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Résumé  

 
Les écarts de rendement négatifs extrêmes communs existent dans les marchés boursiers 
internationaux. Ce phénomène a été largement démontré par des outils statistiques, tels que la 
corrélation des dépassements, la théorie des valeurs extrêmes et les modèles GARCH bivarié 
en langage Gauss ou avec changement de régime. Nous signalons les limites de ces outils 
pour caractériser la dépendance extrême et proposons un modèle de copules avec changement 
de régime, comprenant un régime normal dans lequel la dépendance est symétrique et un 
second régime caractérisé par une dépendance asymétrique. De plus, afin de saisir pleinement 
l’incidence potentielle de cette dépendance asymétrique en termes de diversification du 
portefeuille, nous appliquons ce modèle aux marchés internationaux des actions et des 
obligations, afin de permettre les mouvements entre les marchés. D’un point de vue 
empirique, nous constatons une forte dépendance entre les actifs internationaux de même type 
dans les deux régimes, surtout dans le régime asymétrique, et une faible dépendance entre les 
actions et les obligations, bien qu’il soit question d’un même pays. Nous procédons à un 
examen analytique afin de déterminer quand et comment la dépendance asymétrique peut, lors 
de la répartition du portefeuille, amplifier les phénomènes suivants établis empiriquement : 
fuite vers la sécurité et surinvestissement dans des sociétés proches du domicile. 

 
Mots clés : corrélation asymétrique, dépendance asymétrique, copules, 
dépendance dans les queues, GARCH, changement de régime, 
surinvestissement dans des sociétés proches du domicile, fuite vers la 
sécurité. 
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Abstract 
 
Common negative extreme variations in returns are prevalent in international equity markets. 
This has been widely documented with statistical tools such as exceedance correlation, 
extreme value theory, and Gaussian bivariate GARCH or regime-switching models. We point 
to limits of these tools to characterize extreme dependence and propose an alternative 
regime-switching copula model that includes one normal regime in which dependence is 
symmetric and a second regime characterized by asymmetric dependence. Moreover, to fully 
appreciate the potential effects of this asymmetric dependence in terms of portfolio 
diversification, we apply this model to international equity and bond markets, to allow for 
inter-market movements. Empirically, we find that dependence between international assets of 
the same type is strong in both regimes, especially in the asymmetric one, but weak between 
equities and bonds, even in the same country. We study analytically how and when 
asymmetric dependence may amplify empirically documented phenomena such as flight to 
safety and home bias in portfolio allocation. 

 
Keywords: asymmetric correlation, asymmetric dependence, copula, tail 
dependence, GARCH, regime switching, home bias, flight to safety 
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1 Introduction

There is ample evidence that negative returns are more dependent than positive returns in

international equity markets. This phenomenon known as asymmetric dependence has been

reported by many previous studies including Erb et al (1994), Longin and Solnik (2001),

Ang and Bekaert (2002), Ang and Chen (2002), Das and Uppal (2003), Patton (2004), and

references therein. This asymmetric dependence has important implications for portfolio

allocation, but to appreciate its full actual effects on portfolio diversification, stocks and

bonds have to be considered together, both at the domestic and international levels to

allow for inter-market movements1. Models of extreme dependence in international stock

and bond markets are mainly missing in the literature. This is due mainly to the fact that

measuring and modeling asymmetric dependence remains a challenge.

Previous studies relied on the concept of exceedance correlation, correlation computed

for returns above or below a certain threshold, to investigate the dependence structure

between financial returns.2 Boyer et al (1999) and Forbes and Rigobon (2002) remark that

correlations estimated conditionally on high or low returns or volatility suffer from some

conditioning bias. Correlation asymmetry may therefore appear spuriously if these biases

are not accounted for. To avoid these problems, Longin and Solnik (2001) use extreme value

theory (EVT) by focusing on the asymptotic value of exceedance correlation3. The benefit

of EVT resides in the fact that the asymptotic result holds regardless of the distribution

of returns. By the same token, as emphasized by Longin and Solnik (2001), EVT cannot

help to determine if a given return-generating process is able to reproduce the extreme

asymmetric exceedance correlation observed in the data.

To overcome this shortcoming, we propose a model based on copulas that allows for tail

dependence in lower returns and keeps tail independence for upper returns as suggested by

1Patton (2004) finds that the knowledge of asymmetric dependence leads to gains that are economically
significant, while Ang and Bekaert (2002), in a regime switching setup, argue that the costs of ignoring the
difference between regimes of high and low dependence are small, but increase with the possibility to invest
in a risk-free asset.

2The exceedance correlation between two series of returns is defined as the correlation for a sub-sample
in which the returns of both series are simultaneously lower (or greater) than the corresponding thresholds
θ1 and θ2. Formally, exceedance correlation of variables X and Y at thresholds θ1 and θ2 is expressed by

Ex_corr (Y,X; θ1, θ2) =
corr (X,Y |X ≤ θ1, Y ≤ θ2 ) , for θ1 ≤ 0 and θ2 ≤ 0
corr (X,Y |X ≥ θ1, Y ≥ θ2 ) , for θ1 ≥ 0 and θ2 ≥ 0 . Longin and Solnik

(2001) use θ1 = θ2 = θ, while Ang and Chen (2002) use θ1 = (1 + θ)X and θ2 = (1 + θ)Y , where X
and Y are the means of Y and X respectively.

3Extreme Value Theory (EVT) is used to characterize the distribution of a variable conditionally to the
fact that its values are beyond a certain threshold, and the asymptotic distribution is obtained when this
threshold tends to infinity. Hartmann, Straetmans and De Vries (2004) also use extreme-value analysis to
capture the dependence structure between stock and bond returns for pairs of the G5 countries.
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the findings of Longin and Solnik (2001). Copulas are functions that build multivariate dis-

tribution functions from their unidimensional marginal distributions4. The tail dependence

coefficient can be seen as the probability of the worst event occurring in one market given

that the worst event occurs in another market. Contrary to exceedance correlation, the

estimation of the tail dependence coefficient is not subject to the problem of choosing an

appropriate threshold and the use of extreme value distributions such as the Pareto distri-

bution. Another difference is that tail dependence is completely defined by the dependence

structure and is not affected by variations in marginal distributions.

The disentangling between marginal distributions and dependence helps overcoming the

curse of dimensionality associated with the estimation of models with several variables.

For example, in multivariate GARCH models, the estimation becomes intractable when

the number of series being modeled is high. The CCC of Bollerslev (1990), the DCC of

Engle (2002), and the RSDC of Pelletier (2004) deal with this problem by separating the

variance-covariance matrix in two parts, one part for the univariate variances of the different

marginal distributions, another part for the correlation coefficients. This separation allows

them to estimate the model in two steps, first the marginal parameters on each individual

series then the correlation parameters. Copulas offer a tool to generalize this separation

while extending the linear concept of correlation to nonlinear dependence.

Thanks to the tail dependence formulation of asymptotic dependence, we show ana-

lytically that the multivariate GARCH or regime switching (RS) models with Gaussian

innovations that have been used to address asymmetric dependence issues (see Ang and

Bekaert, 2002, and Ang and Chen, 2002) cannot in fact reproduce extreme asymmetric de-

pendence. The key point is that these classes of models can be seen as mixtures of symmetric

distributions and cannot produce asymptotically asymmetric dependence. The asymmetry

produced by these models at finite distance disappears asymptotically. When we go far

in the tails, we obtain a similar dependence for the upper and lower tails. Moreover, the

asymmetry in RS models comes from the asymmetry created in the marginal distributions

with regime switching in the mean. Hence it is not separable from the marginal asymmetry

or skewness.5 This is a fundamental issue that also affects the statistical extreme-value
4The theory of this useful tool dates back to Sklar (1959) and a clear presentation can be found in

Nelsen (1999). Well designed to analyze nonlinear dependence, copulas were initially used by statisticians
for nonparametric estimation and measure of dependence of random variables (see Genest and Rivest, 1993
and references therein)

5Ang and Chen (2002) conclude that even if regime-switching models perform best in explaining the
amount of correlation asymmetry reflected in the data, these models still leave a significant amount of
correlation asymmetry in the data unexplained.
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analyses that have been conducted to study extreme dependence.

We use our regime-switching copula model to investigate the dependence structure be-

tween international equity and bond markets. The model allows for a switching between a

normal state where markets will be linearly and symmetrically correlated and an asymmet-

ric dependence state to capture common crashes. In a normal regime it is difficult to make a

difference between the level of dependence for joint positive moves and joint negative moves.

When the economy is in the asymmetric regime, even with a stable correlation, a downside

move in one market will increase the probability of a similar event in another market. The

rise in the level of dependence during market downturns is characterized by asymmetry

in the dependence structure. This regime can be interpreted as contagion since bad news

spread quickly between markets. This crash dependence can coexist with low correlation

and implies a reduction of an apparent diversification benefit. This is an essential point to

consider for portfolio allocation that has not received proper attention.

We separately analyze dependence between the two leading markets in North-America

(US and Canada) and two major markets of the Euro zone (France and Germany). Our

empirical analysis shows that dependence between international assets of the same type

is strong in both the symmetric and the asymmetric regimes, while dependence between

equities and bonds is low even in the same country. Another finding is that the presence of

a regime with extreme asymmetric dependence makes the correlation in the normal regime

differ from the unconditional correlation. We also provide some evidence that exchange

rate volatility seems to contribute to asymmetric dependence. With the introduction of a

fixed exchange rate the dependence between France and Germany becomes less asymmetric

and more normal than before. High exchange rate volatility is associated with a high level

of asymmetry. These results are consistent with those of Cappiello, Engle and Sheppard

(2003) who find an increase in correlation after the introduction of the Euro currency.

Our last contribution is to explore analytically the effects of asymmetric dependence on

cross-country and domestic diversification. An analytical approach is important to better

understand the mechanisms at hand behind asymmetric dependence and their impact on

portfolio allocation. First, we establish a link between co-skewness and asymmetric depen-

dence. Then we show that strong dependence in lower returns in two markets can reduce

co-skewness and therefore lower skewness in a portfolio with long positions in both markets.

Since the reduction of co-skewness lowers the gains to diversification, investors tend to hold

a higher share of low-risk assets than in a mean-variance portfolio. In other words, asym-

metric dependence increases downside risk and therefore, very risk-averse investors tend to
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switch toward less risky assets when downside dependence increases. A similar behavior is

observed for the bond and equity trade-off. In the asymmetric dependence regime, the very

risk-averse agent increases the fraction of its wealth in bonds. Therefore we conclude that

empirical documented phenomena such as home bias and flight to safety may be amplified

by asymmetric dependence.

The rest of this paper is organized as follows. Section 2 reformulates the empirical facts

about exceedance correlation in terms of tail dependence and shows how classical GARCH

or regime switching models fail to capture these facts. In section 3 we develop a model

with two regimes that clearly disentangles dependence from marginal distributional features

and allows asymmetry in extreme dependence. As a result, we obtain a model with four

variables that features asymmetry and a flexible dependence structure. Empirical evidence

on the dependence structure is examined in section 4, while section 5 analyzes analytically

the implications of asymmetric dependence on international and domestic diversification.

Conclusions are drawn in section 6.

2 Extreme Asymmetric Dependence and Modeling Issues

In this section we present empirical facts about exceedance correlation in international

equity market returns put forward by Longin and Solnik (2001) and the related literature.

We next argue that these facts can be equivalently reformulated in terms of tail dependence.

The latter formulation will allow us to explain why classical return-generating processes such

as GARCH and regime-switching models based on a multivariate normal distribution fail

to reproduce these empirical facts.

2.1 Empirical Facts

Longin and Solnik (2001) investigate the structure of correlation between various equity

markets in extreme situations by testing the equality of exceedance correlations, one ob-

tained under a joint normality assumption and the other one computed using EVT. For the

latter distribution, they model the marginal distributions of equity index returns with a

generalized Pareto distribution (GPD) and capture dependence through a logistic function.

Ang and Chen (2002) develop a test statistic based on the difference between exceedance

correlations computed from the data and those obtained from GARCH or RS models6

6They define a test statistic H =
N

i=1

1
N
(ρ (ϑi)− ρ (ϑi))

2
1/2

which is the distance between exceedance

correlations obtained from the normal distribution (ρ (ϑ1) , ..., ρ (ϑN )) and exceedance correlations estimated
from the data (ρ (ϑ1) , ..., ρ (ϑN )) for a set of N selected thresholds {ϑ1, ..., ϑN} . In the same way they define
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These two studies conclude that there exists asymmetry in exceedance correlation, that

is large negative returns are more correlated than large positive returns. However, their

results rely on choosing a set of thresholds for computing exceedance correlation and can

only account for asymmetry at finite distance. Crashes are more in the nature of extreme

events and involve measuring dependence for thresholds very far in the tail. Longin and

Solnik (2001) confirm with an asymptotic test that exceedance correlation is positive and

statistically different from zero for very large negative returns and not different from zero for

very large positive returns. However they do not provide a model that is able to reproduce

this fact. Ang and Chen (2002) as well as Ang and Bekaert (2002) find that regime switching

models can reproduce the asymmetry in exceedance correlation, but this result does not

hold for extreme events as we will show later and the measured asymmetry amalgamates

skewness in the marginal distributions and asymmetric dependence.

We illustrate these facts and the capacity of models to reproduce them in Figure 1

with US and Canadian returns. We specify thresholds in term of quantiles: θ1 = F−1X (α)

and θ2 = F−1Y (α) where FX and FY are the cumulative distribution functions of Y and

X respectively. Following Longin and Solnik (2001) and Ang and Chen (2002) exceedance

correlations are symmetric if Ex_corr (Y,X; θ1, θ2) = Ex_corr (Y,X; 1− θ1, 1− θ2) ;α ∈
(0, 1). Correlations of return exceedances exhibit the typical shape put forward in Longin

and Solnik (2001) for the US equity market with various European equity markets. For

the models, we chose to retain the multivariate normal, as a benchmark case to show

that correlations go to zero as we move further in the tails, as well as a normal regime

switching model, as in Ang and Chen (2002). The latter model produces some asymmetry

in correlations for positive and negative returns but not nearly as much as in the data. We

also exhibit the exceedance correlations estimated with the procedure used by Longin and

Solnik (2001). It is evidently much closer to the data. Finally, we also report the correlations

obtained from a rotated Gumbel copula for the dependence function (see Appendix for a

definition), with Gaussian marginal distributions. The graph is very close to the Longin

and Solnik (2001) one.

Since asymptotic exceedance correlation is zero for both sides of a bivariate normal

distribution, Longin and Solnik (2001) interpreted these findings as rejection of normality

for large negative returns and non-rejection for large positive returns. In the conclusion

of their article, Longin and Solnik stress that their approach has the disadvantage of not

H− and H+ by considering negative points for H− and nonnegative points for H+ such that H2 = H−
2

+ H+ 2
. They can therefore conclude to asymmetry if H− differs from H+.
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explicitly specifying the class of return-generating processes that fail to reproduce these

two facts. The difficulty in telling which model can reproduce these facts is the lack of

analytical expressions for the asymptotic exceedance correlation and its intractability even

for classical models such as Gaussian GARCH or regime switching models. In order to

investigate this issue, we introduce the concept of tail dependence. This will help us show

analytically that some classes of models previously used in the literature cannot reproduce

these asymmetries in extreme dependence and then propose a model that succeeds in doing

so.

2.2 Tail Dependence

To measure the dependence between an extreme event on one market and a similar event

on another market, we define two dependence functions one for the lower tail and one for

the upper tail, with their corresponding asymptotic tail dependence coefficients. For two

random variables X and Y with cumulative distribution functions FX and FY respectively,

we call the lower tail dependence function (TDF) the conditional probability τL (α) ≡
Pr
£
X ≤ F−1X (α)

¯̄
Y ≤ F−1Y (α)

¤
for α ∈ (0, 1/2] and similarly, the upper tail dependence

function is τU (α) ≡ Pr
£
X ≥ F−1X (1− α)

¯̄
Y ≥ F−1Y (1− α)

¤
.7 The tail dependence coef-

ficient (TDC) is simply the limit (when it exists) of this function when α tends to zero.

More precisely lower TDC is τL = lim
α→0

τL (α) and upper TDC is τU = lim
α→0

τU (α). As

in the case of joint normality, we have lower tail-independence when τL = 0 and upper

tail-independence for τU = 0.

Compared to exceedance correlation used by Longin and Solnik (2001), Ang and Chen

(2002), Ang and Bekaert (2002), and Patton (2004), a key advantage of TDF and corre-

sponding TDCs is their invariance to modifications of marginal distributions that do not

affect the dependence structure. Figure 2 gives an illustration of this invariance. We simu-

late a bivariate Gaussian distribution N (0, Iρ) , where Iρ is the bi-dimensional matrix with

standard deviations equal to one on the diagonal and a correlation coefficient ρ equal to 0.5.

Both exceedance correlation and tail dependence measures show a symmetric behavior of

dependence in extreme returns. However, when we replace one of the marginal distributions

N (0, 1) by a mixture of normals, a N (0, 1) and a N (4, 4) with equal weights, and let the

other marginal distribution and the dependence structure unchanged, the TDF remains the

7 In the literature (see Rodriguez, 2004 and references therein), only the limit of this function is considered.
Here, we define the TDF for every α ∈ (0, 1/2] to make a comparison with conditional correlation, which is
also a function of a threshold. The tail dependence measure is also related to the concept of lower (upper)
orthant dependence concept (see Denuit and Scaillet, 2004).
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same while the exceedance correlation is affected. In fact, the correlation coefficient and

the exceedance correlation are a function of the dependence structure and of the marginal

distributions while the tail dependence is a sole function of the dependence structure, re-

gardless of the marginal distributions. Another disadvantage of exceedance correlation is

that asymptotic exceedance correlation cannot be estimated without sample bias since fewer

data points are available when we move further into the tails of the distribution.8 With tail

dependence, the estimation is done using all data points in the sample and the estimators

of the tail coefficients are unbiased.

By observing that for the logistic function used by Longin and Solnik (2001), the zero

value for the asymptotic correlation coefficient is exactly equivalent to tail independence, we

can reformulate their asymptotic result as follow : lower extreme returns are tail-dependent,

while upper extreme returns are tail-independent.9

This reformulation presents at least two main advantages. Compared to exceedance

correlation, the tail dependence coefficient is generally easier to compute and analytical

expressions can be obtained for almost all distributions. This is not the case for exceedance

correlation even for usual distributions. Moreover, we can easily derive the tail dependence

of a mixture from the tail dependence of the different components of the mixture. The last

property will be used below to investigate which model can or cannot reproduce the results

of Longin and Solnik (2001).

2.3 Why classical multivariate GARCH and RS model cannot reproduce
asymptotic asymmetries?

Ang and Chen (2002) and Ang and Bekaert (2002) try to reproduce asymmetric correla-

tions facts with classical models such as GARCH and RS based on a multivariate normal

distribution. After examining a number of models, they found that GARCH with constant

correlation and fairly asymmetric GARCH cannot reproduce the asymmetric correlations

documented by Longin and Solnik. However, they found that a RS model with Gaussian

innovations is better at reproducing asymmetries in exceedance correlation. They clearly

reproduce asymmetric correlations at finite distance. However, their finite-distance asym-

8Longin and Solnik (2001) determine by simulation an optimal threshold and use the subsample beyond
this threshold to estimate the asymptotic exceedance correlation. However, this shortcoming does not
compromise the results of Longin and Solnik (2001) since they choose different levels of threshold and still
obtain the same result.

9For the logistic function with parameter α, the correlation coefficient of extremes is 1− α2 (see Longin
and Solnik, 2001). We find that the upper tail dependence coefficient is 2− 2α. Then, both coefficients are
zero when α equals 1 and different from zero when α is different from 1.

7



metric correlation comes from the asymmetries produced in the marginal distributions with

a regime switching in means, as suggested by the simulation in the previous section.10

Therefore it becomes difficult to distinguish asymmetries in dependence from asymmetry

in marginal distributions. This is a problem of practical relevance since most return series

exhibit asymmetry in volatility.

By reinterpreting Longin and Solnik (2001) results in term of TDC instead of asymp-

totic exceedance correlation, we show analytically that all these models cannot reproduce

asymptotic asymmetry even if some can reproduce finite distance asymmetry. These results

are extended to the rejection of more general classes of return-generating processes. The

key point of this result is the fact that many classes of models including Gaussian(or Stu-

dent) GARCH and RS can be seen as mixtures of symmetric distributions. We establish

the following result.

Proposition 2.1:

(i) Any GARCH model with constant mean and symmetric conditional distribution has

a symmetric unconditional distribution and hence a symmetric TDC.

(ii) If the conditional distribution of a RS model has a zero TDC, then the unconditional

distribution also has a zero TDC.

(iii) From a multivariate distribution with symmetric TDC, it is impossible to construct

an asymmetric TDC with a mixture procedure (as GARCH, RS or any other) by keeping

all marginal distributions unchanged across mixture components.

Proof : see Appendix A.

This proposition allows us to argue that the classical GARCH or RS models cannot

reproduce asymmetries in asymptotic tail dependence. Therefore, the classical GARCH

models (BEKK, CCC or DCC) with constant mean can be seen as a mixture of symmetric

distributions with the same first moments and therefore exhibit a symmetric tail depen-

dence function as well as a symmetric TDC.11 When the mean becomes time-varying as in

the GARCH-M model the unconditional distribution can allow asymmetry in correlation
10Ang and Bekaert (2002) note that the ability of a RS model (compared to a GARCH model) to reproduce

asymmetries comes from the fact that it accounts for the persistence in both first and second moments. The
GARCH model accounts for this persistence only in second moments. We provide analytical arguments to
support this intuition.
11The BEKK proposed by Engle and Kroner (1995) is a straightforward generalization of the GARCH

model to a multivariate case which guarantees positive definiteness of the conditional variance-covariance
matrix. In the CCC model proposed by Bollerslev (1990) the correlation matrix is assumed to be constant,
while in the DCC of Engle (2002) this matrix is dynamic.

8



(Ang and Chen, 2002), but this asymmetry comes from the mixture of the marginal distri-

butions. The resulting skewness cannot be completely disentangled from the asymmetric

correlation, since correlations are affected by marginal changes. Similarly, the classical RS

model with Gaussian innovations is a discrete mixture of normal distributions which has

a TDC equal to zero on both sides. Therefore, by (ii) we argue that both its TDCs are

zero. However, at finite distance, when the mean changes with regimes, the exceedance

correlation is not symmetric. This asymmetry is found by Ang and Chen (2002) and Ang

and Bekaert (2002) in their RS model, but it disappears asymptotically and it comes from

the asymmetry created in the marginal distributions by regime switching in means. Hence,

the asymmetries in correlation are not separable from the marginal asymmetry, exactly like

in the GARCH-M case. The part (iii) of proposition 2.1 extends this intuition in terms of

more general multivariate mixture models based on symmetric innovations. Actually when

the marginal distributions are the same across all symmetric TDC components of a mixture,

it is impossible to create asymmetry in TDCs.

Two relevant issues arise from the above discussion. First, how can we separate the

marginal asymmetries from the asymmetry in dependence? Second, how can we account

not only for asymmetries at finite distance but also for asymptotic dependence? In the next

section, we propose a flexible model based on copulas that addresses these two issues.

3 A Copula Model for Asymmetric Dependence

Our model aims at capturing the type of asymmetric dependence found in international

equity markets. Our discussion in the last section showed that it is important to disentangle

the marginal distributions from the dependence structure. Therefore, we need to allow for

asymmetry in tail dependence, regardless of the possible marginal asymmetry or skewness.

Copulas, also known as dependence functions, are an adequate tool to achieve this aim.

3.1 Disentangling the marginal distributions from dependence with cop-
ulas

Estimation of multivariate models is difficult because of the large number of parameters

involved. Multivariate GARCH models are a good example since the estimation becomes

intractable when the number of series being modeled is high. The CCC of Bollerslev (1990),

the DCC of Engle (2002), and the RSDC of Pelletier (2004) deal with this problem by sepa-

rating the variance-covariance matrix into two parts, one for the univariate variances of the

different marginal distributions, the other for the correlation coefficients. This separation
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allows them to estimate the model in two steps. In the first step, they estimate the mar-

ginal parameters and use them in the estimation of the correlation parameters in a second

step. Copulas offer a tool to generalize this separation while extending the linear concept

of correlation to nonlinear dependence.

Copulas are functions that build multivariate distribution functions from their unidi-

mensional margins. Let X ≡ (X1, ...,Xn) be a vector of n univariate variables. Denoting

F the joint n-dimensional distribution function and F1, ..., Fn the respective margins of

X1, ...,Xn. Then the Sklar theorem states that there exists a function C called copula

which joins F to F1, ..., Fn as follows.12

F (x1, ..., xn) = C (F1 (x1) , ..., Fn (xn)) (3.1)

This relation can be expressed in term of densities by differentiating with respect to all

arguments. We can therefore write (3.1) equivalently as

f (x1, ..., xn) = c (F1 (x1) , ..., Fn (xn))×
nY
i=1

fi (xi) (3.2)

where f represents the joint density function of the n-dimensional variable X and fi the

density function of the variable Xi for i = 1, ..., n. The copula density function is naturally

defined by c (u1, ..., un) ≡ ∂n

∂u1...∂un
C (u1, ..., un). Writing the joint distribution density in

the above form, we understand why it can be said that a copula contains all information

about the dependence structure.13

We now suppose that our joint distribution function is parametric and we separate the

marginal parameters from the copula parameters. So the relation (3.2) can be expressed as:

f (x1, ..., xn; δ, θ) = c (u1, ..., un; θ)×
nY
i=1

fi (xi; δi) ; (3.3)

ui = Fi (xi; δi) for i = 1, ..., n

where δ = (δ1, ..., δn) are the parameters of the different margins and θ denotes the vector of

all parameters that describe dependence through the copula. Therefore, copulas offer a way

to separate margins from the dependence structure and to build more flexible multivariate

distributions.
12See Nelsen (1999) for a general presentation. Note that if Fi is continuous for any i = 1, ..., n then the

copula C is unique.
13The tail dependence coefficients are easily defined through a copula as τL = lim

α→0

C (α,α)

α
and τU =

lim
α→0

2α− 1 +C (1− α, 1− α)

α
.
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More recent work allow some dynamics in dependence. In a bivariate context, Rodriguez

(2007) introduces regime switching in both the parameters of marginal distributions and

the copula function.14 Jondeau and Rockinger (2006) capture the time-varying volatilities

of the individual equity index return series by a GARCH model and introduce Markov-

switching Student-t copulas for pairs of countries. Ang and Bekaert (2002; 2004) allow

all parameters of the multivariate normal distribution to change with the regime. The

extension of these models to a large number of series faces the above-mentioned curse

of dimensionality. Since the switching variable is present in both the margins and the

dependence function, separation of the likelihood function into two parts is not possible and

the two-step estimation cannot be performed. Pelletier (2004) uses the same separation as

in the CCC or DCC and introduces the regime switching variable only in the correlation

coefficients. By doing so, he can proceed with the two-step procedure to estimate the model

while limiting the number of parameters to be estimated.15 We carry out a similar idea but

for nonlinear dependence.

Therefore, we separate the modeling of marginal distributions from the modeling of

dependence by using univariate GARCH models for the marginal distributions and intro-

ducing changes in regime in the copula dependence structure. The pattern of the model

with four variables (two countries, two markets in our following application) is illustrated

in Figure 3. The four marginal distributions are linked through a dependence function with

two regimes, one symmetric, the other asymmetric.

3.2 Specification of the Marginal Distributions

For marginal distributions, we use a M-GARCH (1,1) model similar to Heston-Nandi (2000):

xi,t = μi + λiσ
2
i,t + σi,tzi,t; zi,t ∼ N (0, 1) ; i = 1, · · · , 4 (3.4)

σ2i,t = ωi + βiσ
2
i,t−1 + αi (zi,t−1 − γiσi,t−1)

2 . (3.5)

The variables x1,t and x2,t represent the log returns of equities and bonds respectively

for the first country while x3,t and x4,t are the corresponding series for the second country;

σ2i,t denotes the conditional variance of xi,t, λi can be interpreted as the price of risk and γi

14The models proposed by Rodriguez (2004) in his analysis of contagion can reproduce asymmetric de-
pendence but it cannot distinguish between skewness and asymmetry in the dependence structure. In fact,
a change in regime produces both skewness and asymmetric dependence, two different features that must
be characterized separately. The analysis is limited to pairs of stock markets in Asia and Latin America.
15Since Pelletier (2004) uses the normal distribution with constant mean, the resulting unconditional

distribution is symmetric and cannot reproduce asymmetric dependence.
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captures potential asymmetries in the volatility effect.16 In the Heston-Nandi (2000) inter-

pretation, μi represents the interest rate.
17 The parameters of the marginal distributions

are grouped into one vector δ ≡ (δ1, · · · , δ4) , with δi = (μi, λi, ωi, βi, αi, γi).

3.3 Specification of the Dependence Structure

Our dependence model is characterized by two regimes, one Gaussian regime in which

dependence is symmetric (CN) and a second regime that can capture the asymmetry in

extreme dependence (CA). The conditional copula is given by:

C
¡
u1,t, ..., u4,t; ρ

N , ρA |st
¢
= stCN

¡
u1,t, ..., u4,t; ρ

N
¢
+ (1− st)CA

¡
u1,t, ..., u4,t; ρ

A
¢
, (3.6)

where ui,t = Fit (xi,t; δi), with Fit denoting the conditional cumulative distribution function

of xi,t given the past observations. The variable st follows a Markov chain with a constant

transitional probability matrix.

M =

µ
P 1− P
1−Q Q

¶
;P = Pr (st = 1 |st−1 = 1) and Q = Pr (st = 0 |st−1 = 0 ) (3.7)

The normal regime (st = 1) corresponds to the symmetric regime where the conditional

joint normality can be supported and the asymmetric regime (st = 0) corresponds to the

asymmetric regime in which markets are strongly more dependent for large negative returns

than for large positive returns.

The Gaussian copula CN is defined straightforwardly by (3.1) where the joint dis-

tribution F = ΦρN is the 4-dimensional normal cumulative distribution function with

all diagonal elements of the covariance matrix equal to one, i.e. CN

¡
u1, ..., u4; ρ

N
¢
=

ΦρN
¡
Φ−1 (u1) , ...,Φ−1 (u4)

¢
, where Φ is the univariate standard normal cumulative distri-

bution function.

The asymmetric components of the copula are illustrated in Figure 4. The first one is

characterized by independence between the two countries, but possibly extreme dependence

between equities and bonds for each country. The second one is characterized by indepen-

dence between equity and bond markets but allows for extreme dependence between equity

returns and bond returns separately. The third one allows for possible extreme dependence

16The condition βi +αiγ
2
i < 1 is sufficient to have the stationarity of the process xi,t with finite uncondi-

tional mean and variance (see Heston and Nandi, 2000).
17Here we keep μi as a free parameter to give more flexibility to our model.
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between bonds in one country and equities in another country but supposes independence

for the rest.

Formally, the asymmetric copula is the mixture of these three components and is ex-

pressed as follows:

CA

¡
u1, ..., u4; ρ

A
¢
≡ π1CGS

¡
u1, u2; τ

L
1

¢
× CGS

¡
u3, u4; τ

L
2

¢
+π2CGS

¡
u1, u3; τ

L
3

¢
× CGS

¡
u2, u4; τ

L
4

¢
+(1− π1 − π2)CGS

¡
u1, u4; τ

L
5

¢
× CGS

¡
u2, u3; τ

L
6

¢ (3.8)

with ρA =
¡
π1, π2, τ

L
1 , τ

L
2 , τ

L
3 , τ

L
4 , τ

L
5 , τ

L
6

¢
, and the bivariate component is the Gumbel

survival copula given by

CGS

¡
u, v; τL

¢
= u+ v − 1 + exp

∙
−
³
(− log (1− u))θ(τ

L) + (− log (1− v))θ(τ
L)
´1/θ(τL)¸

,

(3.9)

where θ
¡
τL
¢
=

log (2)

log (2− τL)
, τL ∈ [0, 1) is the lower TDC and the upper TDC is zero.18

One can notice that our asymmetric copula specification implies some restrictions in the

dependence structure. For three different couples from different components of this copula,

the sum of their TDC is lower than one.19 Without any restrictions this sum may reach 3.

Such restrictions are dictated by some copula limitations.20 A major problem in multivariate

distributions’ construction today and perhaps the most important open question concerning

copulas as mentioned by Nelsen (1999, page 86) is how to construct multivariate copulas

with specific bivariate marginal distributions.21 A theorem by Genest et al. (1995) states

that it is not always possible to construct multivariate copulas with given bivariate margins.

Therefore, even if in the bivariate case we can have a nice asymmetric copula with lower

tail dependence and upper tail independence as Longin and Solnik (2001) suggest, some

18The Longin and Solnik (2001) result implies that lower tails are dependent while upper tails are indepen-
dent. Hence, the Gumbel survival copula is designed to model this feature since it has this tail dependence
structure.
19For example, the TDC between bonds and equities in the first country is π1τL1 , between equities of two

countries π2τL3 , and between equities in the first country and bonds in the second country (1− π1 − π2) τ
L
5 .

Therefore, the sum is π1τL1 + π2τ
L
3 + (1− π1 − π2) τ

L
5 ≤ 1, since τL1 ≤ 1, τL3 ≤ 1, and τL5 ≤ 1.

20This model can be generalized in the same way to a copula of any dimension.
21Aas, Czado, Frigessi, and Bakken (2007) propose an approach to build multiple dependence based on

pair-copula decomposition. Their approach proceeds by a hierarchical incorporation of more variables in the
conditioning sets. This procedure provides a nice way to build flexible multivariate copula. In practice it is
important to make a good choice of couples that should be used in the first level of the hierarchy since a
limitation of the procedure is that the couples after the first level of the hierarchy are based on conditional
copulas.
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problems remain when we contemplate more than two series. Most existing asymmetric tail

dependent copulas are in the family of archimedean copulas and the usual straightforward

generalization in multivariate copulas constrains all bivariate marginal copulas to be the

same. This is clearly not admissible in the context of our analysis. In the above model,

we allow each of the six couples of interest to have different levels of lower TDC. As CA is

constructed, it is easy to check that it is a copula since each component of the mixture is a

copula and the mixture of copulas is a copula.22

It is important to notice that, in this model, the labeling of each regime is defined ex-ante.

The normal regime (st = 1) corresponds to the symmetric regime where the conditional

joint normality can be supported and the asymmetric regime (st = 0) corresponds to the

asymmetric regime in which markets are strongly more dependent for large negative returns

than for large positive returns.

3.4 An adapted parsimonious model

Given our application, we impose an additional constraint: π1 + π2 = 1. This means that

we neglect the asymmetric cross-dependence between equities in one country and bonds in

another country. However, it should be stressed that we maintain cross-country dependence

through the normal regime. We will verify in any case if this restriction is supported by the

data or not 23. The mixed copula becomes:

CA

¡
u1, ..., u4; ρ

A
¢
≡ πCGS

¡
u1, u2; τ

L
1

¢
×CGS

¡
u3, u4; τ

L
2

¢
+(1− π)CGS

¡
u1, u3; τ

L
3

¢
× CGS

¡
u2, u4; τ

L
4

¢ (3.10)

Therefore, the asymmetric copula is now characterized by just five parameters ρA =¡
π, τL1 , τ

L
2 , τ

L
3 , τ

L
4

¢
.

3.5 Estimation

As already mentioned, our structure allows for a two-step estimation procedure. The likeli-

hood function must be evaluated unconditionally to the unobservable regime variable st and

22A copula can be seen as the cdf of a multidimensional variable with uniform [0, 1] margins. If we consider
two bivariate independent variables with uniform margins the copula linking the four variables is simply the
product of the corresponding bivariate copulas. Hence, such a product is always a copula.
23A related study by Hartmann, Straeman, and De Vries (2004) using extreme value theory tends to sup-

port this restriction. Analyzing stock and bond returns for G-5 countries, they find that extreme dependence
between stocks and bonds is much lower that extreme dependence between stock markets or bond markets.
This is especially the case for cross-country dependence between stocks in one country and bonds in another
country.

14



decomposed in two parts. Let us denote the sample of observed data byXT = {X1, · · · ,XT}
where Xt ≡ {x1,t, · · · , x4,t}. The log likelihood function is given by:

L (δ, θ;XT ) =
TX
t=1

log f
¡
Xt; δ, θ|Xt−1

¢
(3.11)

where Xt−1 = {X1, ...Xt−1} and θ is a vector including the parameters of the copula and

the transition matrix. Hamilton (1989) describes a procedure to perform this type of eval-

uation24. With ξt = (st, 1− st)
0 and denoting

ηt =

∙
f (Xt; δ, θ|Xt−1, st = 1)
f (Xt; δ, θ|Xt−1, st = 0)

¸
(3.12)

the density function conditionally to the regime variable st and the past returns can be

written as:

f (Xt; δ, θ|Xt−1, st) = ξ0tηt. (3.13)

Since st (or ξt) is unobservable, we integrate on st and obtain the unconditional density

function:

f (Xt; δ, θ|Xt−1) = Pr
£
st = 1|Xt−1; δ, θ

¤
× f (Xt; δ, θ|Xt−1, st = 1)

+Pr
£
st = 0|Xt−1; δ, θ

¤
× f (Xt; δ, θ|Xt−1, st = 0)

(3.14)

The conditional probabilities of being in different regimes at time t conditional on obser-

vations up to time t− 1, denoted by bξt|t−1 ≡(Pr £st = 1|Xt−1; δ, θ
¤
, Pr

£
st = 0|Xt−1; δ, θ

¤
)0,

are computed through the Hamilton filter. Starting with the initial value bξ1|0, the optimal
inference and forecast for each date in the sample is given by the iterative equations:

bξt/t =
hbξ0t|t−1ηti−1 ³bξt|t−1 ¯ ηt

´
, (3.15)bξt+1/t = M 0.bξt|t, (3.16)

where ¯ denotes element-by-element multiplication. Finally, the unconditional density can
be evaluated with the observed data as f (Xt; δ, θ|Xt−1) = bξ0t|t−1ηt and the log likelihood
becomes:

L (δ, θ;XT ) =
TX
t=1

log
³bξ0t|t−1ηt´ . (3.17)

24A general presentation can be found in Hamilton (1994, chapter 22).
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To perform the two-step procedure, we decompose the log likelihood function into two

parts: the first part includes the likelihood functions of all margins, while the second part

represents the likelihood function of the copula.

Proposition 3.2 (Decomposition of the log likelihood function) The log likelihood

function can be decomposed into two parts including the margins and the copula

L (δ, θ;XT ) =
4X

i=1

Li

¡
δi;Xi,T

¢
+ LC (δ, θ;XT ) (3.18)

where

Xi,t = {xi,1, ..., xi,t} ;

Li

¡
δi;Xi,T

¢
=

TP
t=1
log fi

¡
xi,t; δi|Xi,t−1

¢
LC (δ, θ;X) =

TP
t=1
log
³bξ0t|t−1ηct´

with

ηct =

∙
c (u1,t(δ1), ..., un,t(δn); θ| st = 1)
c (u1,t(δ1), ..., un,t(δn); θ| st = 0)

¸
; ui,t(δi) = Fi

¡
xi,t; δi|Xi,t−1

¢

and bξ0t|t−1 filtered from ηct as

bξt/t = hbξ0t|t−1ηcti−1 ³bξt|t−1 ¯ ηct

´
bξt+1/t =M 0.bξt|t

Proof : see Appendix A.

Several options are available for the estimation of the initial value bξ1|0. One approach
is to set it equal to the vector of unconditional probabilities, which is the stationary tran-

sitional probability of the Markov chain. Another simple option is to set bξ1|0 = N−11N .

Alternatively it could be considered as another parameter, which will be estimated subject

to the constraint that 10Nbξ1|0 = 1. We will use the first option here.
Through the above decomposition, we notice that each marginal log likelihood function

is separable from the others. Therefore, even if the estimation of all margins is performed

in a first step, we can estimate each set of marginal parameters separately into this step.

The first step is then equivalent to n single estimations of univariate distributions. The

two-step estimation is formally written as follows:
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bδ = argmax
δ=(δ1,...,δ4)∈∆

4X
i=1

Li (δi;Xi,.) , (3.19)

bθ = argmax
θ∈Θ

LC

³bδ, θ;X´ . (3.20)

The estimator for the parameters of the marginal distributions is then bδ = ³bδ1, ...,bδ4´,
with bδi = ³bμi, bλi, bωi, bβi, bαi, bγi´0 ; and bθ = ³bρN ;bρA; bP ; bQ´ includes all estimators of the
parameters involved in the dependence structure. ∆ and Θ represent the sets of all possible

values of δ and θ respectively.

3.6 Testing asymmetry in dependence

While the proposed copula model has the potential to capture asymmetry in dependence,

we need to test formally for the presence of such asymmetric dependence. The natural way

to evaluate whether dependence is asymmetric is to test the null hypothesis of one normal

copula regime (H0 : (P = 1 and Q = 0), where P and Q are the parameters of the transition

probability matrix), against the alternative hypothesis of two-copula regimes including the

normal one and the asymmetric one. This test faces many irregularity problems. Under the

null hypothesis, some nuisance parameters are unidentified and the scores are identically

zero. These are the general problems of testing in RS models.

Hansen (1996) describes the asymptotic distributions of standard test statistics in the

context of regression models with additive nonlinearity. Garcia (1998) and Hansen (1992)

provide the asymptotic null distribution of the likelihood ratio test. Andrews and Ploberger

(1993) address the first problem in a general context and derive an optimal test. The above

procedures solve the problem of unidentified nuisance parameters under the null and the

identically zero scores. However, there is an additional problem of testing parameter on the

boundary. Andrews (2001) deals with this boundary problem but in the absence of the first

two problems.

Maximized Monte Carlo (MMC) tests of Dufour (2005), which are a generalization of

classical Monte Carlo (MC) tests of Dwass (1957) and Barnard (1963), are adapted for tests

facing all these problems. The MC tests of Dwass (1957) and Barnard (1963) are performed

by doing many replications (with the same sample size as the data sample) under the null

hypothesis, and compute the test statistic for each replication. The distribution of the

test statistic is therefore approximated by the distribution of the obtained values. One can

therefore compute the value of the test statistic with the data and deduce from the MC
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distribution the p-value of the test. The classical MC test does not deal with the presence

of nuisance parameters under the null hypothesis. The MMC of Dufour (2005) addresses

the problem of nuisance parameters under the null. When the test statistic involves the

nuisance parameters as in the case of the likelihood ratio test under the alternative, the

values of these parameters are needed to compute the test statistic on simulated data.

The MMC technique is the maximization of the p-values given all the possible values of

the nuisance parameters. This test is computationally very demanding. However, Dufour

(2005) proposes a simplified version that focuses on the estimated values of the nuisance

parameters and shows that it works under the assumptions of uniform continuity, and

convergence over the nuisance parameter space. Our model satisfies these assumptions of

uniform continuity and convergence. Therefore, we can apply this simpler version also

known as parametric bootstrap test.

4 Dependence structure in international bond and equity
markets: an empirical investigation

4.1 Data

We will consider the same model for two pairs of two countries. First, we model the equity

and bond markets in the United States and Canada. The US equity returns are based on the

SP 500 index, while the Canadian equity returns are computed with the Datastream index.

The bond series are indices of five-year government bonds computed by Datastream. These

bond indices are available daily and are chain-linked allowing the addition and removal of

bonds without affecting the value of the index.

We also consider France and Germany as a pair of countries. An additional interest

here will be to see how the introduction of the European common currency changed the

dependence structure between the asset markets in these two countries. The bond indices

are the Datastream five-year government bond indices, while the equity indices are the

MSCI series.

All returns are total returns and are expressed in US dollars on a weekly basis from

January 01, 1985 to December 21, 2004, which corresponds to a sample of 1044 observations.

Descriptive statistics are reported in Table 1.

Sharpe ratios appear to be of the same magnitude for both equities and bonds, around

0.6 in average for the first and slightly above 1 for the second. The United States exhibits

the highest ratios among the four countries. All return series present negative skewness

except for the French bond index. Both mean returns and return volatility are higher in
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France and Germany than in the US and Canada. The volatility of returns in France and

Germany is more than 23%, while it is only 18% in the US and Canada.

Unconditional correlations are reported in Table 2. The US and Canadian markets

exhibit relatively high correlations, 0.72 for equities and 0.5 for bonds. The same is true for

the France-Germany pair, although the bond markets are tightly linked, with a correlation

of 0.94. The North-American equity markets are less correlated with European equity

markets (around 0.2) than their bond counterparts (around 0.32). The cross-correlations

between equity and bond markets vary from country to country. In average the two markets

seem to move independently in the United States, while they are more closely related in

Canada (0.44) and in Europe (around 0.3 for both France and Germany). Cross-correlations

between equities and bonds in two different countries are not very high for US and Canada,

and of the same order of magnitude than within-country cross-correlations (0.3) for France

and Germany.

4.2 Marginal distributions

The estimates of the marginal parameters are reported in Table 3. The large values for the

βi parameters (around 90%) capture the high persistence in volatility. The high degree of

significance for the parameter λ indicates that asset returns are skewed.

One important assumption for these GARCH models is that the error terms are i.i.d.

Therefore, to verify if the assumption is fulfilled, we perform some tests of independence

on the residuals. The test results in Table 4 suggest that the independence assumption of

residuals cannot be rejected for all series with a good degree of confidence.

4.3 Dependence structure in bond and equity markets

Three main conclusions emerge from the empirical results. First, there appears to be a

large extreme cross-country dependence for both the equity and bond markets, while there

is little dependence between equities and bonds in the same country. Second, the dependence

structure exhibits a strong nonlinearity. Third, there seems to be a link between exchange

rate volatility and asymmetry of dependence.

4.3.1 US-Canada Dependence Structure

In Table 5, we report the results of estimating the dependence model described in section

(3.4). The cross-country extreme dependence is large in both equity and bond markets, but

the dependence across the two markets is relatively low in both countries. In the asymmetric
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regime, the TDCs are larger than 54 % in both bond-bond and equity-equity markets, while

both equity-bond TDCs in US and Canada are lower than 2%. This observation has an

important implication for international diversification. The fact that extreme dependence

in international equity and bond markets is larger than national bond-equity dependence

can have a negative effect on the gain of international diversification and encourage the

switching from equity to the domestic bond or risk-free asset in case of bear markets.

The average absolute value of correlation in the normal regime is larger than 39% for

cross-country dependence and lower than 41% for equity-bond dependence. In the last

case the correlation between bonds and equities in Canada is unusually high. The results

underline the differences between unconditional correlation and the correlation in the normal

regime. In fact, the presence of extreme dependence in the negative returns explains this

difference since the multivariate Gaussian distribution has independence in the tails of

returns regardless of the level of correlation.

The separation of the distribution into two parts, including the normal regime and the

asymmetric regime, allows to capture the strong nonlinear pattern in the dependence struc-

ture. Moreover, it is interesting to see that for a high unconditional correlated couple such

as the US and Canada equity markets, this separation gives not only an extreme dependence

for the asymmetric regime, but also a high correlation in the normal regime (87 %) that

appears larger than the unconditional correlation (72 %). This result may seem counter-

intuitive if we take the unconditional correlation as a “mean” of the correlations in the two

regimes. Of course, one must realize that the asymmetric regime can be characterized by

a low correlation but by a large TDC. This demonstrates the importance of distinguishing

between correlation and extreme dependence. The mixture model is better able to capture

this distinction in fitting the data. A normal distribution may be a good approximation for

measuring finite distance dependence, but an appropriate copula structure is necessary for

characterizing extreme dependence.

4.3.2 France-Germany Dependence Structure

The estimation results are shown in Table 6. Due to a high cross-country unconditional

correlation in both markets, the results for France and Germany are more eloquent. The

dependence between equities and bonds is low, while the dependence between assets of the

same type is large in both regimes. For France and Germany, equity-equity correlation and

bond-bond correlation are larger than 90% while bond-equity correlations are lower than

21% in the same country as well as between the two countries. In the asymmetric regime,
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the TDC are larger than 67% between assets of the same type and lower than 2 percent

between bond and equities in both France and Germany25.

To analyze the effect of the Euro on the dependence structure, we split the observation

period in two sub-periods, before and after the introduction of the currency. Tables 7

and 8 contain the results for the respective subperiods. We find that the introduction of

the Euro increases the correlation in the normal regime between the French and German

markets. Before the introduction of the Euro, in the normal regime, the cross-country

correlation between assets of the same type is in average 80%, against more than 96% after

the introduction. The cross-asset correlations exhibit a similar pattern since all correlations

increase after the introduction of the Euro. This result is consistent with those of Cappiello,

Engle and Sheppard (2003) who find that the introduction of a fixed exchange rate leads

to a structural break characterized by a high correlation.26 For the asymmetric regime, the

results are more surprising since the extreme dependence between the French and German

equity markets drastically decreases from 87% to 26%. All the other extreme dependence

coefficients increase, but only the TDC of the FR bond-DE bond pair increases significantly.

Since this change in the level of dependence suggests a relationship between the dependence

structure and the exchange rate, we investigate it further in the next section for both pairs

of countries.

These results for the two pairs of countries that we analyzed suggest that an asymmetric

regime cannot be readily associated with market situations such as bull and bear markets

or calm and volatile markets used in the previous literature on contagion. Das and Uppal

(2003) relate high volatility and downturn markets to a large conditional correlation27, while

Forbes and Rigobon (2001) define contagion as a change in correlation during more volatile

market times. In an asymmetric regime of dependence, extreme negative shocks are more

likely to be transmitted to other markets than positive shocks, irrespective of the market

situation. In the normal dependence regime good and bad shocks are transmitted with the

same probability.

To conclude, let us mention that the results of the Monte Carlo tests reported in Table

9 reject soundly the absence of asymmetry in the dependence structure with p-values close

25We also estimated a version of the model where we allowed dependence between equities and bonds
across Germany and France but not within each country. We found TDCs even lower than 2 percent, which
tends to support our initial assumption to ignore such cross-country dependence across markets.
26The goal of Cappiello, Engle and Sheppard (2003) was to investigate the asymmetric effect of past news

on the correlation. Since it is well documented that the negative shocks have a larger effect on volatility
than the positive shocks of the same magnitude, they try to see if the result is similar for correlation.
27Boyer, Gibson, and Loretan (1999), and Forbes and Rigobon (2002) show that there is a theoretical bias

when comparing correlations in different market situations
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to zero in both pairs of countries.

4.3.3 Link between asymmetric dependence and the exchange rate

The filtered probabilities to be in asymmetric regime are obtained as a by-product of es-

timation. They provide at each time period t a probabilistic assessment of being in the

asymmetric regime conditional on the information available at time t. For France and Ger-

many, these probabilities show a clear break after the introduction of the Euro. Before its

introduction, the dependence is more likely asymmetric and becomes more Gaussian after

the event. To investigate this relationship further, we perform a logistic regression of the

conditional probabilities to be in the asymmetric regime on the volatility of the exchange

rate.28

For France and Germany, we have:

bPt = a
-1.26e+0

(6.81e-2)

+ b ×
5.06e+2

(2.29e+1)

V olt + et

The dependent variable is bPt = log (Pt/(1− Pt)), where Pt is the conditional proba-

bility to be in the asymmetric regime given the time-t available information, and V olt is

the exchange rate volatility between the two countries obtained by a M-GARCH(1,1) fil-

ter. Standard deviations are reported between parentheses. The coefficient is positive and

highly significant (the R2 of the regression is 0.86) suggesting a strong relationship between

exchange rate volatility and asymmetric dependence.

One may be concerned that the relation between the probability of the asymmetric

regime and exchange rate volatility is due to the correlation of the latter with the volatility

of the equity market or the bond market of the respective countries. To address this issue,

we perform an orthogonalization. We regress the exchange rate on all equity and bond

return volatilities in a first step and keep residuals. Then we regress the probability of

asymmetric regime on these residuals in a second step. The relation remains significant.

We run the same regression for US and Canada to investigate if the relation holds when

no structural change occurs. The results are similar to the European results.

bPt = a
-7.71e-1

(1.76e-1)

+ b ×
9.30e+1

(2.36e+1)

V olt + et

28Since the probability Pt to be in a regime is between 0 and 1, the logistic regression allows us to keep
this constraint by proceeding as follows Pt = exp(a + V olt + εt)/(1 + exp(a + V olt + εt)) or equivalently
log (Pt/(1− Pt)) = a+ bV olt + εt and we can perform the usual regression.
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The R− square of the regression remains high at 0.75.

The fact that high exchange rate volatility is associated with asymmetric dependence

appears to be consistent with the results in the literature, since asymmetric dependence

was mainly found to be present in international equity markets (see Longin and Solnik,

2001). Our own results suggest the presence of asymmetric dependence in international

bond markets as well.

Intuitively, the persistence of each dependence regime depends on the persistence of

exchange rate volatility. A high exchange rate volatility increases extreme comovements.

When bad news in a country combine with a very active currency market, transmission

through the latter makes downside joint movements more likely than in a fixed exchange

rate regime. This may provide an insight about the strong change in the persistence of

different regimes after the introduction of the Euro. Before, the exchange rate between

the French Franc and the German Deutsch Mark was especially volatile and this may

explain a strong persistence in the asymmetric regime when the model is estimated over

this subperiod. After the introduction of the Euro, the volatility is reduced to zero and the

normal regime becomes the only persistent regime. By putting the two subperiods together,

both regimes appear persistent, which is consistent with our explanation.

These results are consistent with Capiello, Engle and Sheppard (2003) who find a struc-

tural break in the dependence structure of European markets after the introduction of the

Euro. They find an increase to a near perfect correlation. However, due to the fact that

the dynamic conditional correlation model they use is based on the normal distribution the

correlation before the introduction of Euro is misleading since as we find, the dependence

between European countries was more asymmetric and therefore the dependence was more

in the tail and cannot be completely captured by correlation.

5 Asymmetric Dependence Effect on International Diversi-
fication

The benefits of international diversification are well documented in the literature, but in-

vestors tend to invest mainly in their own country. In fact, the share invested by home

investors in domestic assets is much larger than the share predicted by the Mean-Variance

(MV) model. Two main explanations have been put forward. Transaction costs for inter-

national assets reduce the expected gain on foreign assets, while information asymmetry

between local and foreign investors increases the risk of foreign assets. These explanations

affect the first two moments of asset returns. The transaction costs affect the first moment
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by reducing the expected return and the asymmetric information affects the second moment

since it increases the risk of foreign assets29.

We go beyond the first two moments to investigate the effect of skewness and specially co-

skewness on cross-country diversification and also on bonds against equities diversification.

We show how strong dependence in lower returns in two markets can reduce co-skewness

and therefore lower skewness in a portfolio with long positions on both markets. Since the

reduction of co-skewness lowers the gains to diversification, investors tend to hold a higher

share of low-risk assets than in a MV portfolio.

Two recent studies have examined the portfolio allocation effects of asymmetric correla-

tion or dependence between equities and cash. In a two-regime correlation model, Ang and

Bekaert (2004) find that the investor tends to switch to cash when a persistent bear market

hits, while Patton (2004) notices a significant gain when an investor takes into account the

existence of the asymmetric dependence structure. Here we study analytically the effects

of asymmetric dependence on cross-country diversification and on domestic diversification

between bonds and equities.

The agent’s wealth at time t invested in domestic and foreign bonds and equities is

described by the following equation:

Wt =Wt−1
h
wtη

h
tR

h,b
t + wt

¡
1− ηht

¢
Rh,e
t + (1− wt) η

f
tR

f,b
t + (1− wt)

³
1− ηft

´
Rf,e
t

i
,

where Rh,b
t , R

h,e
t , Rf,b

t , and Rf,e
t are the returns of domestic bond, domestic equity, for-

eign bond, and foreign equity respectively. We adopt a specification which simplified the

analysis of two above-mentioned effects, cross-country and domestic diversification. So, wt

is the share invested in domestic assets, the remaining (1− wt) being invested in foreign

assets, while ηht and ηft are the shares invested in domestic and foreign bonds respectively.

5.1 Investor Problem

To analyze the effects of asymmetric dependence on cross-country and domestic diver-

sification, we assume that the investor has to choose the share wt invested in domestic

assets, and the bond shares ηht and ηft . Therefore, the return on his domestic port-

folio is Rh
t = wtη

h
tR

h,b
t + wt

¡
1− ηht

¢
Rh,e
t , while the return on the foreign portfolio is

29Glassman and Riddick (2001) perform an empirical assessment of these potential explanations. Using
data for six developed countries, they find that to explain the deviations, transaction costs must be in excess
of 1% per month, 14—19% per year, against the actual estimation of 1—4% per annum, with some variation
across countries (see, e.g., Perold and Sirri, 1994; Solnik, 1996). Moreover, Glassman and Riddick (2001)
find that the implied volatility that matches the portfolio data is greater than twice the historical volatility
and therefore is unreasonable.
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Rf
t = (1− wt) η

f
tR

f,b
t + (1−wt)

³
1− ηft

´
Rf,e
t . His portfolio wealth for one period is

then Wt = Wt−1
h
wtR

h
t + (1− wt)R

f
t

i
. The investor is assumed to maximize his expected

utility function EU (Wt) .

In order to take into account the third moments, we consider a cubic Taylor expansion

of expected utility around the average wealth30:

E (U (Wt)) = U
¡
Wt

¢
+
U 00
¡
Wt

¢
2

E
¡
Wt −Wt

¢2
+
U 000

¡
Wt

¢
3!

E
¡
Wt −Wt

¢3
+

o(4),

where Wt = E (Wt), and o(4) represents the terms of order larger than three that are

supposed to be negligible compared to the terms of smaller order. We also make the usual

assumptions regarding the properties of the investor’s utility function, that is positive mar-

ginal utility (U 0 ≥ 0), risk aversion (U 00 ≤ 0), and non-increasing absolute risk aversion

(U 000 ≥ 0).
The third centered moment of the investor portfolio is given by:

E
¡
Wt −Wt

¢3
= W 3

t−1

h
w3t σ

3
htsht + (1− wt)

3 σ3ftsft

+ 3w2t (1− wt)σ
2
htσftchft + 3wt (1− wt)

2 σhtσ
2
ftcfht

i
where

σ2it = var
¡
Ri
t

¢
;

sit = E

Ã
Ri
t −E

¡
Ri
t

¢
σit

!3
;

cijt = E

⎛⎝ÃRi
t −E

¡
Ri
t

¢
σit

!2⎛⎝Rj
t −E

³
Rj
t

´
σjt

⎞⎠⎞⎠ .

When a representative international investor has positive shares of foreign and domestic

assets in his portfolio, skewness and co-skewness affect positively investor expected utility.

Intuitively, when skewness (or co-skewness) decreases, the investor is less likely to diversify.

In presence of negative skewness, investor will diversify less than he does for the MV portfolio

which corresponds to a case of zero skewness. The results below formalize this intuition.

5.2 Asymmetric Dependence and Cross-Country Portfolio Diversifica-
tion: Home Bias Investment

The importance of skewness in asset pricing and portfolio choice is well documented by

Harvey and Siddique (2000) and the references therein. They find a negative trade-off
30Going back to Samuelson (1970), we can consider that a cubic expansion provides a reasonable approx-

imation of the expected utility function, especially for distributions with low volatility.

25



between expected returns and skewness. In a portfolio with a long position in two assets,

co-skewness has a similar effect since it is positively related to the portfolio skewness. In

a MV trade-off behavior, for a portfolio of two identically and independently distributed

assets, we allocate one half of the portfolio to each asset. When the variance of one asset

increases, its share decreases. The issue here is to investigate what is the effect of asymmetric

dependence through co-skewness when we consider the third moment for expected utility.

To characterize asymmetric dependence, Longin and Solnik (2001) use exceedance cor-

relation. This characterization does not allow us to make a link with the portfolio third

moment. With the copula model we developed in the previous sections, it is possible to

establish a link between co-skewness and asymmetric dependence.

Proposition 5.1: For F and F 0 with the same marginal distributions and the same cor-

relation coefficient, let (X1,X2) Ã F ≡ (F1, F2, CrG) and (X 0
1,X

0
2) Ã F 0 ≡ (F1, F2, CN) ,

where CrG is a rotated Gumbel copula and CN is a Gaussian copula such that CN ≤ CrG.

Therefore ½
CoSkew (X1,X2) ≤ CoSkew(X 0

1,X
0
2)

CoSkew (X2,X1) ≤ CoSkew(X 0
2,X

0
1)

Proof See Appendix.

This result means that a strong dependence in lower returns creates a lower (or large

negative) co-skewness. To analyze the effect of co-skewness on international diversification,

we start from the MV optimal portfolio and then show that introducing skewness in the

objective function, asymmetric dependence will reduce the portfolio share invested in the

higher-risk assets for very risk averse investors.

Proposition 5.2: If the following conditions are satisfied

i)

¯̄̄̄
¯ Pn≥4: 1n!U (n)

³
Wt

∗´ h
E
³
W ∗

t −W
∗
t

´ni¯̄̄̄¯ ¿
¯̄̄̄
3P

n=0:

1
n!U

(n)
³
W
∗
t

´h
E
³
W ∗

t −W
∗
t

´ni¯̄̄̄
: va-

lidity of the third order approximation of expected utility around W
∗
t , the MV optimal port-

folio final wealth

ii) the optimal share invested in domestic assets in a MV behavior w∗t is in the range

(1/3, 1), and is such that
σft
σht

> δ (w∗t ) ≡
w∗t (2− 3w∗t )

(1− w∗t ) (3w
∗
t − 1)

: large (perceived) risk for

foreign portfolio.

iii) chft = cfht ≡ ct,

then there exists a threshold ct such that for ct ≤ ct we have

∂

∂wt
EU (Wt)

¯̄̄̄
wt=w∗t

> 0
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where U (n) is the n-order differential of U , and U (0) = U .

Proof See Appendix

This proposition can be interpreted as follows. A strong downside market dependence

which creates co-skewness combined with a large foreign risk implies that the share invested

in the domestic portfolio will increase compared with the share invested in a MV framework.

This provides an additional explanation for the home bias phenomenon. We may notice

that the lower threshold δ (.) for the ratio between foreign and domestic volatilities is a

decreasing function of w∗t , with δ (0.5) = 1. It means that if in the MV framework less than

half of the wealth is invested in the domestic portfolio, foreign volatility should be greater

than domestic volatility to insure that strong downside dependence will increase the home

investment.

5.3 Asymmetric Dependence Effect on Domestic Diversification: Flight
to Safety.

Starting at the MV optimal point, we can also perform a local analysis of the asymmetric

dependence effect on the equity and bond diversification. Let ηht
³
w∗t , η

f∗
t

´
, the optimal

share of bonds in the domestic portfolio, be a function of w∗t , the MV optimal share invested

in domestic assets, and ηf∗t , the MV optimal share of bonds in the foreign portfolio. As in the

case of cross-country diversification, it can be similarly shown that asymmetric dependence

will introduce a bond bias for a very risk averse investor. So, ηht will increase in the

asymmetric regime if its MV optimal solution ηh∗t belong to the range (1/3, 1). A similar

behavior will be observed for the share of bonds in the foreign portfolio.

The main intuition for the effect of asymmetric dependence on home bias is the increasing

share invested in the asset with lower risk. The same intuition explains the fact that in

the presence of asymmetric dependence, investors will increase the share of bonds in their

portfolio relatively to equity. For less risk averse agents, the bond share is lower in the

asymmetric framework than the share in the normal regime, but it becomes larger for

investors with higher risk aversion. These results are related to the downside risk premium

found by Ang et al (2006). Actually, diversification beyond a certain level increases downside

risk and due to the trade-off between this risk and the expected return, investors should

adjust their portfolio according to their risk aversion level.
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6 Conclusion

We have proposed a copula-based model of extreme dependence asymmetry that can ra-

tionalize the stylized facts put forward by Longin and Solnik. We applied it to the char-

acterization of the dependence in the equity and bond markets of two pairs of countries,

the United States and Canada and France and Germany respectively. We capture the well-

known strong asymmetric behavior across equity markets, but we also put forward a similar

pattern in bond markets. The proposed model allowed us to discover a relationship between

the filtered probabilities to be in the asymmetric regime and the volatility of exchange rates.

This was not possible with the extreme value approach of Longin and Solnik (2001) since

only the tails of the distributions are modeled.

We also derived the implications of the model for portfolio allocation. We show in

particular under which conditions asymmetric extreme dependence will rationalize the phe-

nomena known as home bias and flight to safety. Since the exchange rate volatility may be

a factor behind the asymmetric behavior of international equity and bond market depen-

dence, it will be interesting to extend the model to incorporate the exchange rate in order

to study the portfolio of an international investor. Moreover, the asymmetry put forward

between positive and negative extreme returns suggests to investigate the behavior of an

investor endowed with disappointment aversion preferences as in Ang et al (2006).
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Appendix A. Proofs

Proof of Proposition 2.1

To prove this proposition, we need the two following lemmas

Lemma 1: (a) Let
©
f (s)

ªn
s=1

be a family of symmetric multivariate density functions

of n (≤ ∞) variables with same mean. The mixture f =
nP

s=1
πsf

(s), where
nP

s=1
πs = 1,

and πs ≥ 0 for any s, is a symmetric multivariate density function. (b) Moreover for a

continuum of symmetric multivariate density function
©
f (σ)

ª
σ∈A⊆R with same mean, the

mixture f =
Z
A
πσf

(σ)dσ, where
Z
A
πσdσ = 1, is a symmetric multivariate density function.

Proof : Let μ be the mean of all f (s) (and all f (σ))

f (μ− x) =
nP

s=1
πsf

(s) (μ− x)

by symmetry of all f (s), we have,
nP

s=1
πsf

(s) (μ− x) =
nP

s=1
πsf

(s) (μ+ x) = f (μ+ x)

i.e. f (μ− x) = f (μ+ x) and the part (a) follows. Similarly for mixture of continuum,

f (μ− x) =

Z
A
πσf

(σ) (μ− x) dσ =

Z
A
πσf

(σ) (μ+ x) dσ = f (μ+ x) and we have (b).

Lemma 2: Let
©
F (s)

ªn
s=1

be a family of bivariate cdf with zero lower (upper) TDC.

The mixture F =
nP

s=1
πsF

(s), where
nP

s=1
πs = 1, and πs ≥ 0, for any s, is a bivariate density

function with lower (upper) TDC.

Proof : we do the proof for lower tail since by “rotation” we have the same result for

upper tail.

Let τFL be the lower TDC of F , we have

τFL = lim
α→0

Pr
£
X ≤ F−1x (α)

¯̄
Y ≤ F−1y (α)

¤
= lim

α→0

Pr
£
X ≤ F−1x (α) , Y ≤ F−1y (α)

¤
Pr
£
Y ≤ F−1y (α)

¤
= lim

α→0

F
¡
F−1x (α) , F−1y (α)

¢
Fy
¡
F−1y (α)

¢
and since F =

nP
s=1

πsF
(s), we have
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τFL = lim
α→0

nP
s=1

πsF
(s)
¡
F−1x (α) , F−1y (α)

¢
α

= lim
α→0

nP
s=1

πs
F (s)

¡
F−1x (α) , F−1y (α)

¢
α

=
nP

s=1
πs lim

α→0

F (s)
¡
F−1x (α) , F−1y (α)

¢
α

by definition F (s)
¡
F−1x (α) , F−1y (α)

¢
= C(s)

³
F
(s)
x

¡
F−1x (α)

¢
, F

(s)
y

¡
F−1y (α)

¢´
where C(s) is the copula and F (s)x , F (s)y the marginal cdf corresponding to F (s), we have

α = Fx
¡
F−1x (α)

¢
=

nP
s=1

πsF
(s)
x

¡
F−1x (α)

¢
so

F
(s)
x

¡
F−1x (α)

¢
≤ α/πs for all s and similarly F

(s)
y

¡
F−1y (α)

¢
≤ α/πs,

hence

lim
α→0

F (s)(F−1x (α),F−1y (α))
α = lim

α→0

C(s)
³
F
(s)
x

¡
F−1x (α)

¢
, F

(s)
y

¡
F−1y (α)

¢´
α

≤ lim
α→0

C(s) (α/πs, α/πs)

α
, since copula is increasing function

= 1/πs lim
α0→0

C(s) (α0, α0)

α0
by setting α0 = α/πs

= 0, since F (s) and hence C(s) is zero lower TDC

we therefore have τFL = 0

The part (i) and (ii) of the proposition is the straightforward application of above lemma

• For GARCH with constant mean and symmetric conditional distribution

Xt = μ+Σ
1/2
t−1εt

(+ any GARCH dynamic equation of Σt−1 )

where εt is stationary with symmetric distribution such that E (εt) = 0. The uncondi-

tional distribution of Xt is a mixture of distribution of symmetric variable with same mean

μ but possibly different variance covariance matrix. By applying the lemma 1, we conclude

that the unconditional distribution of Xt is symmetric and (i) follows.
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• For RS model with zero TDC

Xt = μst +Σ
1/2
st εt

where st takes a discrete value. Without loss of generality assume thatXt is bivariate and

that st = s, μ+Σ1/2εt is zero TDC such as in the normal case, therefore the unconditional

distribution of Xt is a mixture of distribution with zero TDC. By applying the lemma 2,

we conclude that the unconditional distribution of Xt has zero TDC. and (ii) follows

For (iii), with the same notations as lemma 1, keeping marginal distribution unchanged

across mixture components means that. For discrete case

f (s) (x1, ..., xn; δ, ρ) = c(s) (u1, ..., un; θ)×
nY
i=1

fi (xi; δi), with ui = Fi (xi; δi), hence

f (x1, ..., xn; δ, ρ) =
nP

s=1
πsf

(s) (x1, ..., xn; δ, ρ)

=
nP

s=1
πsc

(s) (u1, ..., un; θ)×
nY
i=1

fi (xi; δi)

= c (u1, ..., un; θ)×
nY
i=1

fi (xi; δi)

with c (u1, ..., un; θ) =
nP

s=1
πsc

(s) (u1, ..., un; θ) is the copula of f and we can see that c is

a mixture of copula with symmetric TDC and hence is a copula with symmetric TDC.

for the continuum case

f (x1, ..., xn; δ, ρ) =

Z
A
πσf

(σ) (x1, ..., xn; δ, ρ) dσ

=

Z
A
πσc

(σ) (u1, ..., un; θ) dσ ×
nY
i=1

fi (xi; δi)

= c (u1, ..., un; θ)×
nY
i=1

fi (xi; δi)

with c (u1, ..., un; θ) =

Z
A
πσc

(σ) (u1, ..., un; θ) dσ which is a copula with symmetric TDC

for same the reasons mentioned above.

Q.E.D

Proof of Proposition 3.2.

By definition of a copula, we have
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ηt =

∙
f (Xt; δ, θ|Xt−1, st = 1)
f (Xt; δ, θ|Xt−1, st = 0)

¸

=

⎡⎢⎢⎢⎢⎣
c (u1,t (δ1) , ..., u4,t (δ4) ; θ |st = 1)×

4Y
i=1

fi (xi,t; δi)

c (u1,t (δ1) , ..., u4,t (δ4) ; θ |st = 0)×
4Y

i=1

fi (xi,t; δi)

⎤⎥⎥⎥⎥⎦
with ui,t (δi) = Fi (xi,t; δi)

By denoting bξt|t−1 = ³bξ(1)t|t−1,bξ(0)t|t−1

´0
, the likelihood can be rewritten

L (δ, θ;XT )

=
TP
t=1
log
³bξ0t|t−1ηt´

=
TP
t=1
log

Ã
1P

k=0

bξ(k)t|t−1c (u1,t (δ1) , ..., u4,t (δ4) ; θ |st = k )×
4Y

i=1

fi (xi,t; δi)

!
=

TP
t=1

∙
4P

i=1
log (fi (xi,t; δi))) + log

µ
1P

k=0

bξ(k)t|t−1c (u1,t (δ1) , ..., u4,t (δ4) ; θ |st = k )

¶¸
it follows that

L (δ, θ;XT ) =
4P

i=1
Li (δi;XT ) + LC (δ, θ;XT )

where

Li

¡
δi;Xi,T

¢
=

TP
t=1
log fi

¡
xi,t; δi|Xi,t−1

¢
LC (δ, θ;X) =

TP
t=1
log
³bξ0t|t−1ηct´

with

ηct =

∙
c (u1,t(δ1), ..., un,t(δn); θ| st = 1)
c (u1,t(δ1), ..., un,t(δn); θ| st = 0)

¸

by noticing that ηt = ηct ×
4Y

i=1

fi (xi,t; δi) we have that

bξt/t = hbξ0t|t−1ηti−1 ³bξt|t−1 ¯ ηt

´
=
hbξ0t|t−1ηcti−1 ³bξt|t−1 ¯ ηct

´
Q.E.D

Proof of proposition 5.1

Let (X1,X2)Ã F ≡ (F1, F2, CrG) and (X 0
1,X

0
2)Ã F 0 ≡ (F1, F2, CN ).

for w ∈ [0, 1] let X = wX1 + (1−w)X2, and X 0 = wX 0
1 + (1− w)X 0

2
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E (U (X)) = U
¡
X
¢
+

U 00
¡
X
¢

2
E
¡
X −X

¢2
+

U 000
¡
X
¢

3
E
¡
X −X

¢3
+ o(4)

and E (X 0) = E (X) = X, we have

E (U (X 0)) = U
¡
X
¢
+

U 00
¡
X
¢

2
E
¡
X 0 −X

¢2
+

U 000
¡
X
¢

3
E
¡
X 0 −X

¢3
+ o(4)

by assumption, we have CN ≤ CrG what by the below lemma, is equivalent to F 0 ≤ F ,

and then E (U (X 0)) ≥ E (U (X)) for any increasing function U . So for an utility function U

that satisfies Arrow (1971) third main desirable property U 000 ≥ 0, we have E
¡
X 0 −X

¢3 ≥
E
¡
X −X

¢3
.

Since for any w ∈ [0, 1]

E
¡
X −X

¢3
= w3σ31s1 + (1− w)3 σ32s2

+3w2 (1− w)σ21σ2c12 + 3w (1− w)2 σ1σ
2
2c21

and

E
¡
X 0 −X

¢3
= w3σ31s1 + (1− w)3 σ32s2

+3w2 (1− w)σ21σ2c
0
12 + 3w (1− w)2 σ1σ

2
2c
0
21

we have ½
c12 ≤ c012
c21 ≤ c021

i.e. ½
CoSkew (X1,X2) ≤ CoSkew(X 0

1,X
0
2)

CoSkew (X2,X1) ≤ CoSkew(X 0
2,X

0
1)

Q.E.D

Lemma: Let F ≡ (F1, F2, C) and (X 0
1,X

0
2)Ã F 0 ≡ (F1, F2, C 0).

C 0 ≤ C is equivalent to F 0 ≤ F .

Proof

F 0 ≤ F
⇔ F 0 (x, y) ≤ F (x, y) for all (x, y) ∈ R2
⇔ C (F1 (x) , F2 (y)) ≤ C 0 (F1 (x) , F2 (y)) for all (x, y) ∈ R2
⇔ C (u, v) ≤ C 0 (u, v) for all (u, v) ∈ [0, 1]2
⇔ C 0 ≤ C.

Q.E.D

Proof of Proposition 5.2:
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The exact expansion of the expected utility function is EU (Wt) =
∞P
n=0

1
n!U

(n)
¡
Wt

¢
E
¡
Wt −W t

¢(n)
.

Under assumption i), and the third order validity of the Taylor expansion, the sign of
∂

∂w
EU (Wt)

¯̄̄̄
wt=w∗t

depends on the sign of
∂

∂wt
U 000

¡
W t

¢
E
¡
Wt −W t

¢3 ¯̄̄̄
wt=w∗t

since saying

that w∗t is the optimal part invested on home portfolio in a Mean-Variance behavior means

that

∂

∂wt

(
U
¡
Wt

¢
+

U 00
¡
W t

¢
2

E
¡
Wt −W t

¢2)¯̄̄̄¯
wt=w∗t

= 0.

and

∂

∂wt
U 000

¡
W t

¢
E
¡
Wt −W t

¢3 ¯̄̄̄
wt=w∗t

=

∙
∂

∂wt
U 000

¡
W t

¢¸¯̄̄̄
wt=w∗t

E
³
W ∗

t −W
∗
t

´3

+U 000
³
W
∗
t

´ ∂

∂wt
E
¡
Wt −W t

¢3 ¯̄̄̄
wt=w∗t

we have

∂

∂wt
E
¡
Wt −W t

¢3 ¯̄̄̄
wt=w∗t

= 3w∗2t σ3htsht − 3 (1−w∗t )
2 σ3ftsft

+3
¡
2w∗t − 3w∗2t

¢
σ2htσftc12t + 3

¡
1− 4w∗t + 3w∗2t

¢
σhtσ

2
ftc21t

= 3w∗2t σ3htsht − 3 (1−w∗t )
2 σ3ftsft

+
h
3
¡
2w∗t − 3w∗2t

¢
σ2htσft + 3

¡
1− 4w∗t + 3w∗2t

¢
σhtσ

2
ft

i
ct

= Bt +Atct

with ⎧⎨⎩ Bt = 3
h
w∗2t σ3htsht − (1− w∗t )

2 σ3ftsft

i
At = 3

h¡
2w∗t − 3w∗2t

¢
σ2htσft +

¡
1− 4w∗t + 3w∗2t

¢
σhtσ

2
ft

i
by assumptions ii) At < 0 and by taking

ct =

"∙
∂

∂wt
U 000

¡
W t

¢¸¯̄̄̄
wt=w∗t

E(W∗
t −W

∗
t )
3

U 000(W
∗
t )
−Bt

#,
At,

for ct ≤ ct, we have
∂

∂wt
U 000

¡
W t

¢
E
¡
Wt −W t

¢3 ¯̄̄̄
wt=w∗t

> 0, and the proposition 2

follows. Q.E.D
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Appendix B. Analytical expressions for various copulas

Normal copula

CN (u1, . . . , un; ρ) = Φρ
¡
Φ−1 (u1) , . . . ,Φ−1 (un)

¢
CN (u1, . . . , un; ρ) =

Z Φ−1(u1)

−∞
. . .

Z Φ−1(un)

−∞
[(2π)n det (ρ)]−

1
2 exp

£
−12

¡
z0ρ−1z

¢¤
dz1 . . . dzn

where z = (z1, . . . , zn)
0, ρ =

¡
ρij
¢n
i,j=1

, with
¯̄
ρij
¯̄
≤ 1, ρii = 1 and ρ positive defined

matrix

cN (u1, . . . , un; ρ) =
¡
det (ρ) exp

£
x0ρ−1x− x0x

¤¢−1/2
with x =

¡
Φ−1 (u1) , . . . ,Φ−1 (un)

¢0,
Φ is cdf of standard normal distribution and Φρ is cdf of multivariate normal distribution

with correlation matrix ρ.

Tail dependence coefficients are

τL = τU = 0

Bivariate Gumbel copula

CG (u, v; θ) = exp

∙
−
³
(− log (u))θ + (− log (v))θ

´1/θ¸

cG (u, v; θ) =
CG (u, v; θ) (log (u) . log (v))

θ−1

uv
³
(− log (u))θ + (− log (v))θ

´2−1/θ µ³(− log (u))θ + (− log (v))θ´1/θ + θ − 1
¶

Bivariate Rotated Gumbel (Survival) copula

CGS (u, v; θ) = u+ v − 1 + CG (1− u, 1− v; θ)

cGS (u, v; θ) = cG (1− u, 1− v; θ)

The tail dependence coefficients of CGS are

τL = 2− 2
1

θ and τU = 0

so θ = θ
¡
τL
¢
=

log (2)

log (2− τL)

and we can re-parameterize the Copula CGS (u, v; θ) with τL as CGS

¡
u, v; τL

¢
= CGS

¡
u, v; θ

¡
τL
¢¢
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Table 1: Summary statistics of weekly bond and equity index returns for the four countries. All
returns are in US dollars, from January 01, 1985 to December 21, 2004, which corresponds to a
sample of 1044 observations. (δ denotes annualized percent). Sharpe ratio represents the ratio of
the mean over the standard deviation of return.

Meanδ Stdδ Kurtosis Skewness Minδ Maxδ Sharpe ratio
US Equity 13.67 17.51 17.00 -1.55 -680.36 311.10 0.78
US Bond 7.57 4.69 0.67 -0.06 -66.91 58.81 1.61
CA Equity 11.24 16.72 13.62 -1.67 -610.87 225.15 0.67
CA Bond 8.81 8.15 1.13 -0.24 -130.55 118.07 1.08
FR Equity 14.72 23.43 7.18 -0.09 -582.12 512.16 0.63
FR Bond 11.52 11.16 0.92 0.04 -142.02 166.68 1.03
DE Equity 12.57 24.97 8.01 -0.46 -574.96 463.08 0.50
DE Bond 10.44 11.56 0.82 -0.01 -142.54 171.39 0.90

Table 2: Unconditional correlations between bonds and equity for US, Canada (CA), France
(FR) and Germany (DE).

US US CA CA FR FR DE
Equity Bond Equity Bond Equity Bond Equity

US Bond 0.0576
CA Equity 0.7182 0.0116
CA Bond 0.1783 0.4706 0.4392
FR Equity 0.1957 -0.0182 0.1974 0.1065
FR Bond -0.0499 0.3386 -0.0080 0.2433 0.3066
DE Equity 0.2089 -0.0536 0.1995 0.1009 0.8099 0.2625
DE Bond -0.0832 0.3081 -0.0234 0.2143 0.3084 0.9403 0.2847
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Table 3: Estimates of M-GARCH (1, 1) parameters for all bond and equity returns of four countries. The
figures between brackets represent standard deviations of the parameters. L is the value of the log-likelihood
function.

US CA FR DE
Equity Bond Equity Bond Equity Bond Equity Bond

β 7.94e-1 7.82e-1 8.09e-1 9.07e-1 9.68e-1 9.36e-1 9.24e-1 9.56e-1
(3.49e-1) (1.62e-1) (4.06e-1) (1.79e-1) (3.61e-1) (4.21e-1) (1.54e-1) (2.45e-1)

α 5.46e-5 2.63e-6 6.40e-5 7.30e-6 2.28e-5 1.51e-5 2.22e-5 1.08e-5
(4.04e-5) (6.36e-5) (8.16e-5) (2.94e-5) (9.35e-6) (2.17e-5) (2.14e-4) (1.88e-5)

γ 4.45e+1 3.84e+1 2.73e+1 3.28e+1 1.91e+1 6.53e+0 1.19e+1 3.26e+0
(1.70e-2) (6.11e-3) (1.14e-2) (1.22e-2) (1.61e-2) (1.85e-1) (8.07e-2) (2.45e-2)

λ 1.72e+0 1.37e+1 3.13e+0 1.01e+1 1.61e+0 5.61e+0 1.78e+0 6.13e+0
(1.39e-2) (1.05e-2) (2.09e-2) (7.59e-3) (7.22e-3) (1.96e-1) (6.33e-2) (7.86e-3)

ω 7.57e-6 6.49e-6 1.21e-5 3.49e-6 1.99e-6 1.51e-7 6.46e-5 4.79e-7
(9.64e-5) (1.90e-5) (1.74e-5) (2.52e-5) (6.53e-5) (4.33e-5) (1.92e-4) (3.25e-5)

μ 1.07e-3 7.18e-4 1.32e-3 4.73e-4 1.48e-3 5.37e-4 6.51e-4 1.35e-4
(1.29e-4) (6.74e-5) (3.76e-5) (5.26e-5) (5.00e-4) (1.45e-4) (1.32e-4) (3.38e-5)

L 2.49e+3 3.77e+3 2.50e+3 3.20e+3 2.10e+3 2.88e+3 2.04e+3 2.84e+3
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Table 4: Box-Pierce and Ljung-Box statistics for tests of independence of residuals of the M-GARCH
models for the marginal distributions. For each series, the statistic is computed for different numbers of
lags (1, 4, 6, and 12). * and ** means that we cannot reject independence at the 1 and 5 percent levels
respectively

US CA FR DE
Equity Bond Equity Bond Equity Bond Equity Bond

Box-Pierce
12 lags 23.26* 18.57** 14.42** 9.27** 10.93** 9.88** 8.64** 12.19**
6 lags 14.85* 12.19** 10.26** 7.17** 10.70** 5.06** 4.55** 8.85**
4 lags 8.73** 10.49* 9.02** 6.34** 7.00** 3.7099** 3.39** 6.36**
1 lag 5.36* 0.01** 3.71** 0.45** 6.11* 1.33** 3.18** 2.78**
Ljung-Box
12 lags 23.43* 18.71** 14.51** 9.32** 10.98** 9.97** 8.71** 12.28**
6 lags 14.93* 12.25** 10.31** 7.20** 10.74** 5.09** 4.57** 8.90**
4 lags 8.76** 10.55* 9.05** 6.37** 7.02** 3.7248** 3.40** 6.38**
1 lag 5.37* 0.01** 3.72** 0.45** 6.13* 1.33** 3.19** 2.79**
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Table 5: Dependence structure between the United States and Canada in equity and bond markets.
Correlation coefficients are reported for the normal regime, while tail dependence coefficients describe
the asymmetric regime. The tail dependence coefficient is obtained as the product of parameter τ and the
respective weight π for cross-asset dependence and 1-π for cross-country dependence. Standard deviations
are reported between parentheses for all parameters estimated directly from the model. The last raw
reports the diagonal elements of the transition probability matrix.

Cross-Country (US-CA) Dependence
Normal Regime Asymmetric Regime

Correlation Coefficient Tail Dependence Coefficient
τ TDC((1-π)τ)

US Equity - CA Equity 0.8739 0.9100 0.7917
(0.1560) (0.0185)

US Bond - CA Bond 0.3870 0.6234 0.5424
(0.0831) (0.0124)

1-π 0.6897
Cross-Asset (Equity-Bond) Dependence

Normal Regime Asymmetric Regime
Correlation Coefficient Tail Dependence Coefficient

US Bond CA Bond τ TDC(πτ)
US Equity -0.1101 0.1234 US Equity - US Bond 0.1300 0.0169

(0.0416) (0.0312) (0.041)
CA Equity -0.0812 0.4085 CA Equity - CA Bond 0.1385 0.0180

(0.0207) (0.0103) (0.0145)

π 0.3102
(0.0207)

Parameters of transitional probability matrix
P 0.9020 Q 0.9586

(0.0207) (0.0206)
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Table 6: Dependence structure between France and Germany in equity and bond markets. Correlation
coefficients are reported for the normal regime, while tail dependence coefficients describe the asymmetric
regime. The tail dependence coefficient is obtained as the product of parameter τ and the respective
weight π for cross-asset dependence and 1-π for cross-country dependence. Standard deviations are
reported between parentheses for all parameters estimated directly from the model. The last raw reports
the diagonal elements of the transition probability matrix.

Cross-Country (FR-DE) Dependence
Normal Regime Asymmetric Regime

Correlation Coefficient Tail Dependence Coefficient
τ TDC((1-π)τ)

FR Equity - DE Equity 0.9083 0.9554 0.7787
(0.0267) (0.0603)

FR Bond - DE Bond 0.9901 0.8261 0.6733
(0.058) (0.027)

1-π 0.8151
Cross-Asset (Equity-Bond) Dependence

Normal Regime Asymmetric Regime
Correlation Coefficient Tail Dependence Coefficient

FR Bond DE Bond τ TDC(πτ)
FR Equity 0.1893 0.2023 FR Equity - FR Bond 0.0923 0.0171

(0.0170) (0.0129) (0.028)
DE Equity 0.1175 0.1294 DE Equity - DE Bond 0.0969 0.0179

(0.0214) (0.030) (0.029)

π 0.1849
(0.0294)

Parameters of transitional probability matrix
P 0.8381 Q 0.9373

(0.0270) (0.0373)

44



Table 7: Subperiod I (period before the introduction of the Euro currency: from January 01, 1985
to December 29, 1998 for a sample of 731 observations). Dependence structure between France and
Germany in equity and bond markets. Correlation coefficients are reported for the normal regime, while
tail dependence coefficients describe the asymmetric regime. The tail dependence coefficient is obtained
as the product of parameter τ and the respective weight π for cross-asset dependence and 1-π for cross-
country dependence. Standard deviations are reported between parentheses for all parameters estimated
directly from the model. The last raw reports the diagonal elements of the transition probability matrix.

Cross-Country (FR-DE) Dependence
Normal Regime Asymmetric Regime

Correlation Coefficient Tail Dependence Coefficient
τ TDC((1-π)τ)

FR Equity - DE Equity 0.6924 0.9554 0.8663
(0.0760) (0.035)

FR Bond - DE Bond 0.9082 0.8388 0.7606
(0.038) (0.061)

1-π 0.9067
Cross-Asset (Equity-Bond) Dependence

Normal Regime Asymmetric Regime
Correlation Coefficient Tail Dependence Coefficient

FR Bond DE Bond τ TDC(πτ)
FR Equity 0.2091 0.1641 FR Equity - FR Bond 0.1130 0.0105

(0.0123) (0.0151) (0.021)
DE Equity 0.1205 0.1519 DE Equity - DE Bond 0.0067 0.0006

(0.0106) (0.049) (0.072)

π 0.0933
(0.010)

Parameters of transitional probability matrix
P 0.0651 Q 0.9438

(0.0103) (0.0102)
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Table 8: Subperiod II (period after the introduction of the Euro currency: from January 05, 1999
to December 21, 2004 for a sample of 313 observations). Dependence structure between France and
Germany in equity and bond markets. Correlation coefficients are reported for the normal regime, while
tail dependence coefficients describe the asymmetric regime. The tail dependence coefficient is obtained
as the product of parameter τ and the respective weight π for cross-asset dependence and 1-π for cross-
country dependence. Standard deviations are reported between parentheses for all parameters estimated
directly from the model. The last raw reports the diagonal elements of the transition probability matrix.

Cross-Country (FR-DE) Dependence
Normal Regime Asymmetric Regime

Correlation Coefficient Tail Dependence Coefficient
τ TDC((1-π)τ)

FR Equity - DE Equity 0.9426 0.2598 0.2582
(0.0950) (0.0106)

FR Bond - DE Bond 0.9937 0.8946 0.8892
(0.0382) (0.071)

1-π 0.9940
Cross-Asset (Equity-Bond) Dependence

Normal Regime Asymmetric Regime
Correlation Coefficient Tail Dependence Coefficient

FR Bond DE Bond τ TDC(πτ)
FR Equity 0.2272 0.2350 FR Equity - FR Bond 0.2249 0.0013

(0.0241) (0.0177) (0.024)
DE Equity 0.1516 0.1573 DE Equity - DE Bond 0.9760 0.0059

(0.0118) (0.059) (0.082)

π 0.0060
(0.012)

Parameters of transitional probability matrix
P 0.9212 Q 0.2274

(0.0118) (0.0117)
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Table 9: Monte Carlo Tests of Asymmetric Dependence. LR is the likelihood ratio statistic
computed from the data. The p − value is obtained from 1000 Monte Carlo repetitions with size
1043 (equal to the sample size) each.

US-Canada France-Germany
LR 0.0731 0.7889

p− value 0.0090 0.0000

Table 10: Longin and Solnik (2001) likelihood ratio test for extreme dependence correlation
equal to zero at different thresholds. We apply this test on data, the regime switching model of
Ang and Chen (2002), and the rotated Gumbel copula. we estimate the RS model and rotated
Gumbel copula model and use estimates to simulate 10 000 Monte Carlo replications. We then
perform the test on these replications.

RS Model Data Rotated Gumbel copula
Threshold LR p-value LR p-value LR p-value
0.10 0.7800 0.3771 1.5501 0.2131 0.4091 0.5224
0.20 2.2650 0.1323 1.5550 0.2124 8.6980 0.0032
0.30 16.7210 0.0000 8.0980 0.0044 14.4370 0.0001
0.40 22.3550 0.0000 30.9550 0.0000 27.6261 0.0000
0.60 15.5351 0.0001 285.1200 0.0000 258.9300 0.0000
0.70 10.8120 0.0010 168.6500 0.0000 219.2812 0.0000
0.80 7.2661 0.0070 69.1500 0.0000 71.2000 0.0000
0.90 3.4170 0.0645 20.3500 0.0000 29.7101 0.0000
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Figure 1: Calculates correlations from US-Canada equity returns data for different values
of threshold θ, which is normalized. For θ less than 50% the correlation is calculated for left
tail and for θ greater than 50%, the correlation is calculated for right tail. θ = 80% means
that we calculate the correlation conditional on 20% greatest observations for both U.S. and
Canadian equity returns, and θ = 10% means that we calculate the correlation conditional
on 10% lowest observations for both U.S. and Canadian equity returns. Solid line represents
the exceedance correlations calculated directly from data. For Rotated Gumbel Copula with
Gaussian Margins (Gumbel Copula), Normal Regime Switching Distribution (RS Normal),
and Normal Distribution (Unconditional Normal), we first estimate the model and use
estimates to generate 50 000 Monte Carlo simulations to calculate correlations. Longin
& Solnik exceedances correlations are obtained by Longin and Solnik (2001) estimation
method.
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Figure 2: Effect of marginal distribution asymmetry on Tail Dependence function and Ex-
ceedance correlation: Firstly we simulate standard bivariate Gaussian distribution with
correlation 0.5 and compute TDF and Exceedance correlation. Secondly, we create asym-
metry in one marginal distribution by replacing the N(0, 1) by a mixture of N(0, 1) and
N(4, 4) with equal weight.

 Regime-free margins 
 
 
 
 
 
 
        = 
 
 

Marginal 1 

Marginal 2 

Marginal 3 

Marginal 4 

Joint distribution: 
Copula with two 

regimes 

Symmetric regime: 
Normal copula 

Asymmetric regime: 
Mixture of products of 

copulas 

Figure 3: Model structure: Disentangling marginal distributions from the dependence struc-
ture with a two-regime copula, with one symmetric regime and one asymmetric regime. The
marginal distributions are regime-free.
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Figure 4: Illustration of the three components of asymmetric copula. Each component is
the product of the two bivariate copulas representing the corresponding encircled couple of
returns.
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