zhou et al., 2004). Finally, in section 5 we
present an approximation method to reduce the com-
putational time and the memory requirements by solv-
ing a smaller linear system.

2. Non-Parametric Smoothness Criteria

Among the previously proposed approaches, several
can be cast as the minimization of a criterion (often a
quadratic form) in terms of the function values f(xi)
at the labeled and unlabeled examples xi, as follows:

CK,D,D′,λ(f) =
1

2

∑

i,j∈U∪L

K(xi, xj)D(f(xi), f(xj))

+ λ
∑

i∈L

D′(f(xi), yi) + R(f) (1)

where U is the unlabeled set, L the labeled set, xi

the input part of the i-th example, yi the target label,
K(·, ·) is a positive similarity function (e.g. a Gaus-
sian kernel) applied on a pair of inputs, and D(·, ·)
and D′(·, ·) are lower-bounded dissimilarity functions
applied on a pair of output values. R(f) is an optional
additional regularization term of the values of f at xi.
In particular, in (Zhou et al., 2004), the proposed cri-
terion amounts to R(f) = λ

∑
i∈U f(xi)

2. To obtain
a quadratic form in f(xi) one typically chooses D and
D′ to be quadratic, e.g.

D(y, y′) = D′(y, y′) = (y − y′)2
def
= D∗(y, y′).

When D, D′ and R are quadratic, this criterion can
be minimized exactly for the n function values f(xi).
In general this could cost O(n3) operations, possibly
less if the input similarity function K(·, ·) is sparse.

A quadratic dissimilarity function makes a lot of sense
in regression problems but has also been used success-
fully in classification problems (where f(·) is not con-
strained to be discrete). In this paper, we only con-
sider binary classification, but note that all the algo-
rithms proposed extend naturally to multiclass prob-
lems. The first term of equation 1 says that we want
to penalize the dissimilarity between f(xi) and f(xj)
when xi and xj are similar. The second term says
we want to penalize f(xi) for being far from the ob-
served target value yi (for i ∈ L). The hyperparam-
eter λ controls the trade-off between the smoothness
of f and achieving the observed values on the labeled
cases. It should depend on the amount of noise in the

observed values yi, i.e. on the particular data distribu-
tion (although for example (Zhu et al., 2003a) consider
forcing f(xi) = yi). The optional extra regularization
term R(f) controls how much we penalize the high val-
ues of f on the unlabeled data. Adding it may give
better results when very few labels are available.

Two methods using a criterion of the form given by
eq. 1 have already been proposed. In (Zhu et al.,
2003a), λ = ∞, R(f) = 0 and D = D′ = D∗. In (Zhou
et al., 2004), the cost function can be represented as
in eq. 1 with λ > 0, D′ = D∗ but

D(f(xi), f(xj)) =

(
f(xi)√

ai

− f(xj)√
aj

)2

(2)

where
ai

def
=

∑

j∈U∪L,j 6=i

K(xi, xj). (3)

In this paper we mostly study the case in which D =
D′ = D∗ and R(f) = 0. The minimization of the
criterion with respect to all the f(xi) for i ∈ L ∪ U
gives rise to the following linear system:

A~f = b (4)

where ~fi = f(xi), whose first l elements are in L and
the remaining n − l in U . Using the matrix notation
Wij = K(xi, xj), the system matrix A can be written
as follows:

A = λ∆L + Diag(W1n) − W (5)

where ∆L (n×n) has entries ∆L,ij = δijδi∈L, Diag(v)
is the matrix containing the vector v in its diagonal,
and 1n is the vector of n ones. The right hand side
vector b is as follows:

bi = δi∈Lλyi. (6)

In the non-parametric setting, which is the one stud-
ied by the above authors, the criterion is directly op-
timized with respect to the function values. This has
the disadvantage of providing no obvious prediction for
new examples, and the method is therefore used in the
transductive setting (the test examples are included in
the unlabeled set). To obtain function induction from
the transductive learner, one can of course add the
test point x to the unlabeled set and solve again the
system, but it is a costly procedure (e.g. O(n3) for
solving a linear system when D and D′ are quadratic).
One alternative – which should be further explored –
is to parameterize f(x) with a flexible form such as a
neural network or a linear combination of non-linear
bases (see also (Belkin & Niyogi, 2003)). Another is



the induction formula proposed below. As we will see
in section 5 the two alternatives can be combined to
yield an efficient approximation to the non-parametric
semi-supervised learning problem.

3. Function Induction Formula

In order to transform the above transductive algo-
rithms (for different choices of K, D and D′ in eq. 1)
into function induction algorithms we will do two
things:

• apply the same type of smoothness constraint as
in eq. 1 to the new example x,

• as in ordinary function induction (by opposition
to transduction), require that the f(xi) remain
fixed even though the knowledge of x has been
added.

Therefore we will minimize the criterion of eq. 1 when
we add terms for the new unlabeled example x, but
only with respect to f(x). Since the terms of the cri-
terion depending on f(x) are

∑

j∈U∪L

K(x, xj)D(f(x), f(xj))

by minimizing them (taking D = D′ = D∗) we readily
obtain the solution

f̃(x) =

∑n
j=1

K(x, xj)f(xj)∑n
j=1

K(x, xj)
. (7)

Interestingly this is exactly the formula for Parzen
windows or Nadaraya-Watson non-parametric regres-
sion (Nadaraya, 1964; Watson, 1964) when K is the
Gaussian kernel.

An interesting question to consider is whether f̃(xi) as
defined above approaches f(xi) (the solution of eq. 4)
for i ∈ L ∪ U . Plugging x = xi in the above formula
and applying the linear equations of eq. 4 yields

f̃(xi) = f(xi) − δi∈L

λ(yi − f(xi))∑
j∈L∪U K(xi, xj)

.

Hence f̃(xi) = f(xi) for i ∈ U , but on labeled exam-
ples the induction formula chooses a value f̃(xi) that
is “smoother” than f(xi), i.e. not as close to yi.

4. Experiments

In our experiments, we have used both the Gaussian
kernel

Gσ(x, y) = e−
||x−y||2

σ2

and the spectral clustering adaptive kernel (Ng et al.,
2002), obtained from Gσ by the normalization

Hσ(xi, xj) =
Gσ(xi, xj)√

aiaj

(8)

with the ai defined as in eq. 3 with K = Gσ. As we
will see, this kernel tends to yield better results than
the fixed Gaussian kernel.

We denote by SS(λ,K) the algorithm that consists
in minimizing the criterion CK,D∗,D∗,λ of eq. 1. The
algorithm proposed in (Zhu et al., 2003a) can thus be
written SS(+∞, Gσ). Similarly, we note SS′(α, σ) the
algorithm that minimizes the regularized version of the
criterion of eq. 1, with the kernel Gσ, λ = 1

2
(1−α)α−1

(0 < α < 1), R(f) = λ
∑

i∈U f(xi)
2, D′ = D∗, and the

distance D defined in eq. 2: this is the algorithm from
(Zhou et al., 2004).

4.1. Toy data

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2
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−0.5

0

0.5

1

1.5
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2.5

Figure 1. Toy example of the classification obtained from 5
labeled examples (in circles), and 495 unlabeled. In squares
are a few test points, whose class (symbol or color) is ob-
tained by the induction formula of eq. 7.

We first validate our generalization formula on a toy
dataset, the classical two-moon problem. Figure 1
shows an example where 500 unlabeled examples are
classified from only 5 labeled ones. Equation 7 is then
used to predict the class of 10000 new test examples
sampled from the same density, yielding an error rate
of 1, 76%. Note that, obviously, any supervised algo-
rithm taking into account only the labeled examples
would have achieved a much worse performance.

This error rate is similar to the one obtained when we
add each test point x to the training set, then minimize
the cost of eq. 1 to get the class of x, repeating this
operation for each x in the test set: by doing so, we



obtain a 1, 7% classification error. In both cases, we
use the same learning algorithm SS(λ = 5,K = G0.1).

4.2. Handwritten character recognition

We evaluate our method on real data, using the Let-
ters dataset of the UCI Machine Learning repository.
There are 26 handwritten characters classes, to be dis-
criminated using 16 geometric features. However, in
our experiments, we reduced to a binary problem by
considering only the class formed by the characters ’I’
and ’O’ and the one formed by ’J’ and ’Q’ (to make
the problem harder than a simple two-character clas-
sification). This yields a dataset of 3038 samples, that
we divide into a train set D and a test set T , with
respectively 2038 and 1000 samples.

4.2.1. Generalization performance

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

Figure 2. The horizontal axis is the fraction of substituted
data in the training set, which induces a variance in the
transductive predictions. The vertical axis gives the differ-
ence (δ in eq. 9) between the average difference between the
transductive and inductive predictions and the variance in
transductive predictions. The graph shows that around 3%
perturbation in the training set induces as much variance
in the predictions as the difference between transductive
and inductive predictions.

To assess the validity of our generalization formula, we
compare f̃(x) given by eq. 7 with its value f∗(x) that
would have been found if x had been included in the
training set. We also study the intrinsic stability of
f∗(x) when samples from the training set are substi-
tuted: this gives us an idea of the uncertainty around
f∗(x).

More precisely, the following experiment is made. We
take V = the first m samples from our training set
D, and split the remaining n − m samples randomly
into two sets of equal size, V1 and V2. We train our

model on V ∪ V1, and use eq. 7 to compute f̃(x) for
all x ∈ T . We also compute f∗

1 (x) by minimizing the
criterion (eq. 1) over V ∪V1 ∪{x}, and f∗

2 (x) by doing
it over V ∪ V2 ∪ {x}. We then compare the difference
between f and f∗

1 to the difference between f∗
1 and f∗

2 :

δ =
1

|T |
∑

x∈T

(
(f̃(x) − f∗

1 (x))2 − (f∗
1 (x) − f∗

2 (x))2
)

.

(9)
We average δ over 10 random splits of D\V for V1

and V2, which yields the value plotted on figure 2 for
different sizes of V . It appears the average error we
make by not including x in the training set is of the
same order of magnitude as the perturbation induced
by a small substitution of about 3% of the training
samples. Here, the algorithm SS(λ = 1,K = G1) is
used, and the first 10% examples of our dataset D are
labeled.

4.2.2. Comparison with existing algorithms

Here, we compare the classification performance of
various algorithms on the unlabeled part U of the
dataset D, when we vary the fraction pl of labeled data
L in D. The algorithms tested are SS(λ = +∞,K =
Gσ), from (Zhu et al., 2003a), SS ′(α, σ), from (Zhou
et al., 2004), an alternative SS(λ = +∞,K = Hσ) de-
rived from our general framework, and, as a baseline, a
Parzen windows classifier trained only the labeled ex-
amples, using a Gaussian kernel Gσ (algorithm written
PW (σ) in the figures).
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1
)

SS(λ = ∞,K = H
1
)

SS’(α = 0.99, σ = 1)
SS’(α = 0.5, σ = 1)
PW(σ = 1)

Figure 3. Classification error on the unlabeled training
data for 0.01 ≤ pl ≤ 0.1.

Throughout the experiments, we keep σ = 1, which
seems to be an adequate value for this dataset. We
compute the classification error of each of the algo-
rithms on 100 random shuffles of the whole dataset
D∪T (thus using each time a different D and T , while
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Figure 4. Classification error on the unlabeled training
data for 0.1 ≤ pl ≤ 0.9.

keeping their size fixed). The average error is plotted
on figure 3 for the fraction of labeled samples pl ≤ 0.1,
and on figure 4 for pl ≥ 0.1. We do not show results
of the algorithm SS for λ < +∞ because they are,
on average, worse than those obtained with an infinite
λ (for this dataset). Note however that, when using
K = Gσ, for a given D and T , a lower λ may some-
times give better results when pl is low (5% or less).
This is probably because when less labels are available,
the smoothness of the solution becomes more impor-
tant.

The best overall results are obtained by SS(λ =
+∞,K = Hσ) and SS′(α = 0.5, σ). The reason why
they outperform SS(λ = +∞,K = Gσ) probably re-
sides in the normalization of eq. 8 (though SS ′ does
not use exactly the same normalization, but a very
close one given by eq. 2). This normalization tends to
give higher weights to isolated points, which enforces
the smoothness of the function in the regions where the
data is sparser, compared to the unnormalized kernel
Gσ. As illustrated on the plots, this property has a
very positive effect on the overall performance of the
algorithm.

Note that, for pl ≤ 3%, SS′(α = 0.99) yields the
best performance, but this value of α also penalizes
the algorithm for higher values of pl. The same phe-
nomenon was pointed out in (Zhou et al., 2004), where
it was noted that SS′(α = 0.99) was less efficient than
SS(λ = +∞,K = Gσ) when pl grew. If we remember
that a value of α close to 1 means a low λ in eq. 1,
this is explained by the fact the given label values are
not necessarily preserved when λ is low. As for the
good results obtained by SS ′(α = 0.99) for a very
low pl, they can be explained again by the importance

of the smoothness of the solution when very few la-
bels are given. Indeed, in SS′, the regularization term
λ

∑
i∈U f(xi)

2 encourages this smoothness, and thus
yields a better classification than SS, where there is
no such regularization.

5. Efficient Approximation

5.1. Algorithm

A simple way to reduce the cubic computational
requirement and quadratic memory requirement for
’training’ the above non-parametric semi-supervised
algorithms is to force the solutions to be expressed
in terms of a subset of the examples. This idea has
already been exploited successfully in a different form
for other kernel algorithms, in particular for Gaussian
processes (Williams & Seeger, 2001).

Here we will take advantage of the induction formula
(eq. 7) to simplify the linear system to m < n equa-
tions and variables, where m is the size of a subset of
examples that will form a basis for expressing all the
other function values. Let S ⊂ L ∪ U with L ⊂ S be
such a subset, with |S| = m. Define R = U\S. The
idea is thus to force f(xi) for i ∈ R to be expressed as
a linear combination of the f(xj) with j ∈ S:

∀i ∈ R, f(xi) =

∑
j∈S K(xi, xj)f(xj)∑

j∈S K(xi, xj)
.

Plugging this formula in eq. 1 (using the simple
squared difference for D and D′), the total cost can
be separated in four terms, CLL + CSS + CRR + CRS :

• the labeled data error:

CLL = λ
∑

i∈L

(f(xi) − yi)
2

• the smoothness within the selected subset S:

CSS =
1

2

∑

i,j∈S

K(xi, xj) (f(xi) − f(xj))
2

• the smoothness within the rest of the unlabeled
examples R:

CRR =
1

2

∑

i,j∈R

K(xi, xj) (f(xi) − f(xj))
2

• the two cross-terms between elements of S and
elements of R:

CRS = 2
1

2

∑

i∈R,j∈S

K(xi, xj) (f(xi) − f(xj))
2
.



Let ~f denote now the vector with entries f(xi), only
for i ∈ S (they are the values to identify). To simplify
the notation, also define W the matrix with entries
K(xi, xj), and sub-matrices WSS when i, j ∈ S, WRS

when i ∈ R and j ∈ S, WRR when i, j ∈ R. Define W
the matrix with entries

Wij∑
k∈S Wik

, and the correspond-

ing submatrix W RS with entries (i, j) such that i ∈ R
and j ∈ S.

Using this notation, the gradients with respect to the
above cost components can be written as follows:

∂CLL

∂ ~f
= 2λ∆L(~f − y)

where ∆L is the same as in eq. 5, except it is of size
(m × m), and y is a vector with elements yi for i ∈ L
and arbitrary elsewhere (these values are multiplied by
zeros in ∆L). The other gradients are as follows:

∂CRR

∂ ~f
=

[
2
(
W

′

RS (Diag(WRR1r) − WRR) WRS

)]
~f

∂CRS

∂ ~f
=

[
2
(
Diag(WSR1r) − W

′

RSWRS

)]
~f

∂CSS

∂ ~f
= [2 (Diag(WSS1m) − WSS)] ~f

The linear system to be solved can thus be written:

A~f = b

with

A = λ∆L + W
′

RS (Diag(WRR1r) − WRR) WRS

+ Diag(WSR1r) − W
′

RSWRS

+ Diag(WSS1m) − WSS

and b defined as before in eq. 6 (but with size m).

We denote the above algorithm ŜSRR because it is
an approximation based on a subset vs subset linear
system (the RR comes from the use of CRR, which will
be discussed below).

5.2. Variants

Further improvement can be obtained by observing
that the main computational cost comes from ∂CRR

∂ ~f
.

If we choose to ignore CRR in the total cost, then the
matrix A can be computed in O(m2(n − m)) time,
using only O(m2) memory (instead of respectively
O(m(n − m)2) time and O(m(n − m)) memory when
using CRR.). Of course, by doing so we lessen the
smoothness constraint on f , since we do not take into
account the part of the cost enforcing the smoothness

on the rest R of the unlabeled set. However, this may
have a beneficial effect when the dataset is large. In-
deed, the costs CRS and CRR can be seen as regular-
izers encouraging the smoothness of ~f . In particular,
when R is very large, the regularization induced by
CRR (containing (n − m)2 terms) can constrain ~f too
much, thus penalizing the classification performance.
In this case, discarding CRR, in addition to speeding
up the computation significantly, also yields better re-
sults. We denote the variant of ŜSRR that does not
take CRR into account ŜS.

Training with only a subset S of size m � n, however,
usually won’t perform as well as training with the full
unlabeled set (even when including CRR and CRS). In
order to get closer to this “optimal” performance, one
may use the following ensemble method:

• Choose k disjoint subsets (S ′
j)1≤j≤k of size m−|L|

in U

• For each j ≤ k, get fk(xi) for i ∈ U by running
the above algorithm with the subset Sj = L ∪ S′

j

and the rest Rj = U\Sj (with or without taking
into account CRR)

• ∀i ∈ U , take f(xi) = 1

k

∑k
j=1

fk(xi).

As seen in the experiments, this procedure can help re-
ducing the classification error, on the unlabeled train-
ing examples as well as on new test data (using the
induction formula). Note that even though the com-
putational time requirements are multiplied by a fac-
tor k, they may be taken back to their original value
if one can perform parallel computation, in order to
train simultaneously on the different subsets. We de-
note by SSk,RR and SSk the above algorithm, with
and without the CRR cost.

In table 1, we summarize the time and memory re-
quirements of the various algorithms presented in this
paper. The approximation methods described in this
section improve the computation time and memory
consumption by a factor approximately n/m for ŜSRR

and (n/m)2 for ŜS, and with parallelization, the same
improvements can be maintained while averaging the
results of k experiments on k different subsets.

5.3. Experiments

Here, we apply the SSk,RR and SSk algorithms de-
scribed above to the handwritten character recognition
problem of section 4.2. We take k = 10, and for each
fraction pl of labeled examples, we take 10 subsets S ′

j

so that U =
⋃

1≤j≤10
S′

j . For comparison purpose, we
denote by SSk the algorithm that consists in running



Table 1. Comparative computational requirements of the
original algorithm SS (or SS′), the approximation ŜSRR

using CRR, its variant ŜS discarding CRR, and the en-
semble variant over k subsets, with or without CRR in the
cost, denoted respectively by SSk,RR and SSk. The brack-
ets around the factor k mean it can be taken out if the
computation is parallelized.

Time Memory

SS or SS′ O(n3) O(n2)

ŜSRR O(m(n − m)2) O(m(n − m))

ŜS O(m2(n − m)) O(m2)
SSk,RR O((m(n − m)2)[k]) O(m(n − m))
SSk O((m2(n − m))[k]) O(m2)
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Figure 5. Test set classification error, for 0.01 ≤ pl ≤ 0.1.

SS on each L ∪ S′
j , then averaging the outputs of the

resulting regressors when computing the output for a
new point x. We compare the performance of SSk,RR

and SSk with (i) the algorithm SS using the whole
unlabeled set U , and (ii) the algorithm SSk. This last
algorithm is shown to demonstrate the gain induced
by incorporating CRS (and possibly CRR) in the cost
optimized. Figures 5 (for low pl) and 6 (for high pl)
show the average classification error on the test set
(the average is done over 10 fixed (train,test) pairs
(Di, Ti)1≤i≤10 of respectively 2038 and 1000 charac-
ters, taken randomly from the original dataset). We
take K = G1, and λ = +∞. Note that plotting the
error on the unlabeled part of the training set would
have given similar results. Also, the average errors
of ŜSRR and ŜS (the approximation algorithms with-
out averaging), not shown on the figures, are slightly
higher than the ones of respectively SSk,RR and SSk,
but still (far) below the one of SSk.

Interestingly, SSk,RR and SSk can outperform SS
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Figure 6. Test set classification error, for 0.1 ≤ pl ≤ 0.7.

trained on the whole set U when pl is low. This is co-
herent with our previous observations, which showed
that encouraging the smoothness of the solution for
such pl could improve the robustness of the classifier.

Note that here, the dataset is still rather small, and
including CRR in the cost systematically helps. How-
ever, other experiments performed on the same hand-
written character database, but using a larger dataset
(10000 training and test examples) have given better

results with ŜS than with ŜSRR (both still doing bet-
ter than simply training over the subset S, discarding
completely the rest R).

6. Conclusion

The main contribution of this paper is an extension
of previously proposed non-parametric (graph-based)
semi-supervised learning algorithms, that allows one
to efficiently perform function induction (i.e. cheaply
compute a prediction for a new example, in time O(n)
instead of O(n3)). The extension is justified by the
minimization of the same smoothness criterion that
was used to obtain the original algorithms in the first
place. We showed that the function induction for-
mula is robust and yields predictions that are close to
the transductive (expensive) predictions (in the sense
that the difference is of the same order as the average
change in transductive prediction when a small frac-
tion of the training examples are substituted by others
from the same distribution).

The paper compares empirically on real data a variety
of semi-supervised learning algorithms that fit under
this framework, helping to understand the effect of the
different components of the training criterion.

Finally, the induction formula is used to define several
approximation variants (either for transduction or for



function induction) that yield important reductions in
computational and memory complexity at a small cost
in classification performance.
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