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Résumé / Abstract 
 
Cet article propose un cadre semi-paramétrique adapté à la modélisation de l'hétéroscédasticité 
conditionnelle multivariée. Nous montrons d'abord qu'un modèle factoriel à volatilité stochastique ne 
peut pas être identifié seulement à partir de la structure de variance conditionnelle des rendements, 
sauf si l'on impose des restrictions importantes au support de la loi de probabilité des facteurs latents. 
Nous proposons ensuite des restrictions alternatives permettant d'identifier le modèle de volatilité 
multivariée. Ces restrictions portent soit sur les moments d'ordre supérieur, soit sur une spécification 
de la prime de risque fondée sur un prix constant du risque des facteurs. Dans les deux cas, 
l'identification du modèle est obtenue à partir de restrictions sur les moments conditionnels, ce qui 
permet l'estimation par variables instrumentales. Une étape préliminaire de détermination du nombre 
de facteurs et d'identification de portefeuilles représentatifs est proposée. Elle est fondée sur une 
séquence de tests de sur-identification qui englobe les tests de caractéristiques communes d'Engle et 
Kozicki (1993). 
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This paper provides a semiparametric framework for modelling multivariate conditional 
heteroskedasticity. First, we show that stochastic volatility factor models with possibly cross-
correlated disturbances cannot be identified from returns conditional variance structure only, except 
when strong restrictions on the support of the probability distribution of latent factors volatility are 
maintained. Second, we provide an alternative way to maintain identifying restrictions through either 
higher order moments or through a specification of risk premiums based on constant prices of factor 
risks. In both cases, identification is obtained with conditional moment restrictions which pave the way 
for instrumental variables estimation and inference. A preliminary step of determination of the number 
of factors and identification of mimicking portfolios is proposed through a sequence of GMM 
overidentification tests which encompass Engle and Kozicki (1993) tests for common features. 
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1 Introduction

Estimation of large multivariate conditionally heteroskedastic models is notoriously challenging,

requiring strong assumptions to make such estimation feasible. While several hundred parameters

can be necessary to capture joint GARCH kind of dynamics of ten asset returns, more structure

is needed to get a parsimonious characterization of the joint conditional covariance matrix.

Among the possible structures, the common factors model is quite popular for at least two

reasons. First, as emphasized by Diebold and Nerlove (1989) and King, Sentana and Wadhwani

(1994), they are well-suited to capture commonality in the conditional variance movements of the

returns (regardless of correlation), as all asset prices react to the arrival of new information. In

other words, common factors may represent news which are common among all asset prices. A

second advantage of factor models is that they automatically guarantee a positive semidefinite

conditional covariance matrix for returns, once we ensure that the conditional covariance matrix

of the factors is itself positive semidefinite. A maintained assumption in this paper is that the

common factors represent conditionally orthogonal influences, which implies that the factors con-

ditional covariance matrix is diagonal (see Sentana (1998) for more general factor models, which

are called oblique).

To summarize, we consider in the whole paper a vector yt+1 of n asset returns, observed at

time t + 1, which can be decomposed as :

yt+1 = µ + Λft+1 + ut+1 (1.1)

where ft+1 is a K × 1 vector of unobserved common factors, Λ is the n × K matrix of associ-

ated factor loadings and ut+1 is a n × 1 vector of idiosyncratic terms. This decomposition will

help to characterize the conditional covariance matrix of returns Σt = V ar (yt+1 |Jt) given some

information set Jt that contains the past values: yτ , τ ≤ t and fτ , τ ≤ t.

The characterization of Σt from (1.1) rests upon three basic assumptions. First, as already

mentionned, we assume that Dt = V ar (ft+1 |Jt) is a diagonal matrix. Second, factor loadings

are interpreted as conditional betas coefficients of returns on factors, that is :

Cov (ft+1, ut+1 |Jt) = 0.

Third, some identifying assumptions must be maintained about the residual covariance matrix

Ωt = V ar (ut+1 |Jt) in order to keep the interpretation of residual shocks ut+1 as idiosyncratic
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ones. Based on those assumptions, the covariance factor structure which is the focus of interest

of this paper will be characterized as:

Σt = ΛDtΛ′ + Ωt (1.2)

In such a dynamic framework, the concept of idiosyncracy may actually be understood in two

different ways. First, extending to a dynamic setting the Ross’s (1976) initial intuition, we may

adopt a conditional factor analysis approach by assuming that idiosyncratic shocks are condition-

aly orthogonal, that is Ωt is a diagonal matrix. Then parsimony is reached by the fact that only

(n + K) independent univariate conditionally heteroskedastic processes have to be specified: the

K common factors processes and the n idiosyncratic shocks. This is the approach which has been

followed by both Diebold and Nerlove (1989) and King, Sentana and Waddhwani (1994), even

though the former assume in addition that Ωt is a constant matrix. Irrespective of the assumption

about the dynamics of Ωt, the maintained assumption of diagonality allows one to resort at least

to identification tools of conventional factor analysis estimation.

However, diagonality of Ωt may be thought as a too restrictive assumption, particularly be-

cause it is not preserved by portfolio formation. This is the reason why Chamberlain and Rotschild

(1983) introduced the concept of approximate factor structures, in which the idiosyncratic terms

may be correlated, but only up to a certain degree. Since a versatile dynamic extension of

the concept of approximate factor structure is still not much developped in the conditional het-

eroskedasticity literature (see however Sentana (2004)), we focus here on another concept of

idiosyncracy, defined in line with common features which have been introduced by Engle and

Kozicki (1993). More precisely, we assume that the residual covariance matrix Ωt is a possibly

nondiagonal constant positive definite matrix Ω:

Σt = ΛDtΛ′ + Ω (1.3)

The maintained assumption of the factor structure (1.3) is akin to see the K common factors

as the K sources of conditional heteroskedasticity which should explain the commonality in the

conditional variance movements of the returns. By contrast, the common features, defined from

the (n −K)-dimensional orthogonal space of the range of Λ, characterize the vectorial space of

conditionally homoskedastic portfolio returns.

Moreover, it is worth emphasizing that almost all the identification and estimation strategies

put forward in this paper could be easily extended to a more general context with a time-varying
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matrix Ωt, insofar as only the diagonal coefficients would be allowed to be time-varying. In other

words, one could add to the idiosyncratic shocks ut+1 of our model (1.1)/(1.3) some orthogonal

idiosyncratic shocks vt+1 with a conditional covariance matrix conformable to King, Sentana and

Wadhwani (1994) conditional factor analysis model.

For sake of clarity, we prefer to focus here on the main contribution of this paper, that is

instrumental variables (IV) identification and estimation of conditionally heteroskedastic factor

models defined through the concept of common features, that is the mere fact that conditional

heteroskedasticity is a priori limited to a restricted number of directions. This is a non-trivial issue

for the following reason. While the search for common features may allow to identify the range

of the matrix Λ of factor loadings, it does not protect against the following lack of identification.

Roughly speaking, even when common factors are normalized by the maintained assumption:

EDt = V ar(ft+1) = IdK (1.4)

where IdK is the identity matrix of size K, it is always possible to transfer somme constant vari-

ance from factors to idiosyncratic terms through a convenient rescaling of the factor loadings. This

degree of indetermination is clearly not innocuous for asset pricing and dynamic risk management

as well. It turns out that this difficult identification issue has been overlooked in the literature

until now since it may be solved by chance thanks to additional parametric assumptions. For

instance, the maintained assumption of joint conditional normality of the idiosyncratic shocks al-

lows Harvey, Ruiz and Shephard (1994) to propose QML consistent estimation of a model similar

to (1.3) while, with GARCH factors, Fiorentini, Sentana and Shephard (2003) are even able to

propose a likelihood-based estimation procedure.

We argue however that identification of the factor structure (1.3) with as little as possible

additional assumptions is important for financial econometrics. Typically, both asset pricing and

risk management issues are tightly related to two different features of asset returns’ conditional

probability distribution : conditional heteroskedasticity on the one hand, conditional tail be-

haviour on the other hand. It is then fairly important to be able to disentangle these two issues,

that is to propose inference procedures about conditional variance dynamics whose validity is not

contingent to some joint assumptions about the tail behaviour. This is typically the spirit IV

procedures proposed here. We want to identify separately both common factors conditional het-

eroskedasticity dynamics and idiosyncratic variance by using, as far as possible, only observable

conditional moment restrictions about the first two joint moments of asset returns.
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Our main results are the following. First, we show that the required identification is much

easier to meet when the common factors risk is priced, and a parametric model of price of factors

risk is available. The general intuition is that the resulting risk premiums that show up in

expected returns make the conditional variances of latent factors almost observable. To see this,

let us consider a linear model of factor risk premiums :

E (ft+1 |Jt) = τdt

where the K × 1 vector dt stackles together the diagonal coefficients of the matrix Dt. Then the

regression model (1.1) provides now two sets of conditional moment restrictions :




E (yt+1 |Jt) = µ + Λτdt

V ar (yt+1 |Jt) = ΛDtΛ′ + Ω
(1.5)

Considering these two sets of moment restrictions jointly will protect us against the aforemen-

tioned possibilities of variance transfer between Dt and Ω.

Full identification of the matrix Λ of factor loadings and also of the idiosyncratic covariance

matrix Ω, is much more involved when one cannot take advantage of a non-zero price τ of factor

risks. The solution put forward in this paper rests upon an additional model of joint conditional

kurtosis of returns. Even though we consider as a pity to resort to such higher order moments joint

assumptions, it is much less restrictive than usual parametric assumptions about the asset returns’

joint probability distribution. Moreover, our chosen specification nests the most usual models for

volatility factors, like strong GARCH (Diebold and Nerlove (1989)), affine diffusion stochastic

volatility factors (Heston (1993), Duffie, Pan and Singleton (2000), Meddahi and Renault (2004)

or Ornstein-Uhlenbeck like Levy volatility processes (Barndorff-Nielsen and Shephard (2001)).

In this paper, we assume that probability distributions of both common factors and distur-

bances are conditionally symmetric, which facilitates the characterization of conditional kurtosis of

returns. Extensions which accomodate skewness or leverage effect are considered in a companion

paper (Dovonon, Doz and Renault (2004)).

The paper is organized as follows. We first discuss (section 2) the general identification issue

of the factor loadings and the idiosyncratic covariance matrix in the general setting (1.3). We put

forward the aforementionned possible transfer in variance and characterize its effect on identifi-

cation. A byproduct of this is that, concerning the volatility dynamics of common factors, only

the volatility persistence parameters of stochastic volatility (SV) factors can be identified, while

more specific factor structures like GARCH are not testable. Instrumental variables estimation
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and identification with zero factor risk premiums is presented in section 3 while the issue of linear

beta models of risk premium is addressed in section 4. In both cases, a sequential procedure is

proposed to identify the number K of factors as well as K mimicking portfolios in a preliminary

inference step. Section 5 concludes and proposes some possible extensions. The main proofs are

gathered in the appendix.

2 Model identification:

2.1 Identification of the factor loadings:

In this section, we address the identification issue of a factor model for conditional variance:

Σt = Λ Dt Λ′ + Ω (2.1)

where Σt is the conditional covariance matrix of a vector yt+1 of n observed random variables:

Σt = V ar (yt+1 |Jt ) (2.2)

and Jt is a nondecreasing filtration which defines the relevant conditioning information. In par-

ticular, yt is Jt adapted.

Of course, when writing the factor model (2.1), one has in mind a conditional regression of

yt+1 on some factors ft+1, given the information Jt:




yt+1 = µ(Jt) + Λft+1 + ut+1

E (ut+1 |Jt ) = 0

E (ft+1 |Jt ) = 0

Cov (ut+1, ft+1 |Jt ) = 0

V ar (ft+1 |Jt ) = Dt

(2.3)

With the additional assumption that the conditional idiosyncratic variance is constant:

V ar (ut+1 |Jt ) = Ω (2.4)

the conditional regression model (2.3) implies (2.1)1.

Two necessary identification conditions of the factor loadings Λ in (2.1) are well known:
1The decomposition (2.1) is actually equivalent to the regression model (2.3)/(2.4)with a possibly singular

residual covariance matrix Ω (see Gourieroux, Monfort and Renault (1991))
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- First, Λ must be a matrix of full column rank, say of rank K. If it was not the case, because

for instance the Kth column would be a linear combination of the first (K − 1) columns,

then the factorial representation (2.1) could be rewritten by using only as factor loadings

the first (K − 1) columns of Λ.

- Second, the matrix Dt must be normalized, for instance by assuming that:

EDt = IdK (2.5)

identity matrix of size K.

A less well-known necessary identification condition, already pointed out 2 by Fiorentini and

Sentana (2001) is the following:

Proposition 2.1 If some diagonal coefficient σ2
kt of Dt is positively lower bounded:

σ2
kt ≥ σ2

k > 0 a.s. (2.6)

then the decomposition

Σt = Λ Dt Λ′ + Ω (2.7)

can also be written:

Σt = Λ̃ D̃t Λ̃′ + Ω̃ (2.8)

with

Λ̃ 6= Λ, Ω̃ 6= Ω, Ω̃ À Ω. (2.9)

The interpretation of this result is clear: if the conditional variance σ2
kt of a factor is positively

lower bounded, it is always possible to transfer a constant part of it into the residual variance

matrix 3. Therefore, the two contributions cannot be separately identified.

The following proposition confirms this interpretation. We consider without loss of generality

observable variables yt+1 and latent factors ft+1 of zero conditional expectation given Jt and we

focus, for sake of notational simplicity, on the case of a single factor model.
2The identification results presented in this section are tightly related, although not equivalent or redundant,

with some of Fiorentini and Sentana (2001). In order to be self-contained, we provide some autonomous proofs.
3Of course, such a transfer would be precluded if we assume that the residual covariance matrix Ω is diagonal.

This is another way to get identifiability of SV factor models, see e.g. Fiorentini and Sentana (2001).
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Proposition 2.2 If there is one factor ft+1 such that:

yt+1 = λft+1 + ut+1 (2.10)




Cov (ut+1, ft+1 |Jt ) = 0

V ar (ut+1 |Jt ) = Ω

E (V ar (ft+1 |Jt )) = 1

positive definite (2.11)

and

σ2
t = V ar (ft+1 |Jt ) ≥ σ2 > 0 a.s. (2.12)

then there is another factor f̃t+1 such that

yt+1 = λ̃f̃t+1 + ũt+1 (2.13)





Cov
(
ũt+1, f̃t+1 |Jt

)
= 0

V ar (ũt+1 |Jt ) = Ω̃ À Ω

E
(
V ar

(
f̃t+1 |Jt

))
= 1

(2.14)

with

σ̃2
t = V ar

(
f̃t+1 |Jt

)
=

1
1− σ2

(
σ2

t − σ2
)

(2.15)

λ̃ = (1− σ2)λ and Ω̃ = Ω + σ2λλ′

Another necessary condition for identification of decomposition (2.1) is of course the pres-

ence of conditional heteroskedasticity in each factor fkt, k = 1, · · · ,K, that is the maintained

assumption that the K diagonal coefficients σ2
kt of Dt are non degenerate random variables. This

assumption is actually sufficient to identify the number K of factors:

Proposition 2.3 If Λ Dt Λ′ + Ω = L∆tL
′ + W with:

Λ (n×K) matrix of rank K

L (n× J) matrix of rank J

EDt = IdK , E∆t = IdJ

and if Dt and ∆t are diagonal matrices whose diagonal coefficients are non degenerate random

variables, then: K = J and the ranges of matrices Λ and L coincide.
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Proposition 2.3 leads us to define a K SV factors model by the following conditions:




Σt = ΛDtΛ′ + Ω,

Λ (n×K) matrix of rank K,

Ω (n× n) positive definite matrix,

Dt = Diag(dt)

where dt =
(
σ2

kt

)
1≤k≤K

is a vector of K positive random variables,

of expectation unity and such that V ar(dt) is a nonsingular matrix

(2.16)

Note that (2.16) strengthens the assumptions of Proposition 2.3 by considering not only that

the K random variables σ2
kt, k = 1, · · · ,K are not degenerate but also that no linear combination

of them is degenerate. This stronger assumption is actually needed to be sure to identify the K

columns of the matrix Λ of factor loadings up to permutations and multiplication by arbitrary

scalar numbers:

Proposition 2.4 If Σt admits two factor decompositions:

Σt = Λ Dt Λ′ + Ω = L∆tL
′ + W

which are both conformable to (2.16), then:

L = Λ∆Q

for some diagonal matrix ∆ and some permutation matrix Q.

Notice that postmultiplication of the matrix Λ of factor loadings by a diagonal matrix is

akin to rescale each column of Λ according to the intuition put forward by proposition 2.2. The

necessary identification condition of Proposition 2.1 is actually sufficient too:

Proposition 2.5 If Σt admits two factor decompositions:

Σt = Λ Dt Λ′ + Ω = L∆tL
′ + W

which are both conformable to (2.16) with:

Dt = diag
(
σ2

1t, · · · , σ2
Kt

)

∆t = diag
(
σ̃2

1t, · · · , σ̃2
Kt

)
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and for k = 1, · · ·K :

Pr
(
σ2

kt ≥ σ2
)

< 1 and Pr
(
σ̃2

kt ≥ σ2
)

< 1,

for any positive number σ, then:

Ω = W and L = Λ∆Q

for some permutation matrix Q and some diagonal matrix ∆ the diagonal coefficients of which

are all (+1) or (-1).

Then, we do get identification of factor loadings up to sign and permutation of the factors

insofar as we “minimize” the conditional variance of each factor fkt by considering that

σ2
kt ≥ σ2

k a.s. =⇒ σ2
k = 0. (2.17)

According to Engle (2002) general discussion of non-negative processes, condition (2.17) means

that there is a positive probability that the conditional factor variance is equal to zero, or arbi-

trarily close to zero.

Of course, as already mentioned, one can avoid identification condition (2.17) by either impos-

ing more structure on the residual covariance matrix Ω or by maintaining additional assumptions

about higher order moments. While the first route will not be considered in this paper, the sec-

ond one will be followed in the third part of section 3. We first discuss in subsection 2.2 below

the implications of condition (2.17) in terms of model specification for the conditional variance

processes of the K factors.

2.2 GARCH or SV Factors ?

For sake of notational simplicity, we only consider in this section the case of a one factor model.

But everything can easily be extended to the K factors case.

The GARCH factor model, as first introduced by Diebold and Nerlove (1989), specifies the

latent factor ft as a GARCH (1,1):




σ2
t = (1− γ) + αf2

t + (γ − α) σ2
t−1

0 < α ≤ γ < 1
(2.18)

Note that the intercept (1− γ) has been chosen to fulfill the restriction Eσ2
t = 1. However,

an obvious implication of the GARCH specification is that the identification condition (2.17) is
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not fulfilled. We have identically:

σ2
t ≥

1− γ

1− γ + α
= σ2 > 0 (2.19)

Therefore, a number of latent volatility factors f̃t are observationally equivalent to the GARCH

factor ft. For instance, a volatility factor f̃t associated to a conditional variance process σ̃2
t defined,

according to proposition 2.2, by:

σ̃2
t =

σ2
t − σ2

1− σ2
(2.20)

cannot be in general GARCH (1,1) since the lower bound of σ̃2
t , when equal to zero, cannot be

conformable to a condition like (2.18). In other words, GARCH (1,1) structures of volatility

factors cannot be fully identified from the only observation of returns volatility dynamics. The

only dynamic features of factors that can be identified in this context are the ones which are

invariant with respect to transformations like (2.20). This leads us to focus on the autoregressive

dynamics of the conditional variance process σ2
t obviously implied by the GARCH structure:4

E
[
σ2

t |στ , τ < t
]

= 1− γ + γσ2
t−1 (2.21)

Following Andersen (1994) and Meddahi and Renault (2004), we define more generally:

Definition 2.6 A scalar process {ft, t ∈ Z} is SR-SARV (1) (Square Root Stochastic Autoregres-

sive Volatility of order 1) with respect to a filtration Jt if:

E [ft+1 |Jt ] = 0 , E
[
f2

t+1 |Jt

]
= σ2

t

E
[
σ2

t+1 |Jt

]
= 1− γ + γσ2

t

0 < γ < 1.

Section 3 will confirm that the persistence parameter γ is identifiable from the return volatility

dynamics. Of course, this does not preclude to maintain a factor GARCH (1,1) assumption and

to try to separately identify the GARCH parameters α and (γ − α) within this framework. The

following result shows that this is actually possible, at least when maintaining some additional

assumptions about higher order moments:

4While we focus in this paper on GARCH (1,1) factors and associated AR(1) volatility dynamics, most of the

results could easily be extended to higher orders.
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Proposition 2.7 If yt+1 is described by two different one-factor GARCH (1,1) models:




yt+1 = λft+1 + ut+1 = λ̃f̃t+1 + ũt+1

Cov (ft+1, ut+1 |Jt ) = Cov
(
f̃t+1, ũt+1 |Jt

)
= 0

V ar (ft+1 |Jt ) = σ2
t , V ar

(
f̃t+1 |Jt

)
= σ̃2

t

V ar (ut+1 |Jt ) = Ω, V ar (ũt+1 |Jt ) = Ω̃

Eσ2
t = Eσ̃2

t = 1

where ft+1 and f̃t+1 are both GARCH (1,1) processes with constant conditional kurtosis,

then: σ2
t = σ̃2

t .

If in addition, the two conditional kurtosis coefficients coincide, then: f2
t+1 = f̃2

t+1.

Note that the assumption of constant conditional kurtosis is implied by the strong GARCH

property as defined by Drost and Nijman (1993), that is by the i.i.d. property of standardized

innovations ft+1/σt. When the conditional probability distribution of ft+1/σt is given, for in-

stance when it is supposed to be gaussian, the factor ft+1 is identified up to a sign. Since such

assumptions are generally maintained for any kind of parametric inference about GARCH or SV

type models, the identification issue about latent GARCH factors has been overlooked in the

literature. An alternative identifying assumption within the latent GARCH(1,1) framework is to

maintain the ARCH(1) specification, that is α = γ in (2.18) (see eg. Dellaportas, Giakoumatos

and Politis(1999) and Diebold and Nerlove (1989)). For given γ, this value of α is actually the

one which minimizes the lower bound of variance σ2 in (2.19).

Since the focus of interest of this paper is statistical identification and inference about joint

volatility dynamics of a vector of returns with as little as possible additional assumptions about

higher order moments, we focus on general latent SV factors rather than on latent GARCH factors.

Moreover, the convenient identification result of proposition 2.7 is not specific to GARCH factors.

We will actually be able to show in section 3 that the maintained assumption of fixed conditional

kurtosis is sufficient to hedge against the identification problem of section 2 in a general framework

of SR-SARV(1) factors with quadratic variance of the conditional variance.
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3 Model with constant risk premiums: identification and IV es-

timation

We consider in this section a vector yt+1 of n asset returns with constant conditional expectation

µ = E (yt+1|Jt). Then, the factor structure must be identified only from information about the

conditional covariance matrix and possibly higher order conditional moments. We first discuss a

statistical procedure of determination of the number K of factors. A byproduct of this procedure

is the identification of a subset of K asset returns the conditional heteroskedasticity of which does

involve the K factors.

Then, we are able, from the semiparametric model of the conditional variance matrix with K

SR-SARV(1) factors, to perform efficient IV estimation of the K coefficients of volatility persis-

tence, the range of the matrix Λ of factor loadings and the residual covariance matrix Ω up to
K(K+1)

2 degrees of freedom.

These degrees of freedom correspond to the possible transfer of constant variance from some

linear combinations of factors to the idiosyncratic terms. To get rid of them, we propose to add

higher order conditional moment restrictions that are tightly related to a conditional multivariate

kurtosis model for the vector of returns. Then, we are able to fully identify the matrices Λ and Ω

and to perform IV estimation of their coefficients.

3.1 Determination of the number K of factors

According to the general definitions of section 2, we consider that the conditional heteroskedas-

ticity of the vector yt+1 of asset returns is characterized by a K SV factor model if there exist K

positive stochastic processes σ2
kt, k = 1, · · · , K, such that:





E (yt+1 |Jt) = µ

E
(
σ2

kt+1 |Jt

)
= (1− γk) + γk σ2

kt, 0 < γk < 1

and

V ar (yt+1 |Jt ) = ΛDtΛ′ + Ω

with

Λ (n×K) matrix of rank K,

Ω (n× n) positive definite matrix,

and Dt = Diag
(
σ2

1t, · · · , σ2
Kt

)

(3.1)
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Statistical inference about model (3.1) must be based on some information set It available at

time t to the econometrician. Typically, It is a sub σ-algebra of Jt containing at least the past

and current observations of returns:

σ [yτ , τ ≤ t] ⊂ It ⊂ Jt.

In this section and in all the rest of the paper as well, the symbols Et, Vt, Covt respectively

denote conditional expectation, variance and covariance “given available information at time t”.

These notations do no longer make explicit the distinction between the theoretical information

set Jt and the econometrician information set It ⊂ Jt.

Actually, this distinction may be omitted insofar as the moment conditions considered for

inference are about conditional moments of future values of the process yt which is It - adapted.

From proposition 2.3, the number K of factors in model (3.1) is well identified. Its statis-

tical determination will be performed through a sequential testing procedure. The sequences of

hypotheses are defined for k = 0, 1, · · · , n− 1 by:

H0k: The number of factors is k and

Hk: The number of factors is larger or equal to k.

We want to test H0k against Hk+1 = Hk − H0k and we consider the following sequences of

tests:

(i) Test of H00, that is test of joint conditional homoskedasticity of the vector yt+1 of asset

returns. Of course, if H00 is accepted, there is no need to look for any factor.

(ii) Otherwise, H01 is tested against H2. If H01 is accepted, the procedure stops and we accept

the hypothesis: yt+1 is governed by a one-factor model. If H01 is rejected, we test H02 against

H3, and so on.

The first step is standard. It should be based on the n(n+1)
2 conditional moment restrictions

vech
[
Et

(
yt+1y

′
t+1 − C

)]
= 0

where C is an unknown positive symmetric matrix.

A simpler and more natural procedure would be to consider only the diagonal restrictions:

Et

(
y2

it+1 − cii

)
= 0, i = 1, · · · , n.

Note however that, by contrast with more common univariate tests of homoskedasticity, it is

important to check the orthogonality of
(
y2

it+1 − ωii

)
not only with lagged squared values y2

iτ , τ ≤ t
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of return i but also with lagged squared values y2
jτ , τ ≤ t, j 6= i, of other returns and possibly

lagged cross products yiτyjτ , τ ≤ t.

The test of H0k against Hk+1 for k ≥ 1 must be performed by taking into account that H0k−1

has been rejected in the previous step. In other words, we know that the number of factors is

larger than (k − 1) (hypothesis Hk) and we wonder whether it is exactly k (hypothesis H0k).

In this case, K = k and it is possible to select k rows of the matrix Λ of factor loadings such

that the corresponding submatrix Λ̄ of Λ is a square non singular matrix of size k. In terms of

decomposition of the vector of returns yt+1, this property can be characterized in the following

way :

Proposition 3.1 Under the hypothesis Hk that the number K of factors is greater or equal to k,

if ȳt+1 denotes k selected components of the vector yt+1 and ¯̄yt+1 denotes the (n − k) remaining

components, the following conditions are equivalent :

i) the matrix Λ̄ of factor loadings associated to ȳt+1 is a squared non singular matrix of size

k = K

ii) there exists a matrix B such that ¯̄yt+1 −Bȳt+1 is conditionally homoskedastic.

Moreover, when these conditions are fulfilled, B is necessarily the matrix ¯̄ΛΛ̄−1, where ¯̄Λ

denotes the matrix of factor loadings associated to the subvector ¯̄yt+1 of returns.

This suggests to test H0k against Hk+1 for k ≥ 1 through the overidentification test of the

conditional moment restrictions:

vech
[
Et

[
( ¯̄yt+1 −Bȳt+1) ( ¯̄yt+1 −Bȳt+1)

′ − C
]]

= 0 (3.2)

for unknown matrices B and C.

However, (3.2) does not encompass all the information provided by the factor model. To see

this, note that:

( ¯̄yt+1 −Bȳt+1) ( ¯̄yt+1 −Bȳt+1)
′ = (¯̄yt+1 −Bȳt+1) ¯̄y′t+1 − ( ¯̄yt+1 −Bȳt+1) ȳ′t+1B

′ (3.3)

and that under the null of k = K factors, both terms of this difference have a constant conditional

expectation. In other words, efficient inference about H0k must be based on the following extended

set of conditional moment restrictions:

vec
[
Et ( ¯̄yt+1 −Bȳt+1) y′t+1 −D

]
= 0 (3.4)
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for unknown matrices B and D.

Note however that from (3.3), the lower part ¯̄D of the matrix D can be seen as:

¯̄D = C + D̄B′

so that, for a given B, the matrix D specification only involves K(n − K) + (n−K)(n−K+1)
2 free

parameters corresponding to the specification of, first, the upper part D̄ of D and, second, the

symmetric matrix C of size (n−K).

To fully realize the important difference between (3.2) and (3.4) several remarks are in order.

First, by contrast with (3.2), (3.4) is linear with respect to the unknown parameters, which is of

course more convenient for computation and statistical inference. Second, nonlinearity of (3.2)

is even more detrimental than usual here since, following the terminology of Arellano, Hansen

and Sentana (1999), (3.2) is a case where identification is guaranted (by proposition 3.1) even

though there is a first-order lack of identification. To see this, note that, by (3.4), the Jacobian

matrix of (3.2) with respect to B is constant, and thus, the rank condition for joint identification

of B and C fails. As already shown by Sargan (1983), this may produce non-standard asymptotic

probability distributions for some parameter estimates. For testing for common features, Engle

and Kozicki (1993) compute an overidentification test statistic after concentrating with respect

to B, that is replacing C by C(B) = 1
T

∑T
t=1 ( ¯̄yt+1 −Bȳt+1) ( ¯̄yt+1 −Bȳt+1)

′.

The focus of interest of this section is a test of the factor structure (3.4), which is a submodel

of the common features model. We are actually able to show that the rank condition for GMM

inference about B and D is fulfilled in the case of (3.4) for a convenient choice of instrumental

variables:

Proposition 3.2 When conditions of proposition 3.1 are fulfilled, if zt is an It−adapted real

valued stochastic process such that:

Cov(zt, σ
2
kt) 6= 0 for k = 1, · · · ,K

and if Φ(B,D) denotes the vector:

Φ(B,D) = E





 1

zt


⊗ vec

[
Et ( ¯̄yt+1 −Bȳt+1) y′t+1 −D

]



then the jacobian matrix :
∂Φ(B,D)

∂ [(vec B)′, (vec D)′]
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is of full column rank.

There is however an additional issue for using overidentification tests of conditional moment

restrictions (3.4) in order to define a sequential testing procedure of hypotheses H0k, k ≥ 1. Since

the test of H00 is a standard test of multivariate conditional homoskedasticity, we only have to

define the test of H0k, k ≥ 1 when H0k−1 has been rejected in the previous step. Let us first stress

that, since we consider a sequence of hypotheses in an increasing order, there is no hope to control

the overall size of the test by an argument of independence of two consecutive test statistics under

the null. This issue is common when determining the order of a time series model, like order of

an ARMA or of a GARCH process. Moreover, as shown by proposition 3.1, the identification

condition needed for GMM inference about H0k takes crucially advantage of the fact that H0k−1

has been rejected in the previous step.

An additional difficulty here is that H0k is actually defined as a union of hypotheses H0k(ȳ),

each of them being characterized by standard conditional moment restrictions. Let us write :

H0k =
⋃

ȳ∈Sk

H0k(ȳ)

where Sk denotes the set of all subvector ȳt+1 of yt+1 of dimension k and H0k(ȳ) is defined by the

conditional moment restrictions (3.4):

vec Et

[
( ¯̄yt+1 −Bȳt+1) y′t+1 −D

]
= 0

For a given choice of a vector zt of H It -adapted instruments, such conditional moment restrictions

are usually tested through their unconditional consequence:

H̄0k(ȳ) : E
[
zt ⊗ V ec

[
( ¯̄yt+1 −Bȳt+1) y′t+1 −D

]]
= 0

Let us denote by ST (ȳ) the Hansen J−Test statistic to test H̄0k(ȳ). Since we consider that

H0k−1 is wrong, we maintain conditions of propositions 3.1 and 3.2 for K = k and then, we know

from Hansen (1982) that the test of H0k(ȳ) defined by:

Reject H0k(ȳ) ⇔ ST (ȳ) > X 2
1−α

[
Hn(n− k)− 2k(n− k)− (n− k)(n− k + 1)

2

]

is asymptotically of level α if X 2
1−α(n) denotes the (1− α) quantile of a X 2(n).

For a given choice of ȳ in Sk, this suggests to adapt the following rule to test for H0k:

Reject H0k ⇔ ST (ȳ) > X 2
1−α

[
Hn(n− k)− 2k(n− k)− (n− k)(n− k + 1)

2

]
(3.5)
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Unfortunately, such a testing procedure for H0k will intuitively suffer from severe size distor-

tions (with respect to the nominal size α) since H0k will be rejected on the basis that we only

think that a particular hypothesis H0k(ȳ) is wrong. This is actually far to imply that H0k itself

is wrong. However, nobody would like to test H0k by rejecting it only when inequality (3.5) is

fulfilled for any choice of ȳ in Sk. This would produce a test for H0k much too conservative since

the probability of the intersection of two events like (3.5), for two different choices of ȳ, may be

as small as the square of α.

Therefore, our proposal will be to test H0k through (3.5) 5 , but for a convenient choice of ȳ.

The trick amounts to pre-select, among the possible ȳ ∈ Sk, the one which is the “most likely”

to capture conditional heteroskedasticity of the n returns, that is to fulfill H0k(ȳ). Then, if (3.5)

is nevertheless fulfilled by such an ȳ, it makes sense to consider that other choices of ȳ would a

fortiori violate H0k(ȳ) and then that H0k should be rejected. In other words, rejection on H0k

through this strategy should not lead to an effective size much larger than α: the probability of

(3.5) under H0k is not much larger than α, that is the probability of (3.5) under H0k(ȳ), since we

do think that H0k cannot be fulfilled without H0k(ȳ) itself being fulfilled.

The preselection of a convenient ȳ can be based on the fact that, when testing H0k,we had

previously rejected H0k−1, on the basis that some preselected ˜̄y ∈ Sk−1 did not fulfill H0k−1( ˜̄y)

defined through a decomposition
(

˜̄y′, ˜̄̄y′
)′

of returns and a corresponding matrix B̃. It will then

be natural, after selection of ˜̄y, to build ȳ by adding to ˜̄y a well-chosen return ˜̄̄yi0 , component of

the vector ˜̄̄y of (n− k + 1) remaining returns, and to choose ˜̄̄yi0 , which is “the most responsible”

for the rejection of H0k−1.

In other words, after concluding that H00 is rejected, the first one-dimensional ȳ considered will

be the return yi0 the conditional heteroskedasticity of which is maximum, in terms of conditional

variance coefficient of variation. Thus, we choose i0 as a solution of:

max
1≤i≤n

V ar [V art (yit+1)]
V ar (yit+1)

=
λ2

i V arσ2
t

λ2
i + ωii

Similarly when H0k−1 has been rejected, one will choose to add to the previous set ˜̄y of (k − 1)

returns, a kth return the index i0 of which is choosen as a solution of:

max
i

V ar
[
V art

(
˜̄̄yit+1 − B̃′

i
˜̄yt+1

)]

V ar
(

˜̄̄yit+1 − B̃′
i
˜̄yt+1

)

5In finite samples the number of degrees of freedom in (3.5) may be too large for reliable size and power properties.

It may then be relevant to focus only on a subset of moment conditions (3.4).
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yi0t+1 is the return the conditional heteroskedacticity of which is the least captured by the mim-

icking portfolios B̃ ˜̄yt+1.

As already announced, this sequential procedure is not fully closed in terms of controlling

statistical risk. But, as usual with model choice strategies, it must be seen as only a preliminary

exploratory analysis to perform before the comprehensive statistical strategy of subsections 3.2

and 3.3.

3.2 Estimation of spanning factor loadings

The focus of interest of this subsection is efficient IV estimation of the K factors SV-model (3.1).

In other words, the unknown parameters of interest are:

- First, the coefficients of the matrix Λ of factor loadings and the residual covariance matrix

Ω.

- Second, the K persistence parameters γk, k = 1 · · ·K of the volatility factors.

- Third, the coefficients of the conditional mean vector µ = Etyt+1.

Note that since we do not give in this subsection any statistical content to the identification

assumptions of propositions 2.4 and 2.5, only the range of Λ is identified (see proposition 2.3).

Equivalently, since the unconditional covariance matrix Σ = ΛΛ′+Ω is of course identifiable, some

lack of identification in the residual covariance matrix Ω is implied by the lack of identification of

Λ, as exhibited in proposition 2.2. More precisely:

(i) Λ is identified up to a right multiplication by an arbitrary non singular matrix M of size

K: Λ and ΛM are observationally equivalent.

(ii) Ω is identified up to an arbitrary symmetric positive definite matrix M of size K: Ω =

Σ− ΛΛ′ and Ω = Σ− ΛAΛ′ (see A = MM ′) are observationally equivalent.

Therefore, we are able to identify in particular the position 6 of K rows of Λ which defines a

nonsingular matrix Λ̄.

The determination of such a position is actually a byproduct of the testing procedure defined

in subsection 3.1 through the set of conditional moment restrictions:

Et

[
( ¯̄yt−1 −Bȳt+1) y′t+1 −D

]
= 0

By assuming without loss of generality that ȳt+1 corresponds to the first K rows of yt+1, a
6Such a position is invariant by right multiplication of Λ by an arbitrary non singular matrix M of size K.
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natural identifiable parameterization of Λ is then:

Λ =


 IdK

B


 (3.6)

In other words, we choose M = Λ̄−1.

This choice also identifies Ω11 = Σ11− IdK , and then fixes the required K(K+1)
2 coefficients to

identify Ω. Ω12 and Ω22 are then respectively identified from the unconditional moments:

Cov [ ¯̄yt+1 −Bȳt+1, ȳt+1] = Ω21 −BΩ11

and

Cov [ ¯̄yt+1 −Bȳt+1, ¯̄yt+1] = Ω22 −BΩ12.

We are so able to state the set of conditional moment restrictions which allows efficient es-

timation of Λ,Ω, µ, γk, k = 1, · · ·K in the model (3.1) with the normalization rule (3.6). If we

denote Ω1. = [Ω11 Ω12] and Ω2. = [Ω21 Ω22] this set of conditional moment restrictions is the

following one:

Proposition 3.3 In the K SV factor model with factor loadings: Λ = [IdK B′]′, and idiosyn-

cratic covariance matrix Ω = [Ω′1. Ω′2.]
′ the parameters µ,Λ,Ω and γk, k = 1 · · ·K are charac-

terized by:

Et [yt+1 − µ] = 0 (3.7)

vec Et

[
( ¯̄yt+1 −Bȳt+1) y′t+1

]
= vec

[
( ¯̄µ−Bµ̄) µ′ + Ω2. −BΩ1.

]
(3.8)

vechEt−K

[
K∏

k=1

(1− γkL)
(
yt+1y

′
t+1 − ΛΛ′ − Ω− µµ′

)
]

= 0 (3.9)

To understand the role of proposition 3.3 within the general issue of inference on SV-factors

models, two remarks are in order.

First, efficient IV estimation through conditional moment restrictions (3.7), (3.8) and (3.9) is

supposed to be performed in a second stage, after the testing strategy of subsection 3.1 has been

applied. In particular, the number K of factors and the selection ȳt+1 of K mimicking portfolios

(see Λ̄ = IdK) are considered as already known. Note that a first stage estimation of the matrix

B of conditional beta coefficients of other returns ¯̄yt+1with respect to the K factors should also

be a byproduct of the first stage testing strategy. However, the joint use of conditional moment
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restrictions (3.7), (3.8) and (3.9) should provide more efficient estimators of B and the other

parameters of interest as well. Second, multi-period conditional moment restrictions as (3.9) have

already been put forward by Meddahi and Renault (2004) for estimation of SR-SARV models.

The issue of optimal instruments for such moment conditions is addressed by Hansen, Heaton and

Ogaki (1988) and Hansen and Singleton (1996).To see what is at play in these moment restrictions,

it is worth noting that, for all pair (yit+1, yjt+1) of returns, we can write with obvious notations:

yit+1yjt+1 =
K∑

k=1

λikλjkf
2
kt+1 + ωij + µiµj + v

(i,j)
t+1 with Et

[
v

(i,j)
t+1

]
= 0.

Therefore:

(1− γ1L) (yit+1yjt+1 − ωij − µiµj) =
K∑

k=1

λikλjk

[(
f2

kt+1 − 1
)− γ1

(
f2

kt − 1
)]

+ (1− γ1)
K∑

k=1

λikλjk + v
(i,j)
t+1 − γ1v

(i,j)
t .

But, by definition:

Et−1

[(
f2
1t+1 − 1

)− γ1

(
f2
1t − 1

)]
= Et−1

[
σ2

1t − γ1σ
2
1t−1 − (1− γ1)

]
= 0. (3.10)

In other words, the first factor volatility dynamics are annihilated by filtering by the lag

polynomial 1− γ1L, up to a moving average of order one effect (we consider only expectation at

time (t−1) of f2
1t+1−γ1f

2
1t). By iterating this argument with consecutive filtering by (1−γkL), γk =

1 · · ·K, we clearly get conditional moment restrictions (3.9). Note moreover that for efficient

estimation, the cross restrictions about yit+1yjt+1, i 6= j, are intuitively as informative as the

diagonal restrictions about squared returns y2
it+1.

3.3 Identification through higher order moments

To introduce the main idea, let us first consider a one-factor model:

yt+1 = µ + λft+1 + ut+1.

For identification and inference, we only used so far the conditional moment restrictions pro-

duced by the first two conditional moments:




Et(yt+1) = µ

Et(yt+1y
′
t+1) = λλ′σ2

t + Ω + µµ′.
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Although the process σ2
t is not observed, the maintained assumption of AR(1) dynamics for

this process has allowed us to identify the parameter of interest up to a scale factor in λ (and a

corresponding degree of freedom in Ω).

Instead of trying to control this degree of freedom by an additional assumption about the

support of σ2
t as in section 2, we will prefer to generalize to SV-factor processes the approach

of proposition 2.7: when the standardized factor ft+1/σt is assumed to be i.i.d., or at least with

constant conditional kurtosis, this may preclude the transfer of variance between common factors

and residual variance and thus may allow identification. Following the general approach of this

section, identification and estimation issues will be addressed simultaneously through conditional

moment restrictions.

For this purpose, a well-suited assumption is akin to impose a VARMA (1,1) structure for

the pair (f2
t , f4

t ). While volatility persistence was estimated in previous subsection thanks to

multilag conditional moment restrictions (3.9) corresponding to an ARMA (1,1) structure for f2
t

(see (3.10)), we add now the second VARMA (1,1) equation for f4
t :

Assumption 3.4 There exists a, b, c such that

Et−1

[
f4

t+1 − a− bf2
t − cf4

t

]
= 0 (3.11)

Note that, jointly with (3.10), (3.11) precisely means that


 f2

t+1

f4
t+1


−


 γ 0

b c





 f2

t

f4
t




is uncorrelated with any function of It−1, which implies a fortiori vectorial MA(1) dynamics.

In order to see to what extent this subsection 3.3 generalizes the result of proposition 2.7, it

is worth revisiting assumption 3.4 in the case of a factor with constant conditional kurtosis:

Etf
4
t+1 = κσ4

t (3.12)

Then:

Et−1f
4
t+1 = κEt−1σ

4
t

= κ
[
Vt−1σ

2
t +

(
Et−1σ

2
t

)2
]

= κ
[
Vt−1σ

2
t + (1− γ)2 + 2γ (1− γ) σ2

t−1 + γ2σ4
t−1

]
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which shows that:

Et−1f
4
t+1 − bEt−1f

2
t − cEt−1f

4
t =

(
γ2 − c

)
κσ4

t−1 + [2γ (1− γ)κ− b] σ2
t−1

+κ (1− γ)2 + κVt−1σ
2
t .

By identification with (3.11) we show that:

Proposition 3.5 In the case of constant conditional factor kurtosis:

Etf
4
t+1 = κσ4

t

assumption 3.4 is equivalent to the property:

Vt−1(σ2
t ) is a quadratic function of σ2

t−1.

In this case,

Vt−1

(
σ2

t

)
=

a

κ
− (1− γ)2 +

[
b

κ
− 2γ (1− γ)

]
σ2

t−1 +
(
c− γ2

)
σ4

t−1

Proposition 3.5 shows that, when a, b, c are free parameters, Vt−1(σ2
t ) is a general quadratic

function of σ2
t−1. Note however that the normalization condition Ef2

t = 1 implies, by Cauchy-

Schwartz inequality: Ef4
t > 1, that is, with non negative a and b:

c < 1 and a + b + c > 1.

Proposition 2.7 was dealing with the case of a GARCH (1,1) factor with constant conditional

kurtosis:

σ2
t = ω + αf2

t + (γ − α)σ2
t−1.

Then:

Vt−1σ
2
t = α2Vt−1f

2
t = α2(κ− 1)σ4

t−1

The general quadratic specification of Vt−1σ
2
t , in the context of SR-SARV(1) processes, is

much more general than the GARCH (1,1) case since it nests in particular:

- First, affine processes of conditional variance as considered by Heston (1993), Duffie, Pan

and Singleton (2000) and Meddahi and Renault (2004). Then Vt−1σ
2
t is affine with respect to

σ2
t−1.

- Second, Ornstein-Uhlenbeck like Levy-processes of conditional variance as introduced by

Barndorff-Nielsen and Shephard (2001). Then Vt−1σ
2
t is time invariant.
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Assumption 3.4 will ensure full identification of the factor loadings and of the residual covari-

ance matrix of SV factor models (with general SR-SARV(1) factors) by allowing to consider joint

dynamics of conditional variance and conditional kurtosis of asset returns. For sake of notational

simplicity, we will assume in all the rest of this subsection that Etyt+1 = µ = 0. At the cost of

tedious notation, a free parameter µ would not be difficult to introduce in all the formulas. We

also maintain, in the whole following, assumption 3.6 below:

Assumption 3.6 ft+1, f
2
t+1, f

3
t+1 are conditionally uncorrelated with any polynomial function of

the uit+1 ’s of degree smaller than four.

Let us then consider the conditional kurtosis of a particular asset return i:

Ety
4
it+1 = Et

[
(λift+1 + uit+1)

4
]

(3.13)

= λ4
i Etf

4
t+1 + 6λ2

i ωiiEtf
2
t+1 + Etu

4
it+1

It is then clear that, if we get rid of the residual dynamics, the VARMA (1,1) structure of
(
f2

t+1, f
4
t+1

)
will allow us to write conditional moment restrictions and thus to be able to identify

separately λ2
i and ωii (from λ4

i and λ2
i ωii).

Since we consider in the whole paper that error terms do not feature any conditional het-

eroskedasticity, it is fairly natural to discard any residual dynamics, even at higher orders:

Et

[
u4

it+1

]
= κiiω

2
ii (3.14)

where κii denotes the conditional kurtosis coefficient of the error term uit+1.

Then, by writing (3.13) at two consecutive dates and using the law of iterated expectations,

we get:

Et−1y
4
it+1 = λ4

i Et−1f
4
t+1 + 6λ2

i ωiiEt−1f
2
t+1 + κiiω

2
ii

and

Et−1y
4
it = λ4

i Et−1f
4
t + 6λ2

i ωiiEt−1f
2
t + κiiω

2
ii

By substracting c times the second equation to the first one and using assumption 3.4, we get:

Et−1

(
y4

it+1 − cy4
it

)
= λ4

i Et−1

(
a + bf2

t

)
+ 6λ2

i ωiiEt−1

(
f2

t+1 − cf2
t

)
+ κiiω

2
ii(1− c)

= aλ4
i + κiiω

2
ii(1− c) +

(
bλ2

i − 6cωii

) (
Et−1y

2
it − ωii

)

+6ωii

(
Et−1y

2
it+1 − ωii

)
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since Et−1

(
λ2

i f
2
t

)
= Et−1y

2
it − ωii.

Therefore, we get the following conditional moment restrictions in terms of observed returns

of asset i:

Et−1

[
(1− cL)

(
y4

it+1 − 6ωiiy
2
it+1

)− bλ2
i y

2
it

]
= aλ4

i + κiiω
2
ii(1− c)− bλ2

i ωii − 6ω2
ii(1− c) (3.15)

To assess the marginal informational content of (3.15) with respect to the SR-SARV condition

(3.9), it is worthwhile to rewrite (3.9) as:

Et−1

[
y2

it+1 − γy2
it − (1− γ)

(
ωii + λ2

i

)]
= 0 (3.16)

Typically, (3.16) corresponds to a diagonal coefficient of (3.9) which does not allow to disen-

tangle the respective roles of ωii and λ2
i within the unconditional variance (ωii + λ2

i ) of yit+1. By

contrast, assumption 3.4 rewritten as (3.15) ensures identification of:

(i) c as coefficient of y4
it

(ii) ωii from the coefficient of y2
it+1

(iii) λ2
i from the knowledge of ωii and the unconditional variance of yit+1

(iv) b from the coefficient of y2
it and the knowledge of c, ωii and λ2

i .

However, a and κii are not identified separately from (3.15). In the same way as second order

dynamics of the vector of returns did not allow us to disentangle the respective contributions

of factor and residual volatility inside the return variance, the respective contributions of the

idiosyncratic kurtosis κii and of the factor kurtosis Ef4
t = a+b

1−c (through the free parameter a)

cannot be identified from fourth order dynamics of return i.

To summarize, we have shown:

Proposition 3.7 Let us consider the one SV factor model (3.1) (with K = 1), with Etyt+1 = 0.

If, for some asset i, the idiosyncratic conditional kurtosis is constant (Et

[
u4

it+1

]
= κiiω

2
ii), the

unknown parameters λ, Ω, γ, b, c, and aλ4
i + κiiω

2
ii(1 − c) are identified by the following set of

conditional moment restrictions :

Et (yt+1) = 0

vecEt

[(
¯̄yt+1 − ¯̄λλ̄−1ȳt+1

)
y′t+1

]
= vec

[
Ω2. − ¯̄λλ̄−1Ω1.

]

vechEt−1

[
(1− γL)

(
yt+1y

′
t+1 − λλ′ − Ω

)]
= 0

Et−1

[
(1− cL)

(
y4

it+1 − 6ωiiy
2
it+1

)− bλ2
i y

2
it

]
= aλ4

i + κiiω
2
ii(1− c)− bλ2

i ωii − 6ω2
ii(1− c)
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Of course, for efficient estimation, it may be useful to even maintain an assumption of fixed

conditional idiosyncratic multivariate kurtosis, which, jointly with assumption 3.4 and 3.6 is

tantamount to an assumption about the conditional multivariate kurtosis of returns :

Proposition 3.8 Let us consider the one-SV factor model (3.1) (with K = 1) with the additional

assumptions 3.4, 3.6 and:

Etyt+1 = 0

Et

[
ut+1u

′
t+1 ⊗ ut+1u

′
t+1

]
= Θ,

then, if D+
n denotes the Moore-Penrose inverse of the duplication matrix of size n 7, the

multivariate conditional kurtosis of yt+1 is given by:

Et

[(
vechyt+1y

′
t+1

) (
vechyt+1y

′
t+1

)′]

= D+
n


 λλ′ ⊗ λλ′Et

(
f4

t+1

)
+ Θ+

σ2
t

[
4λλ′ ⊗ Ω + (vecλλ′) (vecΩ)′ + (vecΩ) (vecλλ′)′

]


D+′

n

Proposition 3.8 allows to write matricial observable moment restrictions about yt+1y
′
t+1 ⊗

yt+1y
′
t+1 in the same way as, while focusing only on diagonal coefficients, we deduced (3.15) from

the conditional kurtosis of return i. Of course, these conditional moment restrictions must be

considered jointly with those of proposition 3.3. However, the normalization condition Λ̄ = IdK ,

maintained in proposition 3.3 is now irrelevant since the higher order moment restrictions allow

us to fully identify the matrix Λ of factor loadings and not only the matrix B = ¯̄ΛΛ̄−1.

To summarize, in the one factor case, the unknown parameters λ,Ω, γ, b and c are identified,

whereas a and Θ cannot be separately identified because only aλλ′ ⊗ λλ′ + (1− c)Θ is identified.

We then obtain the following proposition :

Proposition 3.9 Under the assumptions of Proposition 3.8, efficient instrumental variables es-

timation of λ, Ω, γ, b, c, and aλλ′ ⊗ λλ′ + (1 − c)Θ can be obtained through the following set of

conditional moment restrictions :

Et (yt+1) = 0

vecEt

[(
¯̄yt+1 − ¯̄λλ̄−1ȳt+1

)
y′t+1

]
= vec

[
Ω2. − ¯̄λλ̄−1Ω1.

]

vechEt−1

[
(1− γL) yt+1y

′
t+1 − λλ′ − Ω

]
= 0

7The duplication matrix of size n is the (n2, n(n+1)
2

) matrix Dn such that, for any symmetric matrix A of size

n, vecA = DnvechA. Then, the Moore-Penrose inverse D+
n of Dn satisfies: D+

n vecA = vechA
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D+
n Et−1 [(1− cL) φ (yt+1, Ω)− bλλ′yty

′
t]D

+′
n

= D+
n


 aλλ′ ⊗ λλ′ − bλλ′ ⊗ Ω + (1− c)Θ−

4(1− c)Ω⊗ Ω− 2(1− c)(vecΩ)(vecΩ)′


D+′

n

where:

φ(yt,Ω) = (V ec yty
′
t)(V ec yty

′
t)
′ − 4Ω⊗ yty

′
t − (V ec Ω)(V ec yty

′
t)
′ − (V ec yty

′
t)(V ec Ω)′

In practice, one would not like to make inference about the huge number of unknown pa-

rameters involved in the matrix Θ through all the conditional moment restrictions associated to

φ(yt+1,Ω). In other words, only some components, for instance corresponding to diagonal terms

as in proposition 3.7, may be considered. Moreover, note that, in the one factor case, the second

order moment restrictions of proposition 3.9 can also be written:

Et

[(
λ̄ ¯̄yt+1 − ¯̄λȳt+1

)
y′t+1

]
= vec

[
λ̄Ω2. − ¯̄λΩ1.

]

These restrictions were precisely the ones tested in section 3.1 to determine the number of

factors, in the line of common features restrictions à la Engle and Kozicki (1993). However, we

keep the formulas in terms of b = ¯̄λλ̄−1, since they shed more light on the multifactor extensions

with B = ¯̄ΛΛ̄−1. All the results of this subsection can actually be extended to a SV multifactor

model at the cost of tedious notations. For sake of illustration, we provide in the appendix the

generalization of propositions 3.7 and 3.9 to the two factors case.

4 Model with linear risk premiums

Following King, Sentana and Wadhwani (1994) (KSW hereafter), we consider specification of

time-varying risk premiums that can be understood as a dynamic version of the Arbitrage Pricing

Theory. As in KSW, the time variation in the conditional variances of factors allows to identify

the factor risk premiums. Even more importantly, when the prices of factor risks are non-zero,

identification of corresponding risk premiums precludes any transfer of a part of factor variance

into the residual variance, as put forward in section 2. Therefore identification and IV estimation

of all the parameters of interest are made possible from expectation and variance of returns

without resorting to higher order moments. Moreover, the statistical sequential procedure that

we have settled in section 3.1 to determine the number of factors is easily generalized to the case

of APT-like time varying risk premium.
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Finally, we show that, if we want to relax the APT specification, one can also identify and es-

timate a fully unconstrained set of idiosyncratic risk premiums. Following KSW, these estimators

can be used to assess the APT specification.

4.1 The general framework

Introducing risk premiums is akin to revisit model (3.1) in a more general form:

yt+1 = Et (yt+1) + Λft+1 + ut+1 (4.1)

which allows to consider a vector of time varying expected returns Et (yt+1). In this section,

we always consider returns mesured in excess of the riskless asset and thus, expected returns

Et (yit+1) are unambiguously interpreted as risk premiums.

Following the APT literature or more generally the linear factor pricing principle, we assume

that risk premiums are linear combinations of return betas:

Et (yt+1) = ΛVt (ft+1) τt (4.2)

where τt is interpreted as the vector of prices of risk for each of the factors. Of course, this

economic interpretation implies that τt belongs to the agent’s information set at time t. (4.2) is

actually the risk premium specification choosen by KSW. Notice that, while KSW maintain the

assumption of an exact conditional K-factors structure, which means a diagonal residual matrix,

this is no longer the case in our model. Therefore, there may be less theoretical underpinnings

for the APT-like assumption of zero risk premium for idiosyncratic risks. Some arguments will be

made explicit in subsection 4.3 below to warrant specification (4.2) as well as to define a statistical

testing procedure of it.

Before studying IV estimation of the parameters of interest that takes into account the extra

risk premium terms and corresponding additional unknown parameters, it is important to address

the model choice issue, that is the determination of the number K of factors. We basically want

to extend the approach proposed in section 3.1 to the more general factor model (4.1)/(4.2).

The crucial trick of section 3.1 was a sequential testing procedure based on conditional moment

restrictions:

Et

[
( ¯̄yt+1 −Bȳt+1) y′t+1 −D

]
= 0 (4.3)

for unknown matrices B and D. We considered that, when the overidentification test fails to
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reject (4.3) for a given K-dimensional subvector ȳt+1 of yt+1, it means that a K-factor model:

 ȳt+1

¯̄yt+1


 =


 Λ̄

¯̄Λ


 ft+1 + ut+1 (4.4)

is valid with B = ¯̄ΛΛ̄−1.

Let us now consider the generalization of (4.4) according to the risk premium specification

(4.2): 
 ȳt+1

¯̄yt+1


 =


 Λ̄

¯̄Λ


Vt (ft+1) τt +


 Λ̄

¯̄Λ


 ft+1 +


 ūt+1

¯̄ut+1


 (4.5)

Then, if B = ¯̄ΛΛ̄−1, ¯̄yt+1 − Bȳt+1 = ¯̄ut+1 − Būt+1 still has constant conditional covariances

with each of the returns yit+1. Therefore proposition 3.1 remains valid in the more general factor

model (4.1) with risk premiums and inference about H0k can still be based on the conditional

moment restrictions:

Et

[
( ¯̄yt+1 −Bȳt+1) y′t+1 −D

]
= 0

for unknown matrices B and D. In other words, the identification strategy of the number of

factors will be exactly the same as in section 3.1.

4.2 Identification and IV estimation with APT-like risk premiums

For sake of notational simplicity, let us consider a one-factor version of the model (4.1)/(4.2):

yt+1 = λσ2
t τt + λft+1 + ut+1.

As usual, the respective roles of σ2
t and τt within the risk premium cannot be disentangled

without specifying more precisely the dynamics of the risk premium process τt. Following KSW,

we will maintain here the simplifying assumption that the price of risk is positive and constant

over time:

τt = τ > 0 for all t.

As stressed by KSW, this does not though imply that the overall price of risk for each asset, that

is the Sharpe ratio Etyit+1

(Vtyit+1)
1/2 , is constant.

Whatever, we focus here on the following specification:

yt+1 = λτσ2
t + λft+1 + ut+1 (4.6)
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Of course, the occurence of σ2
t in Et (yt+1) implies that Et

(
yt+1y

′
t+1

)
will involve σ4

t . Therefore,

observable moment restrictions about returns volatility cannot be obtained without specifying a

forecasting model for σ4
t+1. We will maintain here the following assumption :

Assumption 4.1 There exists a∗, b∗, c∗ such that

Et

(
σ4

t+1

)
= a∗ + b∗σ2

t + c∗σ4
t

with 0 < c∗ < 1 and a∗ + b∗ + c∗ > 1.

One way to get some intuition on this assumption is to compute:

Vt

(
σ2

t+1

)
= Et

(
σ4

t+1

)− [
(1− γ) + γσ2

t

]2

=
[
a∗ − (1− γ)2

]
+ [b∗ − 2γ (1− γ)]σ2

t +
[
c∗ − γ2

]
σ4

t (4.7)

By comparison of (4.7) with proposition 3.5, one can realize that assumptions 3.4 and 4.1 are

actually equivalent when:

a∗ =
a

κ
, b∗ =

b

κ
, and c∗ = c. (4.8)

In this respect, assumption 4.1 is tightly related to previous assumption 3.4 and could be jus-

tified by the same examples of strong GARCH or affine process of conditional variance. However,

by contrast with section 3.3 we are looking here for conditional moment restrictions in the spirit

of proposition 3.3, that is involving only conditional expectations and variances of returns. This

has two important consequences in terms of identification.

First, there is no hope to take advantage of an assumption of fixed conditional kurtosis κ

for the factor process. This assumption is not maintained here. Second, one cannot identify

the unconditional variance of σ2
t , or equivalently, the unconditional variance of the risk premium

vector. Note that, according to assumption 4.1:

V arσ2
t =

a∗ + b∗

1− c∗
− 1 (4.9)

Therefore, the necessary degree of freedom in V arσ2
t can be taken into account by considering a

free parameter a∗ for given b∗ and c∗. Up to this degree of freedom, we will get IV estimation

and identification of all the parameters of interest as stated in proposition 4.2:

Proposition 4.2 In the one SV factor model with risk premium (4.1)/(4.2):

yt+1 = λσ2
t τ + λft+1 + ut+1
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for any given value of a∗, the parameters b∗, c∗, λ, τ, γ and Ω(a∗) are characterized by:

Et

[
yt+1λ

′ − λy′t+1

]
= 0 (4.10)

Et

[(
λ̄ ¯̄yt+1 − ¯̄λȳt+1

)
y′t+1

]
= λ̄Ω2. − ¯̄λΩ1. (4.11)

Et−1 [(1− γL) yt+1 − λτ (1− γ)] = 0 (4.12)

V ecEt−1


 yt+1y

′
t+1 − c∗yty

′
t − yt+1

λ′
τ −

ytλ
′ ( c∗

τ − τb∗
)− (1− c∗)Ω (a∗)− λλ′τ2a∗


 = 0 (4.13)

The notation Ω(a∗) means that only the identification of the residual covariance matrix Ω

is contaminated by the non-identification of a∗, which is actually akin to non-identification of

V arσ2
t . Indeed, Ω = Ω(a∗) is identified only through (1 − c∗)Ω(a∗) + λλ′τ2a∗, when the free

parameter a∗ is fixed.

On the contrary, we claim that parameters b∗, c∗, λ, τ and γ are fully identified from the

conditional moment restrictions (4.10), (4.11), (4.12) and (4.13). The intuition behind this is

the following. The APT-like risk premium specification first adds a set of common features

restrictions:

Et [λiyjt+1 − λjyit+1] = 0 (4.14)

to the common features restrictions already provided by the one factor model of conditional

covariances:

Et

[
(λiyjt+1 − λjyit+1) y′t+1

]
= λiΩj. − λjΩi. (4.15)

Conditions (4.14) were actually already ensured in section 3 through the maintained assump-

tion Et (yt+1) = 0. As in section 3, the common features set of restrictions, even augmented by

(4.14), provides identification of the factor loadings λi’s only up to a scale factor. According to

proposition 2.2, this scale factor
(
1− σ2

)
may be associated to a variance transfer:





σ2
t replaced by σ2

t−σ2

1−σ2

Ω replaced by Ω + σ2λλ′

Further, these common features restrictions do not bring any information about the free

parameter a∗ in Ω(a∗). The added value, in terms of identification, of proposition 4.2 is to allow

full identification of the factor loadings through additional moment restrictions (4.13) resulting

from the risk premium model:

Et (yt+1) = λτσ2
t
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Under the maintained assumption of a non-zero price of risk τ , this model brings additional

identifying information about the latent process σ2
t which precludes the aforementionned transfer

of variance. To see this, it is worth noticing that the (i, j) coefficient of (4.13) provides, through

the coefficients of yjt+1 and yit, separate identification of:

λj

τ
and

λi

τ

(
c∗ − b∗τ2 )

Moreover, identification of λj

τ leads to a separate identification of λj and τ > 0, thanks to the

additional information (implied by (4.12)):

Eyjt+1 = λjτ

Then b∗ is identified from λi
τ

(
c∗ − b∗τ2 ) since c∗ is identified as the coefficient of yty

′
t. The

volatility persistence parameter γ is identified from (4.12).

4.3 Testing for the zero-price of idiosyncratic risk

Following KSW, we can test the APT-like specification of risk premiums by allowing the idiosyn-

cratic volatility ωii of each asset i to affect the corresponding risk premium through an additive

term µi:

yt+1 = µ + λσ2
t τ + λft+1 + ut+1 (4.16)

Note that, since we do not assume that the idiosyncratic covariance matrix Ω is diagonal, µi

may also involve risk premium terms related to the covariation with idiosyncratic risks of other

assets j 6= i. This is only an issue for interpretation and does not play any role in the following

testing procedure.

The crucial point is that the µi’s are also identified, jointly with the other parameters of

interest, from conditional moments restrictions like (4.12) and (4.13). To see this, let us just

rewrite (4.12) and (4.13) with yt+1 replaced by (yt+1 − µ). We then get conditional moment

restrictions consistent with the extended model (4.16):

Et−1 [(1− γL) (yt+1 − µ)− λτ (1− γ)] = 0 (4.17)

and

Et−1


 yt+1y

′
t+1 − c∗yty

′
t − (1− c∗L)

(
µy′t+1 + yt+1µ

′ + yt+1
λ′
τ

)

−τb∗ytλ
′ − (1− c∗)

(
Ω(a∗)− µµ′ − µλ′

τ

)
− µλ′τb∗ − λλ′τ2a∗


 = 0 (4.18)
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Then, for i 6= j, the (i, j) coefficient of (4.18) provides, through the coefficients of yit+1, yjt+1 and

yit, separate identification of :

µj +
λj

τ
, µi and c∗

(
µj +

λi

τ

)
− b∗τλj

Then, we get identification of µ and λ
τ while separate identification of λi and τ is obtained from

the additional information (implied by (4.17)):

E (yjt+1 − µj) = λjτ

Then, b∗ is identified from c∗
(
µj + λj

τ

)
−b∗τλj since c∗ is identified as the coefficient of yty

′
t. The

volatility persistence parameter γ is identified from (4.17).

To summarize, we still get IV estimation and identification of all the parameters of interest, up

to the free parameter a∗. It is then possible to test the APT-like specification of risk premiums,

either equation by equation (testing the null H0i : µi = 0 for any given i) or jointly (testing the

null H0 : µ = 0).

5 Conclusion

The main contribution of this paper is to characterize to what extent SV factor structures are

identified by conditional moment restrictions. Insofar as the announced goal of such structures

is to afford a parsimonious representation of joint volatility dynamics, fully parametric models of

conditional probability distributions should not be needed for their identification. We actually

show that, when factor volatilities also show up in conditional means through well specified risk

premium terms, identification of the SV factor structure is ensured from the first two conditional

moments. On the contrary, without such time-varying risk premiums, higher order moments are

needed for full identification of the SV factor structure. We focus here on conditional kurtosis

under a maintained assumption of zero conditional skewness and no leverage effect. The way to

accomodate in our framework any kind of multivariate asymetry effect is discussed in a companion

paper (Dovonon, Doz and Renault (2004)).

Of course, identifying conditional moment restrictions naturally paves the way for GMM

estimation and inference through a convenient choice of instruments. Practical implementation

of such GMM interence open several kinds of issues. First, as it would also be the case with

likelihood inference, a preliminary step of determination of the number of factors is needed. We

have shown here how the Engle and Kozicki (1993) test procedure may be completed to fully
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take into account the information content of the factor structure. Second, the empirical goodness

of fit of competing SV factor models is still an open question. While the empirical performance

of similar SV structures has been documented in maximum likelihood settings (see Fiorentini,

Sentana and Shephard (2003) and references therein), the semi-parametric structure considered

in this paper may improve the statistical fit. Finally, depending upon the category of financial

asset returns considered, additional asymetry effects along the line of Dovonon, Doz and Renault

(2004) could be statistically and economically significant. An extensive horse race between the

various possible SV factor specifications is still work in progress.
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Appendix

Proof of Proposition 2.1:

We have 1 = Eσ2
kt ≥ σ2

k > 0. Let αk ≤σ2
k, 0 < αk < 1.

We denote by D a K×K matrix the coefficients of which are all zero, except the kth diagonal

coefficient, equal to αk. We have:

Σt = Λ (Dt −D) Λ′ + ΛDΛ′ + Ω

with 



Ω̃ = ΛDΛ′ + Ω 6= Ω

Ω̃− Ω = ΛDΛ′ À 0

Let us define: ∆ = IdK −D.By construction, ∆ is a diagonal matrix with positive diagonal

coefficients. Therefore ∆1/2 and ∆−1/2 are defined without any ambiguity and we can consider:

Λ̃ = Λ ∆1/2 (A.1)

and

D̃t = ∆−1/2 (Dt −D)∆−1/2 (A.2)

Then, we have:

Σt = Λ (Dt −D) Λ′ + Ω̃ = Λ̃D̃tΛ̃′ + Ω̃

with:

Λ̃ = Λ ∆1/2 and ED̃t = ∆−1/2 (IdK −D)∆−1/2 = IdK .

Proof of Proposition 2.2:

While (2.10) means that we have a one-factor model of conditional variance:

Σt = λλ′σ2
t + Ω

where σ2
t = V ar (ft+1 |Jt ), we know, from Proposition 2.1, that we can write:

Σt = λ̃λ̃′σ̃2
t + Ω̃

where by (A.1) and (A.2): σ̃2
t =

σ2
t − σ2

1− σ2
, λ̃ = λ

√
1− σ2 , and Ω̃ = Ω + σ2λλ′ . Therefore,

we will prove the announced result by characterizing a factor f̃t+1 such that:
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



yt+1 = λ̃ f̃t+1 + ũt+1

Cov
(
ũt+1, f̃t+1 |Jt

)
= 0

V ar
(
f̃t+1 |Jt

)
= σ̃2

t

(A.3)

We write: f̃t+1 =
ft+1√
1− σ2

+ ξt+1 which then means that:

yt+1 = λ ft+1 + ut+1 = λ̃
ft+1√
1− σ2

+ ut+1

= λ̃
(
f̃t+1 − ξt+1

)
+ ut+1

= λ̃ f̃t+1 + ũt+1

if and only if: ũt+1 = ut+1 − λ̃ξt+1.

Therefore, the second equation of (A.3) is tantamount to:

Cov

(
ut+1 − λ̃ ξt+1,

ft+1√
1− σ2

+ ξt+1 |Jt

)
= 0

that is: Cov (ut+1, ξt+1 |Jt ) = λ Cov (ξt+1, ft+1 |Jt ) + λ
√

1− σ2V ar (ξt+1 |Jt ).

In other words:

∃ρt ∈ Jt Cov (ut+1, ξt+1 |Jt ) = ρt λ (A.4)

with:

Cov (ft+1, ξt+1 |Jt ) = ρt −
√

1− σ2 V ar (ξt+1 |Jt ) (A.5)

On the other hand, the last equation of (A.3) means that:

1
1− σ2

σ2
t + V ar (ξt+1 |Jt ) +

2√
1− σ2

Cov (ft+1, ξt+1 |Jt ) =
σ2

t − σ2

1− σ2

that is:

σ2

1− σ2
+ V ar (ξt+1 |Jt ) +

2√
1− σ2

Cov (ft+1, ξt+1 |Jt ) = 0 (A.6)

We will rewrite the set of conditions (A.4), (A.5) and (A.6) on the following equivalent form:

There exists a Jt-measurable random variable ρt such that:




Cov (ut+1 ,ξt+1 |Jt ) = ρt λ

V ar (ξt+1 |Jt ) = σ2

1−σ2 + 2ρt√
1−σ2

Cov (ft+1, ξt+1 |Jt ) = −ρt − σ2√
1−σ2

(A.7)
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In other words, the proof will be completed if we succeed to build a random variable ξt+1 such

that the existence of ρt ∈ Jt conformable to (A.7) is guaranteed. In order to do this, we define

ξt+1 from its conditional linear regression on (ft+1, ut+1) given Jt:




ξt+1 = αt ft+1 + β′t ut+1 + zt+1

Cov (zt+1, ut+1 |Jt ) = 0

Cov (zt+1, ft+1 |Jt ) = 0

We first notice that the value of αt and βt are imposed by the first and the last equations of (A.7)

and are respectively given by:

V ar
(
ut+1 |Jt) βt = ρtλ ⇐⇒ βt = ρtΩ−1λ

and:

αtσ
2
t = −ρt − σ2

√
1− σ2

⇐⇒ αt = − 1
σ2

t

(
ρt +

σ2

√
1− σ2

)
.

By computing V ar (ξt+1 |Jt ) with the above values of αt and βt, we conclude that the conjunction

of the three conditions of (A.7) will be fulfilled if and only if:

1
σ2

t

(
ρt +

σ2

√
1− σ2

)2

+ ρ2
t λ′ Ω−1 λ + V ar (zt+1 |Jt ) =

σ2

1− σ2
+

2ρt√
1− σ2

(A.8)

Note that if we find ρt conformable to equation (A.8), V ar (ξt+1 |Jt) as defined by the second

equation of (A.7) will be positive by construction. In other words, the only thing to prove is that

we are able to define a random variable zt+1 such that the equation (A.8) admits at least one

solution ρt. But (A.8) can be rewritten as:

ρ2
t

(
1
σ2

t

+ λ′Ω−1λ

)
+

2ρt√
1− σ2

(
σ2

σ2
t

− 1
)

+
σ2

1− σ2

(
σ2

σ2
t

− 1
)

+ V ar (zt+1 |Jt ) = 0

Therefore, we have to find a random variable V ar (zt+1 |Jt) such that the discriminant of this

equation is positive a.s.:

1
1− σ2

(
σ2

σ2
t

− 1
)2

−
(

1
σ2

t

+ λ′Ω−1λ

)[
σ2

1− σ2

(
σ2

σ2
t

− 1
)

+ V ar (zt+1 |Jt )
]
≥ 0

Equivalently, we have to check that:
(

σ2

σ2
t

− 1
)2

−
(

1
σ2

t

+ λ′Ω−1λ

)
σ2

(
σ2

σ2
t

− 1
)
≥ 0.

But, by Assumption (2.12):
σ2

σ2
t

− 1 ≤ 0 a.s.
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Then, we have to show that:

σ2

σ2
t

− 1− σ2

(
1
σ2

t

+ λ′Ω−1λ

)
≤ 0 a.s.

that is: 1 + σ2λ′Ω−1λ ≥ 0, which is obviously true and completes the proof.

Proof of Proposition 2.3:

Let us assume, without loss of generality, that the first K rows of Λ define a nonsingular

matrix Λ̄ of size K. Then, by denoting ¯̄Λ the last (n−K) rows of Λ, the n−K rows of the matrix

A = (− ¯̄ΛΛ̄−1 Idn−K) define a basis of the orthogonal space Λ⊥ of the range of Λ.

Thus, the equality :

ΛDtΛ′ + Ω = L∆tL
′ + W

implies that A (L∆tL
′ + W ) is a constant matrix, equal to its unconditional expectation: A (LL′ + W ) .

By difference, we get:

AL (∆t − IdJ)L′ = 0

From the linear independence of the J columns of L, we conclude that:

AL (∆t − IdJ) = 0

and thus, the J columns of AL are zero since none of the random diagonal coefficients of the

diagonal matrix (∆t − IdJ) is identically zero. Therefore, the rows of A belong to the orthogonal

space L⊥ of the range of L, that is : Λ⊥ ⊂ L⊥.

Hence: Span(L) ⊂ Span(Λ).

Finally, as L and Λ play symmetric roles: Span(L) = Span(Λ) and K = J.

Proof of Proposition 2.4:

From the two factor decompositions:

Λ Dt Λ′ + Ω = L ∆t L′ + W

we get, by considering unconditional expectations :

Λ Λ′ + Ω = L L′ + W

and then, by difference of these two equations:

Λ(Dt − IdK)Λ′ = L(∆t − IdK)L′
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From proposition 2.3, we know that the ranges of L and Λ concide. As L and Λ have full

rank, it exists a non singular matrix M such that : L = ΛM . Thus:

Λ(Dt − IdK)Λ′ = ΛM(∆t − IdK)M ′Λ′

As Λ is of full column rank, this implies (using a left multiplication by (Λ′Λ)−1Λ′ and a right

multiplication by Λ(Λ′Λ)−1):

Dt − IdK = M(∆t − IdK)M ′

If we denote M = (mij)1≤i,j≤K and if Dt = diag(σ2
kt) and ∆t = diag(σ̃2

kt) we thus obtain :

K∑

k=1

(σ̃2
kt − 1)mikmjk =





σ2
it − 1 if i = j

0 otherwise.

As δt = (σ̃2
kt)1≤k≤K is supposed to have a non singular covariance matrix, we then obtain :

mikmjk = 0 if i 6= j. This proves that in each column mk of M there is at most one element

mik which is different from 0. But, as M is non singular, there is in fact exactly one element mik

which is different from 0 in each column mk. For each k, let us denote by mτ(k)k this element.

As no row of M can be equal to 0, τ is a permutation on {1, · · · ,K}.
Then, the relation L = ΛM can be written :

∀(i, j) lij =
K∑

k=1

λikmkj = λiτ(j)mτ(j)j

Let us then define a permutation matrix Q by :

qij =





1 if i = τ(j)

0 otherwise

and let us denote ∆ = diag(m1τ−1(1) · · ·mKτ−1(K)).

Straightforward calculations show that : L = Λ∆Q.
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Proof of Proposition 2.5:

We know by proposition 2.4 that L = Λ∆Q where Q is the permutation matrix defined in the

proof of proposition 2.4 and ∆ = diag(δ1 · · · δK) with δk = mk,τ−1(k) 6= 0 for k = 1 · · ·K. Then

the relation ΛDtΛ′ + Ω = L∆tL
′ + W can be written :

Λ(Dt −∆Q∆tQ
′∆)Λ′ = W − Ω (A.9)

so that :

Dt −∆Q∆tQ
′∆ = (Λ′Λ)−1Λ′(W − Ω)Λ(Λ′Λ)−1

Let A = (Λ′Λ)−1Λ′(W − Ω)Λ(Λ′Λ)−1, we then have :

akk = σ2
kt − δ2

kσ̃
2
τ−1(k)t ∀k = 1 · · ·K

aij = 0 if i 6= j.

Then, since δ2
k 6= 0, these equalities can be consistent with the zero lower bound for both σ2

kt

and σ̃2
τ−1(k)t (identification condition) if and only if akk = 0 for any k = 1 · · ·K, that is A = 0.

But on the one hand, A = 0 means Λ′(W − Ω)Λ = 0 and on the other hand, taking the

expectation of (A.9) implies that Λ(IdK − ∆2)Λ′ = W − Ω. These two relations imply that

Λ′Λ(IdK −∆2)Λ′Λ = 0. We then obtain that ∆2 = IdK which in turns implies that W = Ω and

completes the proof.

Proof of Proposition 2.7:

We know from proposition 2.4 that the factor loadings λ and λ̃ must be proportional:

λ̃ = kλ for some k ∈ IR.

Then the decomposition of the conditional variance of yt+1 gives:

λλ′σ2
t + Ω = k2λλ′σ̃2

t + Ω̃

and, by difference with unconditional expectations:

λλ′
(
σ2

t − 1
)

= k2λλ′
(
σ̃2

t − 1
)
.
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Thus:

σ2
t − 1 = k2(σ̃2

t − 1) (A.10)

As we assume that both f2
t and f̃2

t have a GARCH (1,1) structure:




σ2
t+1 − 1 = −γ + αf2

t+1 + (γ − α)σ2
t

σ̃2
t+1 − 1 = −γ̃ + α̃f̃2

t+1 + (γ̃ − α̃)σ̃2
t

we then obtain, by applying (A.10): 0 = −γ + γ̃k2 + αf2
t+1− α̃k2f̃2

t+1 + (γ −α)σ2
t − (γ̃ − α̃) k̃2σ̃2

t .

By computing conditional variances given Jt, we get:

α2κσ2
t = α̃2k4κ̃σ̃2

t (A.11)

where (κ + 1) and (κ̃ + 1) are respectively the kurtosis coefficients of the conditional probability

distribution of (ft+1/σt) and (f̃t+1/σ̃t) given Jt.

By plugging (A.11) into (A.10) to eliminate σ̃2
t , we get:

σ2
t − 1 = k2

[
α2κ

α̃2k4κ̃
σ2

t − 1
]

.

Since σ2
t is by definition a non degenerate random variable, this imply: k2 = 1 and in turn by

(A.10) and (2.21): σ2
t = σ̃2

t and γ = γ̃.

Then, by identification of the two GARCH equations:

α(f2
t+1 − σ2

t ) = α̃(f̃2
t+1 − σ2

t ).

But, using k2 = 1, (A.11) gives α = ±α̃, under the maintained assumtion: κ = κ̃. Thus, as α and

α̃ are nonnegative, this assumption gives: α = α̃ and f2
t+1 = f̃2

t+1.

Proof of Proposition 3.1

We first show that (i) ⇒ (ii). With obvious notations, since:

ȳt+1 = Λ̄ft+1 + ūt+1,

we get:

¯̄yt+1 = ¯̄ΛΛ̄−1 [ȳt+1 − ūt+1] + ¯̄ut+1

that is, with B = ¯̄ΛΛ̄−1:

¯̄yt+1 −Bȳt+1 = ¯̄ut+1 −Būt+1
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is conditionally homoskedastic, as a (constant) linear function of the homoskedastic vector ut+1.

Conversely, let us show that (ii) ⇒ (i) and B = ¯̄ΛΛ̄−1.

Let us assume, without loss of generality, that the asset return indices are such that:

yt+1 =
(
ȳ′t+1, ¯̄yt+1

)′ .

Then, the (k ×K) matrix Λ̄ denotes the first k rows of Λ, and:

Vt [ ¯̄yt+1 −Bȳt+1] =
(

¯̄Λ−BΛ̄
)

Dt

(
¯̄Λ−BΛ̄

)′
+ [−B, Idn−k] Ω [−B, Idn−k]

′ .

Therefore, the assumption of conditional homoskedasticity of ¯̄yt+1−Bȳt+1 means that MDtM
′

is a constant matrix, for M = ¯̄Λ−BΛ̄. But, the coefficients of the matrix MDtM
′ are linear com-

binations of the conditional variances σ2
jt, j = 1, · · ·K. By assumption, such linear combinations

can be constant only if all their coefficients are zero. By considering the diagonal coefficients of

MDtM
′ we see in particular that:

K∑
j=1

m2
ijσ

2
jt is constant for all i, and thus: mij = 0 for all i and j.

Therefore M = 0, that is ¯̄Λ = BΛ̄. Then, if Λ̄+ denotes the Moore-Penrose inverse of Λ̄, we

get:
¯̄ΛΛ̄+Λ̄ = BΛ̄Λ̄+Λ̄ = BΛ̄ = ¯̄Λ

and thus:

ΛΛ̄+Λ̄ =


 Λ̄Λ̄+Λ̄

¯̄ΛΛ̄+Λ̄


 =


 Λ̄

¯̄Λ


 = Λ.

Since Λ is full column rank, we conclude that

Λ̄+Λ̄ = IdK

Since the rank of Λ̄ cannot be larger than k, we deduce from this that k ≥ K and then k = K.

Thus, Λ̄ is a square invertible matrix and B = ¯̄ΛΛ̄−1.
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Proof of Proposition 3.2

As vec
(
Bȳt+1y

′
t+1

)
= ȳt+1y

′
t+1 ⊗ In−KvecB, we have :

∂Φ(B, D)
∂ [(vec B)′, (vec D)′]

= E





 1

zt


⊗ [

ȳt+1y
′
t+1 ⊗ In−K − In(n−K)

]



= −E





 ȳt+1y

′
t+1 ⊗ In−K In(n−K)

ztȳt+1y
′
t+1 ⊗ In−K ztIn(n−K)







As Λ =


 IK

B


, if we denote Ω.1 =


 Ω11

Ω21


, Ezt = α, and E (ztDt) = ∆ we then obtain :

∂Φ(B,D)
∂ [(vec B)′, (vec D)′]

=


 (Λ + Ω.1)

′ ⊗ In−K In(n−K)

(Λ∆ + αΩ.1)
′ ⊗ In−K αIn(n−K)




As (∆ − αIK) = EztDt − EztEDt is assumed to be invertible (diagonal matrix with non-zero

diagonal coefficients cov(zt, σ
2
kt)), it is then straightforward to show that ∂Φ(B,D)

∂[(vec B)′,(vec D)′] is of full

column rank. Actually, if it were not the case, it would be possible to find a non zero µ =


 µ1

µ2




such that : 
 (Λ + Ω.1)

′ ⊗ In−K In(n−K)

(Λ∆ + αΩ.1)
′ ⊗ In−K αIn(n−K)





 µ1

µ2


 = 0

By substracting α times the first equation to the second one, we would then get :

[
(Λ (∆− αIK))′ ⊗ In−K ]µ1 = 0

As (∆− αIK) is invertible, the rank of Λ (∆− αIK) is equal to K so that the rank of (Λ (∆− αIK))′⊗
In−K is equal to K (n−K). The above equality would then imply µ1 = 0 and in turn µ2 = 0.

This completes the proof.

Proof of proposition 3.8

vec
(
yt+1y

′
t+1

)
= vec

(
(λft+1 + ut+1)

(
λ′ft+1 + u′t+1

))

= vec
(
λλ′f2

t+1 + ft+1

(
ut+1λ

′ + λu′t+1

)
+ ut+1u

′
t+1

)

with
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vec (ut+1λ
′) = vec

(
λu′t+1

)′ = Knnvec
(
λu′t+1

)

= Knnut+1 ⊗ λ.

so that:

vec
(
yt+1y

′
t+1

)
= λ⊗ λf2

t+1 + (I + Knn) ut+1 ⊗ λft+1 + ut+1 ⊗ ut+1

and (using D+
n Knn = D+

n ):

vech
(
yt+1y

′
t+1

)
= D+

n vec
(
yt+1y

′
t+1

)

= D+
n

(
λ⊗ λf2

t+1 + 2ut+1 ⊗ λft+1 + ut+1 ⊗ ut+1

)
.

Thus, using assumption 3.6, we get:

Et

[(
vech

(
yt+1y

′
t+1

))
(vech

(
yt+1y

′
t+1

)′]

= D+
n Et




(
λ⊗ λf2

t+1 + 2ut+1 ⊗ λft+1 + ut+1 ⊗ ut+1

)
(
λ′ ⊗ λ′f2

t+1 + 2u′t+1 ⊗ λ′ft+1 + u′t+1 ⊗ u′t+1

)


D+′

n

= D+
n


 λλ′ ⊗ λλ′Etf

4
t+1 + Et

(
λu′t+1 ⊗ λu′t+1

) · Etf
2
t+1 + 4Ω⊗ λλ′Etf

2
t+1

+Et (ut+1λ
′ ⊗ ut+1λ

′) · Et

(
f2

t+1

)
+ Θ


D+′

n

But:

Et

[
λu′t+1 ⊗ λu′t+1

]
= Et

[
λ⊗ λ · u′t+1 ⊗ u′t+1

]

= Et

[(
vecλλ′

) · (vec ut+1u
′
t+1

)′]

=
(
vecλλ′

)
(vecΩ)′

and, in the same way:

Et

[
ut+1λ

′ ⊗ ut+1λ
′] = (vec Ω)

(
vec λλ′

)′

Finally we get:

Et

[(
vech

(
yt+1y

′
t+1

)) (
vech

(
yt+1y

′
t+1

))′]

= D+
n


 λλ′ ⊗ λλ′Et

(
f4

t+1

)
+ Θ

+Et

(
f2

t+1

) [
(vecλλ′) (vec Ω)′ + (vec Ω) (vecλλ′)′ + 4Ω⊗ λλ′

]


D+′

n
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This completes the proof of proposition 3.8.

Proof of proposition 3.9

The first three conditional restrictions are merely a re-statement of proposition 3.3 in the

case where K = 1 and µ = 0. Now, if we take the conditional expectation at time t − 1 of the

conditional kurtosis of yt+1 as obtained in proposition 3.8, we obtain :

Et−1

[(
vech

(
yt+1y

′
t+1

)) (
vech

(
yt+1y

′
t+1

))′]

= D+
n


 λλ′ ⊗ λλ′Et−1

(
f4

t+1

)
+ Θ+

Et−1

(
f2

t+1

) [
(vecλλ′) (vec Ω)′ + (vec Ω) (vecλλ′)′ + 4Ω⊗ λλ′

]


D+′

n

As Et−1

(
λλ′f2

t+1

)
= Et−1

(
yt+1y

′
t+1 − Ω

)
, this can also be written:

Et−1

[(
vech yt+1y

′
t+1

) (
vech yt+1y

′
t+1

)′]

= D+
n




λλ′ ⊗ λλ′Et−1

(
f4

t+1

)
+ Θ+

Et−1




(
vec

(
yt+1y

′
t+1 − Ω

))
(vec Ω)′ + (vec Ω)

(
vec

(
yt+1y

′
t+1

)− Ω
)′

+4Ω⊗ (
yt+1y

′
t+1 − Ω

)





D+′

n

= D+
n


 λλ′ ⊗ λλ′Et−1

(
f4

t+1

)
+ Θ− 2 (vec Ω) (vec Ω)′ − 4Ω⊗ Ω+

Et−1

[(
vec yt+1y

′
t+1

)
(vec Ω)′ + (vec Ω)

(
vec yt+1y

′
t+1

)′ + 4Ω⊗ yt+1y
′
t+1

]

D+′

n

We then obtain:

D+
n Et−1ϕ(yt+1, Ω)D+′

n

= Et−1

(
vech yt+1y

′
t+1

) (
vech yt+1y

′
t+1

)

−D+
n Et−1

[
4Ω⊗ yt+1y

′
t+1 − (vec Ω)

(
vec yt+1y

′
t+1

)′ − (
vec yt+1y

′
t+1

)
(vec Ω)′

]

= D+
n

[
λλ′ ⊗ λλ′Et−1f

4
t+1 + Θ− 2 (vec Ω) (vec Ω)′ − 4Ω⊗ Ω

]
D+′

n

In the same way, we have:

D+
n Et−1ϕ(yt,Ω)D+′

n = D+
n

[
λλ′ ⊗ λλ′Et−1f

4
t + Θ− 2 (vec Ω) (vec Ω)′ − 4Ω⊗ Ω

]
D+′

n

so that we get:

D+
n Et−1 (1− cL)ϕ (yt+1,Ω) D+′

n = D+
n


 λλ′ ⊗ λλ′Et−1 (1− cL) f4

t+1 + (1− c)Θ−
2 (1− c) (vec Ω) (vec Ω)′ − 4 (1− c) Ω⊗ Ω


D+′

n
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Using assumption 3.4, we know that

Et−1 (1− cL) f4
t+1 = a + bEt−1f

2
t ,

so, that:

λλ′Et−1 (1− cL) f4
t+1 = a λλ′ + b λλ′ Et−1f

2
t

= a λλ′ + b Et−1

(
yty

′
t − Ω

)
.

Finally, we obtain:

D+
n Et−1 (1− cL) ϕ (yt+1,Ω) D+′

n

= D+
n


 a λλ′ ⊗ λλ′ + b λλ′ ⊗Et−1 (yty

′
t)− b λλ′ ⊗ Ω

+ (1− c)Θ− 2 (1− c) (vec Ω) (vec Ω)′ − 4 (1− c)Ω⊗ Ω


D+′

n

which is the announced result.

Extension of proposition 3.9 to the two factors case

Proposition : In a two-factors SV model :

yt+1 = λ1f1t+1 + λ2f2t+1 + ut+1

such that

Et

[
ut+1u

′
t+1 ⊗ ut+1u

′
t+1

]
= Θ

and

Et−1

[
f4

kt+1 − ak − bkf
2
kt − ckf

4
kt

]
= 0 , for k = 1, 2,

efficient instrumental variables estimation of Λ, Ω, γk, bk, ck, k = 1, 2, can be obtained through

the following set of conditional moment restrictions :

Et (yt+1) = 0

vecEt

[(
¯̄yt+1 − ¯̄ΛΛ̄−1ȳt+1

)
y′t+1

]
= vec

[
Ω2. − ¯̄ΛΛ̄−1Ω1.

]

vechEt−2

[
(1− γ1L) (1− γ2L)

(
yt+1y

′
t+1 − ΛΛ′ − Ω

)]
= 0

D+
n Et−4




(1− γ1L) (1− γ1γ2L) (1− c1L) (1− c2L) φ (yt+1,Ω)−
(1− c2L) (1− γ1γ2L) (1− γ1L) b2 (vecyty

′
t) (vecλ2λ

′
2)
′−

(1− c2L) (1− c1L) γ2 (1− γ1)


 (vecλ1λ

′
1) (vecyty

′
t)
′ + (vecyty

′
t) (vecλ1λ

′
1)
′

+4yty
′
t ⊗ λ1λ

′
1







D+′
n = cst
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D+
n Et−4




(1− γ2L) (1− γ1γ2L) (1− c1L) (1− c2L) φ (yt+1,Ω)−
(1− c1L) (1− γ1γ2L) (1− γ2L) b1 (vecyty

′
t) (vecλ1λ

′
1)
′−

(1− c2L) (1− c1L) γ1 (1− γ2)


 (vecλ2λ

′
2) (vecyty

′
t)
′ + (vecyty

′
t) (vecλ2λ

′
2)
′

+4yty
′
t ⊗ λ2λ

′
2







D+′
n = cst

where:

φ(yt,Ω) = (V ec yty
′
t)(V ec yty

′
t)
′ − 4Ω⊗ yty

′
t − (V ec Ω)(V ec yty

′
t)
′ − (V ec yty

′
t)(V ec Ω)′

Of course, as it has been already said about proposition 3.9, the last two sets of conditional

moments restrictions involve a huge number of parameters, but it is not necessary to use this

whole set of restrictions to identify and estimate the parameters of interest. For instance, only

the diagonal terms of the involved matrices can be used.

Proof:

The first three conditional moment restrictions are only a re-statement of proposition 3.3. We

prove here the fourth moment condition, while the fifth one is just a corollary by commuting the

roles of indexes 1 and 2. But before going into the detailed proof, which involves some tedious

calculations, it can be useful to sketch the intuition.

Actually, the main trick in the proof of proposition 3.9 is to compute the conditional expec-

tation at time t of the fourth order moments of yt+1, and to apply assumption 3.4 to λλ′f2
t+1

instead of f2
t+1, which allows to use observable variables through the fact that Et−1

(
λλ′f2

t+1

)
=

Et−1

(
yt+1y

′
t+1 − Ω

)
.

In the case of two (or more) factors, things are a bit more complicated because assumption

3.4 is made for each factor fkt+1, while only the sum λ1λ
′
1f

2
1t+1 + λ2λ

′
2f

2
2t+1 can be replaced by a

function of the observable variables, through the relation:

Et−1

(
λ1λ

′
1f

2
1t+1 + λ2λ

′
2f

2
2t+1

)
= Et−1

(
yt+1y

′
t+1 − Ω

)
.

Further, the calculations which are made in this case involve the unobservable term: σ2
1tσ

2
2t

and, in order to get rid of this term, it will be necessary to use its own autoregressive structure,

that is an AR(1) structure with an autoregressive parameter equal to γ1γ2.

In the two factors case, the detailed proof of the result is then the following one (it can be

easily extended when there are more than two factors). As we have in this case:

yt+1y
′
t+1 =

∑

1≤j,k≤2

λjλ
′
k fjt+1 fkt+1 +

2∑

k=1

(
λku

′
t+1 + ut+1λ

′
k

)
fkt+1 + ut+1u

′
t+1
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we get, using the relations: vec (ut+1λ
′
k) = Knnvec

(
λku

′
t+1

)
, vec (λ1λ

′
2) = Knnvec (λ2λ

′
1) and

D+
n Knn = D+

n :

vech
(
yt+1y

′
t+1

)
= D+

n vec

[
2∑

k=1

λkλ
′
k f2

kt+1 + 2λ1λ
′
2 f1t+1f2t+1 + 2

2∑

k=1

λkfkt+1u
′
t+1 + ut+1 u′t+1

]

and

Et

[(
vech yt+1y

′
t+1

) (
vech yt+1 y′t+1

)′]

= D+
n Et




2∑
k=1

(vecλkλ
′
k) (vecλkλ

′
k)
′ f4

kt+1 + Θ+

σ2
1tσ

2
2t

[
(vecλ1λ

′
1) (vecλ2λ

′
2) + (vecλ2λ

′
2) (vecλ1λ

′
1)
′ + 4 (vecλ1λ

′
2) (vecλ1λ

′
2)
′]+

2∑
k=1

σ2
kt

[
(vecλkλ

′
k) (vecΩ)′ + (vecΩ) (vecλkλ

′
k)
′ + 4

(
vecλku

′
t+1

) (
vecλku

′
t+1

)′]




D+′
n

As: Et

[(
vecλku

′
t+1

) (
vecλku

′
t+1

)′] = Et

[
(ut+1 ⊗ λk)

(
u′t+1 ⊗ λ′k

)]
= Ω⊗ λkλ

′
k,

and as:
2∑

k=1

λkλ
′
kσ

2
kt = Et

(
yt+1y

′
t+1 − Ω

)
, we then get:

Et

[(
vech yt+1y

′
t+1

) (
vech yt+1 y′t+1

)′]

= D+
n Et




2∑
k=1

(vecλkλ
′
k) (vecλkλ

′
k)
′ f4

kt+1+

σ2
1tσ

2
2t

[
(vecλ1λ

′
1) (vecλ2λ

′
2)
′ + (vecλ2λ

′
2) (vecλ1λ

′
1)
′ + 4 (vecλ1λ

′
2) (vecλ1λ

′
2)
′]+

(
vec

(
yt+1y

′
t+1 − Ω

))
(vecΩ)′ + (vecΩ)

(
vec

(
yt+1y

′
t+1 − Ω

))′+
4Ω⊗ (

yt+1y
′
t+1 − Ω

)
+ Θ




D+′
n

Thus:

D+
n Et−1 [φ (yt+1, Ω)]D+′

n = D+
n Et−1

[
2∑

k=1

(
vecλkλ

′
k

) (
vecλkλ

′
k

)′
f4

kt+1 + σ2
1tσ

2
2tW12 −W

]
D+′

n

(A.12)

where:

W = 2 (vecΩ) (vecΩ)′ + 4Ω⊗ Ω−Θ

W12 =
(
vecλ1λ

′
1

) (
vecλ2λ

′
2

)′ + (
vecλ2λ

′
2

) (
vecλ1λ

′
1

)′ + 4
(
vecλ1λ

′
2

) (
vecλ1λ

′
2

)′

=
(
vecλ1λ

′
1

) (
vecλ2λ

′
2

)′ + (
vecλ2λ

′
2

) (
vecλ1λ

′
1

)′ + 4λ2λ
′
2 ⊗ λ1λ

′
1.

For k = 1, 2, we have: σ2
kt = 1− γk + γkσ

2
k+1 + νkt, Et−1νkt = 0,

so that:

Et−1

(
σ2

1tσ
2
2t

)
= γ1γ2σ

2
1t−1σ

2
2t−1 + (1− γ1) (1− γ2) + γ2 (1− γ1) σ2

2t−1 + γ1 (1− γ2) σ2
1t−1

50



and:

Et−1

[
(1− γ1γ2L) σ2

1tσ
2
2t

]
= (1− γ1) (1− γ2) + γ2 (1− γ1)σ2

2t−1 + γ1 (1− γ2) σ2
1t−1 (A.13)

Besides, we have, for k = 1, 2:

Et−1

[
(1− ckL) f4

kt+1

]
= Et−1

[
ak + bkf

2
kt

]
= ak + bkσ

2
kt−1 (A.14)

Using (A.12), (A.13) and (A.14), we then deduce:

D+
n Et−3 [(1− c1L) (1− c2L) (1− γ1γ2L) φ (yt+1, Ω)]D+′

n

= D+
n Et−3




(1− c2L) (1− γ1γ2L) (vecλ1λ
′
1) (vecλ1λ

′
1)
′ (a1 + b1σ

2
1t−1

)
+

(1− c1L) (1− γ1γ2L) (vecλ2λ
′
2) (vecλ2λ

′
2)
′ (a2 + b2σ

2
2t−1

)
+

(1− c1L) (1− c2L)
[
(1− γ1) (1− γ2) + γ2 (1− γ1) σ2

2t−1 + γ1 (1− γ2) σ2
1t−1

]
W12+

(1− c1) (1− c2) (1− γ1γ2) W




D+′
n

= D+
n Et−3


 (1− c1L)

[
(1− γ1γ2L) (vecλ1λ

′
1) (vecλ1λ

′
1)
′ b1 + (1− c2L) γ1 (1− γ2) W12

]
σ2

1t−1+

(1− c2L)
[
(1− γ1γ2L) (vecλ2λ

′
2) (vecλ2λ

′
2)
′ b2 + (1− c1L) γ2 (1− γ1) W12

]
σ2

2t−1 + M


D+′

n

with

M = (1− c2) (1− γ1γ2)
(
vecλ1λ

′
1

) (
vecλ1λ

′
1

)′
a1

+(1− c1) (1− γ1γ2)
(
vecλ2λ

′
2

) (
vecλ2λ

′
2

)′
a2

+(1− c1) (1− c2) [(1− γ1) (1− γ2) W12 + (1− γ1γ2) W ] .

Now: Et−2

[
(1− γ1L) σ2

1t−1

]
= 1− γ1

and:

Et−2

[
(1− γ1L) λ2λ

′
2σ

2
2t−1

]
= Et−2

[
(1− γ1L)

[
yty

′
t − λ1λ

′
1σ

2
1t−1 − Ω

]]

= Et−2

[
(1− γ1L)

[
yty

′
t −

(
λ1λ

′
1 + Ω

)]]
.

Using W12 = (vecλ1λ
′
1) (vecλ2λ

′
2)
′ + (vecλ2λ

′
2) (vecλ1λ

′
1)
′ + 4λ2λ

′
2 ⊗ λ1λ

′
1, we get:

D+
n Et−4 [(1− γ1L) (1− c1L) (1− c1L) (1− γ1γ2L) φ (yt+1, Ω)]D+′

n
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= D+
n Et−4




(1− γ1) (1− c1)
[
(1− γ1γ2) (vecλ1λ

′
1) (vecλ1λ

′
1)
′ b1 + (1− c2) γ1 (1− γ2) W12

]

+(1− c2L)




(1− γ1γ2L) (1− γ1L) vec (yty
′
t − (λ1λ

′
1 + Ω)) (vecλ2λ

′
2)
′ b2

+ (1− c1L) γ2 (1− γ1)




(vecλ1λ
′
1) (vec (yty

′
t − (λ1λ

′
1 + Ω)))′

+(vec (yty
′
t − (λ1λ

′
1 + Ω))) (vecλ1λ

′
1)
′

+4 (yty
′
t − (λ1λ

′
1 + Ω))⊗ λ1λ

′
1







+(1− γ1) M




D+′
n

= D+
n Et−4




(1− c2L) (1− γ1γ2L) (1− γ1L) b2 (vecyty
′
t) (vecλ2λ

′
2)
′+

(1− c2L) (1− c1L) γ2 (1− γ1)


 (vecλ1λ

′
1) (vecyty

′
t)
′ + (vecyty

′
t) (vecλ1λ

′
1)
′+

4yty
′
t ⊗ λ1λ

′
1




+M12




D+′
n

with M12 a constant matrix.

In the same way:

D+
n Et−4 [(1− γ2L) (1− c1L) (1− c2L) (1− γ1γ2L) φ (yt+1, Ω)] D+′

n

= D+
n Et−4




(1− c1L) (1− γ1γ2L) (1− γ2L) b1 (vecyty
′
t) (vecλ1λ

′
1)
′+

(1− c1L) (1− c2L) γ1 (1− γ2)


 (vecλ2λ

′
2) (vecyty

′
t)
′ + (vecyty

′
t) (vecλ2λ

′
2)
′+

4λ2λ
′
2 ⊗ yty

′
t




+M21




D+′
n

with M21 a constant matrix.

The first three conditional moment restrictions allow to identify the following parameters:

γ1, γ2, ΛΛ′ + Ω and
=
ΛΛ̄−1.

The last two conditional moment restrictions allow to identify: c1, c2, Ω, λ1λ
′
1, λ2λ

′
2 and then

b1 and b2.

Thus λ1 and λ2 are identified up to a sign so that Λ is identified up to a sign change in its

columns. As previously, however: a1, a2 and Θ cannot be separately identified.
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