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Les interactions locales concernent les phénomènes socio-économiques où les choix des 

individus sont influencés par les choix des autres qui sont proches d'eux socialement ou 

géographiquement. Cela représente une image assez juste de l'expérience humaine. De plus, 

puisque les interactions sociales sont en fait des externalités particulières, leur présence 

implique typiquement l'intervention gouvernementale. Dans cet article, je présente la 

littérature théorique récente sur les interactions locales et propose diverses avenues de 

recherche. 
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Local interactions refer to social and economic phenomena where individuals' choices are 

influenced by the choices of others who are `close' to them socially or geographically. This 

represents a fairly accurate picture of human experience. Furthermore, since local 

interactions imply particular forms of externalities, their presence typically suggests 

government action. I survey and discuss existing theoretical work on economies with local 

interactions and point to areas for further research. 
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1 Introduction

Social scientists discovered not so long ago that seemingly unrelated phenomena such as criminal

activity, school attendance, out-of-wedlock pregnancy, substance use, adoption of new technolo-

gies, fashion and fads, panics and mania display similar empirical features.1 Some of these features

are

• Too much variation across space and time in the observable variables of interest relative to

the variation in the observed fundamentals.

• S-shaped adoption (frequencies) of new technologies, behavior, fashion and norms.

• Presence of direct social (non-market) influences on individual behavior.

The response in the economics science has been to build model economies that can generate these

empirical features as equilibrium properties. Economists call these phenomena social interactions,

i.e., particular socio-economic events in which markets do not fully mediate individuals’ choices,

and each individual’s choice might be in part determined by choices of other individuals in his

reference group. The underlying idea is that individuals do not exist as isolated atoms but rather

are embedded within networks of relationships, e.g. peer groups, families, colleagues, neighbors,

or more generally any socio-economic group.

In most of the socioeconomic phenomena cited above and in many others, behavior and char-

acteristics of agents who are ‘close’ to each other in some social or geographical sense, seem to

be correlated: Adolescent pregnancy and school drop-out rates are correlated with neighborhood

composition in inner city ghettoes (Catz(1991)); teenagers whose closest friends smoke are more

likely to smoke (Nakajima (2007)); Coleman, Katz, and Mendel (1996) show how doctors’ will-

ingness to prescribe a new drug diffuses through local contacts; Topa (2001) finds, using Census

Tract data for Chicago, that agents are more likely to find a job if their social contacts are em-

ployed and that these local spillovers are defined by neighborhood boundaries and ethnic dividing

lines. Essentially, most of human interaction that we experience in our daily lives seems to be of

similar nature.

The term local interactions is coined to refer to such environments where individuals inter-

act with a group of agents close to them in an otherwise large economy. Therefore, in a general

1Glaeser, Sacerdote, and Scheinkman (1996) argue that they can explain the high variance of crime rates across

space using local interaction. Crane (1991) finds that both high school drop-out and teenage childbearing rates

are related to the local neighborhood characteristics; Haveman and Wolfe (1994) find similar results for drop-out

rates. See Nakajima (2007) and Kremer and Levy (2008) for the existence of peer effects in smoking and drinking

in teenagers and college students respectively. For technology adoption and local complementarities see Brock and

Durlauf (2010), Durlauf (1993), Ellison and Fudenberg (1993). For threshold and herd behavior, multiple equilibria

and cycles in fads and fashion see Bikhchandani, Hirshleifer, and Welch (1992) and Pesendorfer (1995). For similar

behaviors in market crashes, panics and manias see Shiller (2000).
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economy with local interactions, each agent’s ability to interact with others depends on the posi-

tion of the agent in a predetermined network of relationships, e.g., a family, a peer group, or more

generally any socio-economic group. The origin of the term might be traced back to the Physics

and Probability of Interacting Particles, where the fundamental question of interest is whether

specification of a system at the particle level (local) can determine its global characteristics. In

economics, the analogous question is whether social and economic interaction observed at the

individual level can determine the properties of economic aggregates of interest.

My main objective in this chapter is to present and discuss existing theoretical work on

economies with local interactions. Consequently, this is a review of the methodological contribu-

tions and I do not venture to survey the rapidly growing body of applications of local interaction

methods. Interested reader should consult Brock and Durlauf (2001b), Durlauf (2004 ), Glaeser

and Scheinkman (2001), Durlauf and Young (2001) and Manski (2000) for excellent surveys of

the literature and more.

There does not yet exist what one may call a ‘canonical’ model of local interactions. Accord-

ingly, there are rough dividing lines that partition the literature. The most important of these

is the static vs. dynamic divide. Majority of the existing models are static, consequently static

environments are the ones we best understood so far. Having said that, there is a plethora of

questions that beg for and a number of theoretical questions that needs to be answered with

dynamic models. Another division is along the binary vs. continuous choice line. Mathematical

and econometric techniques currently used in each category are quite different. One final division

is along the rational vs. myopic modeling choice. Early models of local interactions in economics

have been built with myopic agents and under particular behavioral assumptions. This is chang-

ing recently. Thus, although I touch upon models with myopic best-responders, my focus is on

models with rational agents. For all these reasons, I chose to follow similar division lines in this

article.

2 Static Models

I start with a review of the existing static literature for two main reasons. Firstly, most of

the important features of economies with local interactions we know of have been discovered

originally in static environments, e.g., cross-sectional correlation of behavior, multiple equilibria,

social multiplier. Secondly, this is clearly the most natural order to proceed in and once the

reader has the necessary understanding of the aforementioned features, it is simpler to appreciate

the delicate aspects of dynamic models and their equilibrium properties.
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2.1 Baseline Static Model

In this section, I present a baseline model that will prevail throughout the chapter. I will use the

same notation throughout although the original notation used in the articles that I present might

be different. The framework is flexible enough to accommodate a variety of different economies

of interest. The theoretical object of study is a class of local interaction economies, represented

by the tuple E = (A, X,Θ, N, P, u). I describe below what each of these elements is.

Agents are represented by a countable set A and the letters a, b, c . . . are used for generic

agents. In most of the literature, A is assumed to be a finite set.2 Each agent a ∈ A makes his

choices from a common action set X. Depending on the question at hand, structure will be

given to X; for example it might be an interval of the real line as in Glaeser and Scheinkman

(2003) and Bisin and Özgür (2009a,b) (continuous choice) or a binary choice set as in Brock and

Durlauf (2001), and Glaeser, Scheinkman, and Sacerdote (1996) (discrete choice).

Any exogenous heterogeneity at the individual level (such as family background, observed or

unobserved role model or peer group characteristics, individual ability and traits) will be captured

by the common type space Θ. We will let θa be agent a’s type, a random variable with support

on the set Θ and θ := (θa)a∈A be the vector of types for all individuals. At this point, no restriction

is made on the admissible probabilistic structure on this set. Yet, the baseline model is general

enough to incorporate economies where individual characteristics are correlated (observably or in

a hidden way) across agents and time.

When all agents observe the realization of θ, we call the economy one with complete in-

formation. Otherwise, we say that the economy is with incomplete information. Typically,

all results for complete information economies I will report will also apply to economies with

incomplete information, unless it is mentioned otherwise.

There might be exogenous determinants of individual behavior affecting all agents. These

latter will be presented by the parameter p ∈ P . When one is interested in modeling aggregate

influences (e.g., global interactions, general equilibrium effects) one can extend the notion of

equilibrium to allow for an endogenous p. Typically in those cases, p will be an aggregator of

some sort.

Now that the underlying physical setup and choice sets are in place, I can introduce pref-

erences. One novelty of the local interaction models is the local structure that allows agents’

preferences to be affected by the choices of ‘close’ (geographically or socially) agents they care

about. Consequently, in order to introduce individual preferences on the choice sets, one needs

to be precise about who cares about whom. For an agent a ∈ A, his reference group is given

by N(a) ⊂ A. Thus,

2Notable exceptions are Föllmer (1974), Durlauf (1993), Bisin, Horst and Özgür (2006), and Horst and

Scheinkman (2006).



6 Onur ÖZGÜR

N : A→ 2A

is a “neighborhood” operator that maps each agent a ∈ A to his reference group, N(a) ⊂ A, the

set of agents whose choices affect a’s utility directly. Since the baseline model of this section is

static, no time index appears. With dynamic models of Section 3, one can allow for intertemporal

changes in the reference group of an agent a, i.e., N : A× {1, 2, . . .} → 2A.

Given the neighborhood structure, the preferences of an agent a ∈ A are represented by a

utility function ua of the form

(
xa, {xb}b∈N(a), θ

a, p
)
→ ua

(
xa, {xb}b∈N(a), θ

a, p
)

Typical assumptions made in the literature on the utility function are: it is sufficiently smooth

with respect to arguments and cross-arguments; that it is concave with respect to agent a’s (own)

choice. I will be more precise about these when I discuss particular models. Finally, one needs

an equilibrium concept to close the model. The one that will be used throughout Section 2 is the

following.

Definition 1 An equilibrium for a static economy with local interactions and complete informa-

tion, E = (A, X,Θ, N, P, u), is a family of choice maps {ga}a∈A such that, for each agent a ∈ A,

given θ and p,

ga (θ, p) ∈ arg max
xa∈X

ua
(
xa, {gb(θ, p)}b∈N(a), θ

a, p
)

Notice that this definition assumes that agents, before making their choices, observe the char-

acteristics of other agents and the value of the parameter p. More importantly, each agent a

anticipates that any other agent b’s choice will be dictated by the behavioral rule (strategy)

gb : ΘA × P → X. For static environments, observing characteristics only of a smaller number

of agents (say of one’s peers only) is not a fundamental problem as long as the probabilistic

structure is common knowledge. The equilibrium concept can be extended in a straightforward

manner to incomplete information scenarios. However, in dynamic contexts, the nature of the

restrictions that one imposes on the probabilistic structure becomes an important issue, as we

will see in Section 3.

Remark 1 (Global interactions) One might want to model phenomena where agents’ prefer-

ences depend on some aggregate of individual choices, e.g., increase in average achievement in

the classroom might have a positive effect on individual achievements; or the fact that a major-

ity of the population behaves according to a particular social norm might affect behavior at the

individual level. In other words, one might want to model the direct dependence of p on x, the

action profile, such that p(x) enters into the utility function of an agent. With a finite number

of agents, this is a straightforward extension of the local interaction models. It is in that sense
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that global interaction is a special case of local interaction. However, with an infinite number of

agents, one needs to be careful about continuity issues as we will see in Section 2.2 when we look

at Horst and Scheinkman (2006).

Remark 2 (Social Space) To introduce the notion of reference groups means to endow the set

of agents with the structure of a graph. Some in the literature stop at that point and use a binary

relation and the properties of this latter to model interactions (Morris (2000)); some others look

at mean-field interactions only (Brock and Durlauf (2001)). However, one may go further and

model the interaction on a lattice and interpret it as a social space and the associated norm as

representing social proximity, e.g. Akerlof (1997), Föllmer (1974), Bisin and Özgur (2010). The

advantage of the lattice structure is that the mathematical theory of Markovian interaction on

lattices is well developed.

The methods used to study economies with discrete and continuous choices being quite different,

there is a rough division in the literature along that line. On each side of the line, there exists

a sufficient number of social and economic phenomena that justifies the the respective modeling

choice. I start in the next section with the continuous choice models.

2.2 Continuous Choice Models

Some socio-economic phenomena have been naturally modelled using continuous choice in eco-

nomics. Education is one such phenomenon (Bénabou (1993, 1996), Durlauf (1996a, 1996b));

since its quantity and frequency matters, addiction to substance use is another (Becker and

Murphy (1988), Gul and Pesendorfer (2007)). Moreover, models with continuous actions are

mathematically simpler to analyze since they yield themselves to differentiable methods. I survey

in this section some of the mostly cited methodological contributions to the literature.

Föllmer (1974)

In the early 70s, general equilibrium economists (see Hildenbrand (1971), Malinvaud (1972), and

Bhattacharya and Majumdar (1973)) took an interest in the following questions: How should the

demand theory and the general equilibrium analysis, as we know them, be modified if individuals’

preferences are allowed to be random? Can one always find prices that clear the markets? In

particular, does the randomness die out at the aggregate when we look at large economies or

limits of finite economies, so that one can use standard results from classical general equilibrium

theory?

Hildenbrand (1971) formulated answers to the above questions under the hypothesis that the

probability laws governing individual preferences and endowments are random but independent

across agents. Consider the following class of economies. The set of agents A is countable.
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For an agent a ∈ A, � (a) denotes his preferences, an element in the set P of continuous

complete preorderings on the commodity space Rl+, and e(a) ∈ Rl+ his initial endowment. Let

w(a) := (� (a), e(a)) ∈ S := P × Rl+ be agent a’s state and S the set of possible states. To

avoid measure theoretical technicalities, let S be a finite set3 and the individual preferences be

monotonic and strongly convex (regularity conditions). In this environment, the map

w : A→ S

is called the state of the economy. Let Ω be the set SA of all possible states and F the σ-

field generated by the individual states w → w(a), a ∈ A. Hildenbrand shows that given some

regularity conditions, one can choose a price system p such that

lim
|A|↑∞

1

|A|
∑
a∈A

ζ (w(a), p) = 0, in probability, (1)

where |A| is the number of agents and ζ (w(a), p) is the excess demand of agent a ∈ A at prices

p and individual state w(a). It is not very surprising that randomness alone does not seriously

affect the existence of price equilibria. Malinvaud (1972), and Bhattacharya and Majumdar

(1973)) take the analysis one step further by dropping independence but imposing conditions on

the underlying probability space (Ω,F) (e.g. strong mixing) that guarantee a suitable law of

large numbers. Any conditions on the underlying stochastic structure of the economy are then

encoded in to the probability law µ on the probability space (Ω,F).

Föllmer (1974) argues that conditions imposed directly on µ cease to be purely microeconomic,

since local knowledge on individual laws is not enough to determine the aggregate µ; one needs

to know the probabilities governing the joint behavior of all sub-populations in the economy. He

rather asks ‘Can one always find prices that clear the markets along with an aggregate probability

law for a large economy just on the basis of microeconomic data (local specifications)?

To that end, let η : A \ {a} → S be the environment of an agent a ∈ A. The local charac-

teristics of agent a are given by a probability kernel πa(·| η), i.e., πa(s| η) is the probability that

agent a’s state is s given his environment η. Let Π be the collection of local (microeconomic)

characteristics of the economy. Call any probability measure µ on (Ω,F) which is compatible

with Π, i.e.,

µ [w(a) = s | η] = πa (s| η) , µ− a.s. (a ∈ A, s ∈ S)

a global (macroeconomic) phase of the economy. We say that the local characteristics are

consistent if they admit at least one global phase.4

3This is generalizable and the general version would require some compactness assumption.
4If A is finite then the macroeconomic phase is uniquely determined by the local characteristics; see Spitzer

(1971). Similarly, under the independence assumption, as in Hildenbrand (1971), there exists a unique global phase

µ given by the product measure on (Ω,F) with marginals µa(·) = πa (·| η), a ∈ A.
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Definition 2 A price p is said to stabilize the phase µ of an economy E if

lim
n→∞

1

|An|
∑
a∈An

ζ (w(a), p) = 0, µ-almost surely

whenever (An) is an increasing sequence of subsets of agents which exhausts A5. We say that p

stabilizes the economy E if p stabilizes each phase µ of E.

Markovian Interaction. Föllmer uses the following class of economies to show that (i) even

short range interaction may propagate through the economy and may indeed ‘become an impor-

tant source of uncertainty’ and (ii) if the local interaction is ‘strong’ enough, the microeconomic

characteristics may no longer determine the global probability law which governs the joint be-

havior of all economic agents; and in that case a given global phase typically will not satisfy a

law of large numbers like in equation (1). Let

A := Zd := {a = (a1, . . . , ad)| ai is integer}

for some d ≥ 1 and the reference group of an agent a is given by

N(a) := {b ∈ A| ||b− a|| = 1}

where || · || is the usual Euclidean norm. Thus each agent has 2d immediate neighbors. Call this

economy Markovian if local characteristics are consistent and they satisfy

πa(·| η) = πa(·| η′), if η and η′ coincide on N(a)

that is, each agent a’s state is influenced by the states only of those agents in his reference group.

The economy is homogeneous if Π is translation invariant. A phase µ is called homogeneous if µ

is a translation invariant measure6 Let Φ(E) be the set of all phases of the Markovian economy

E ; similarly, let Φ0(E) be the set of all homogeneous phases of E . Consistency of the local

characteristics imply (Spitzer (1971)) that

|Φ(E)| ≥ |Φ0(E)| ≥ 1

and both inequalities might be strict. This means that although the underlying structure is ho-

mogeneous, the global probability measure might not be (|Φ(E)| > |Φ0(E)|) and in particular the

5This does not only mean that ∪An = A but also that the subsets An, are ‘good representatives’ of A. That is,

that they expand to A in approximately the same manner as the subsets Bn = {a ∈ A : ||a|| ≤ n}. To be precise,

it requires An ⊂ Bn and the existence of some integer N and some δ > 0 such that An is the disjoint union of at

most N boxes parallel to the axes of the lattice A and satisfies |An||Bn|−1 ≥ δ.
6For a ∈ A, consider the shift operator T a : Ω→ Ω defined by T aw(b) = w(a+ b). Translation invariance of Π

means πa+b(·| η) = πa(·| η ◦ T b) where η ◦ T b(c) = η(b + c), (a, b, c ∈ A). Translation invariance of µ means that

µ ◦ T a = µ, a ∈ A.
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individual measures µa might be different (symmetry breakdown). Moreover, multiple consistent

global phases are possible (|Φ(E)| > 1) for the same local characteristics (phase transition). Let

us call each extreme point7 of Φ0(E) a pure phase.8 The following theorem states that given

a pure phase for the economy, there always exists a price vector p such that aggregate excess

demand vanishes when the economy gets large.

Theorem 1 Any pure phase can be stabilized. In particular one can equilibrate the economy as

soon as it admits only one phase.

This is an affirmative answer to only one part of the question that Föllmer asked. The most

important second part is not answered yet: do local characteristics determine the global phase?

To this end, assume that local conditional probabilities πa(·| η) are all strictly positive. Then

thanks to a theorem by Averintzev (1970), the local characteristics are consistent if and only if

they can be written in the following form

πa(s| η) = Z(a, η)−1 exp

γ(a, s) +
∑

b∈N(a)

U (a, b, s, η(b))

 (2)

where Z(a, η) is a normalization factor to guarantee that
∑

s πa(s|η) = 1. The function U satisfies

U(a, b, ·, ·) = 0 if b /∈ N(a)

which corresponds to the Markov property 9 and homogeneity of Π is equivalent to

U(a+ c, b+ c, ·, ·) = U(a, b, ·, ·), γ(a+ c, ·) = γ(a, ·)

One may interpret this as γ representing the own-effect and the coupling factors U(a, b, s, s′)

representing the intensity of interaction between the agents a and b when their respective states

are s and s′. The representation in (2) is unique if one lets

γ(·, s0) = U(·, ·, s0, ·) = U(·, ·, ·, s0) = 0

for some reference state s0. With this normalization one has U = 0 if and only if there is no

interaction at all, in which case there is no phase transition. A much weaker condition is given

by the following

7An extreme point of a convex set Φ(E) in a real vector space is a point in Φ(E) which does not lie in any open

line segment joining two points of Φ(E).
8Föllmer argues that both Φ(E) and Φ0(E) are metrizable simplices with respect to the weak topology on

the space of measures over the compact space Ω (Choquet (1969), Georgii (1972)). Thus, by Choquet’s integral

representation theorem, each phase (resp. each homogeneous phase) can be written as a mixture of extreme points

in Φ(E) (respectively Φ0(E)).
9Follmer argues that if we replace this condition by

∑
b maxs,s′ U(a, b, s, s′) < ∞, we get an economy with

infinite range interactions where interactions ‘decay at infinity’ and thanks to Georgii (1972), the results of this

section remain valid.
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Theorem 2 ( Spitzer (1971), Dobrushin (1968) ) There exists a unique (no phase transi-

tion) global probability measure (phase) consistent with local conditional probabilities if either

(i) max |U(·, ·, ·, ·)| is small enough, i.e., if the local interaction among economic agents are

sufficiently weak, or

(ii) d = 1, i.e., the local interaction structure is one-dimensional.

So, one should expect multiple phases when the local interaction is strong and complex enough.

Moreover, when multiple phases exist, there is an infinity of non-pure phases due to the convexity

of Φ(E); hence Theorem 1 is of no great use either. Finally, Föllmer demonstrates through an eco-

nomic reinterpretation of well known example in Statistical Mechanics what sort of complications

might arise when the conditions in Theorem 2 are violated.

Example 1 (Ising Economies) Let E be a homogeneous Markov economy with two goods and

A = Z2. Let e(a) = e := (e1, e2) ∈ R2
++ (endowments are not random) and assume that πa is

rotation invariant, i.e., each agent a ∈ A reacts in the same way to neighbors in any direction.

Moreover, assume that an agent either wants to consume as much as good 1 and does not care

about good 2 (type w(a) = +1) or the other way around (type w(a) = −1).

Due to rotation invariance, representation in (2) takes the form

πa(±1| η) = Z(η)−1 exp

±
γ + J

∑
b∈N(a)

η(b)


Follmer calls the case J > 0 cyclic (conformity) and J < 0 acyclic (nonconformist, against the

trend). Consider a µ ∈ Φ0(E). At price p, agent a’s excess demand is

ζ(+1, p) =

(
p2

p1
e2,−e2

)
respectively ζ(−1, p) =

(
−e1,

p1

p2
e1

)
so his expected excess demand (given µ1 = µ[w(a) = +1] and µ2 = µ[w(a) = −1]) vanishes if

µ1

(
p2

p1
e2,−e2

)
+ µ2

(
−e1,

p1

p2
e1

)
= (0, 0)

which implies the necessary condition
p2

p1
=
e1

e2

µ2

µ1
(3)

Due to a result in Spitzer (1971), when J > 0 and γ 6= 0, there is a unique phase which can

be stabilized by Theorem 1. Now, assume that γ = 0. By a result in Georgii (1972), there is a

critical value J0 (that depends on the dimension of interaction d) such that for J > J0, there are

exactly two phases, say µ1 and µ2 that satisfy

µ1
1

µ1
2

=
µ2

1

µ2
2

> 1, (4)
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Denoting expectation with respect to µi by Ei (i = 1, 2), we have by Theorem 1

1

|An|
∑
a∈An

ζ(w(a), p)→ Ei [ζ(w(0), p)] µi − almost surely, i = 1, 2.

Unfortunately, equations (3) and (4) combined imply that there does not exist a price p ∈ R2
+

which makes the right side of the above equation vanish simultaneously for µ1 and µ2. Hence, we

cannot stabilize the economy. Follmer shows that actually the situation is even worse than that

as summarized in

Theorem 3 A cyclic Ising economy where γ = 0 and with strong and complex interaction can

almost never be stabilized.

Overall, apart from being a contribution to the general equilibrium theory of random economies,

the most important impact of Föllmer (1974) on the economics science has been the introduction

and reinterpretation of mathematical methods used in Statistical Mechanics (Probability and

Physics of Interacting Particles) in economies with local interactions. Interested reader should

consult the standard reference in Mathematics for Interacting Particle Systems Liggett (1985).

Durlauf (2008) is a nice reading with many more references.

Glaeser and Scheinkman (2003)

The main contribution of Glaeser and Scheinkman (GS henceforth) is the exploration of the

common mathematical structure in existing models of static social interactions. They provide

conditions under which equilibria exist and are unique. They give sufficient conditions for the

existence of multiple equilibria and social multiplier effects, and ergodicity of the large economy

limits. Finally, they discuss possible approaches to measurement and estimation of interaction

effects. With the exception of a small section on ‘mean field’ interaction (average population

action as an argument in the utility) with binary choice, all results are obtained for continuous

choice.

Formally, they study economies with a finite number of agents A = {1, . . . , n}, each of whom

is subject to a taste shock θa with support on a set Θ. The common action set, X, is an interval of

the real line. Although they allow for multiple reference groups for each agent a, i.e., Na
k ⊂ A\{a},

k = 1, . . . ,K > 1 s.t. N(a) = ∪kNa
k , to accomodate some examples in the literature, their results

are presented for a single reference group (K = 1). The utility function of agent a is defined as

ua
(
xa, {xb}b∈N(a), θ

a, p
)

:= ua (xa, x̄a1, . . . , x̄
a
K , θ

a, p)

where

x̄ak :=
∑
b∈A

γabk x
b
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with γabk ≥ 0, γabk = 0, if b /∈ Na
k ,
∑

b γ
ab
k = 1, and p ∈ P is a vector of parameters.

Agents, when making choices, observe x̄a, the summary statistics of other agents’ actions

(K = 1). Given ua that is twice continuously differentiable with ua11 < 0, agent a’s optimal

interior choice is given by

ua1 (xa, x̄a, θa, p) = 0 (5)

Since ua11 < 0, xa = ga (x̄a, θa, p) is well defined and

ga1 (x̄a, θa, p) = −u
a
12 (xa, x̄a, θa, p)

ua11 (xa, x̄a, θa, p)
(6)

Given this structure, an equilibrium always exists if the following holds.

Proposition 1 Given a pair (θ, p) ∈ Θ × P , suppose that for each a, ga (x̄a, θa, p) ∈ I ⊂ X,

whenever x̄a ∈ I, where I is a closed and bounded interval. Then, there exists at least one

equilibrium.

One commonly used practice in the literature to generate multiple equilibria, e.g. Cooper and

John (1988), is to introduce strategic complementarity into the utility functions. GS show,

through an example, that strategic complementarity is not necessary for multiplicity. They

also prove that, under standard regularity conditions, existence of a continuum of equilibria,

such as in Diamond (1982), is non-generic in their economies10. A sufficient condition for a

unique equilibrium, in these economies, is what they call the Moderate Social Influence (MSI)

condition: The effect of a change in own action on own marginal utility is greater (in absolute

value terms) than the effect on the latter of a change in average reference group action, i.e.,∣∣∣∣ua12 (xa, x̄a, θa, p)

ua11 (xa, x̄a, θa, p)

∣∣∣∣ < 1 (7)

This latter implies (although it is stronger than) from equation (6) that at the equilibrium profile,

|ga1 (x̄a, θa, p)| < 1 for each agent a, which in turn implies uniqueness.

Proposition 2 If for a given (θ, p), MSI holds for all a ∈ A, then there exists at most one

equilibrium.

If, in addition to MSI, one assumes strategic complementarity (ua12 > 0), one can show that

there is a social multiplier: a change in the value of a parameter, say p1 will have a direct effect

going through the optimal choice ga and an indirect effect going through the average reference

group choice, x̄a. If each ga has a positive partial derivative with respect to p1, this will be

10The issue of multiplicity is studied in more detail in Section 2.3 along with the construction of the particular

example in GS.



14 Onur ÖZGÜR

amplified through the increased averages that increase the marginal utility of each agent for any

(θ, p), due to strategic complementarity11

The next interesting question they ask is: Can individual shocks determine aggregate outcomes

for large groups? Generically, ergodicity depends on the details of the interaction structure

unlike the other results that they obtain. Nevertheless, economies with i.i.d shocks and local

interactions tend to behave ergodically. GS provide sufficient (but not necessary) conditions for

the average action of a large population to be independent of the particular realization of the

individual shocks.

Proposition 3 Suppose that the following conditions hold

1. θa is i.i.d across agents.

2. ua (hence ga) is idependent of a (ex ante homogeneous preferences).

3. N(a) := A \ {a}.

4. The interaction weights γa,b := 1
n−1 .

5. Action set X is bounded.

6. MSI holds uniformly, that is

sup
x̄a,θa

|g1 (x̄a, θa, p)| < 1.

Let xn (θ, p) denote the equilibrium when the population size is n and agent a’s shock realization

is θa. Then there exists an x̄ (p) such that, with probability one,

lim
n→∞

n∑
a=1

xan (θ, p)

n
= x̄(p)

One problem that is at the heart of empirical work in the literature is the empirical description

of reference groups. GS touch upon the existing approaches to that question in the literature,

namely: (i) models that take as an agent’s reference group other individuals who are close to

him geographically, e.g. Bénabou (1993), Glaeser, Sacerdote, and Scheinkman (1996); (ii) models

that use random graph theory to treat particular reference groups as realizations of a random

process, e.g. Kirman (1983), Ioannides (1990); (iii) models that treat individual incentives for

the formation of reference groups, e.g. Jackson and Wolinsky (1996), and Bala and Goyal (2000).

Finally, GS give a tour of the empirical approaches that have been and that might be used to

detect, measure, and estimate social interactions empirically. The three methods they consider

are: (i) using the variance of group averages; (ii) regressing individual outcomes on group averages;

and (iii) using the social multiplier.

11I will formulate this argument in Section 2.3 and compare it with similar results in other cited work.
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Bisin, Horst, and Özgür (2006)

Bisin, Horst, and Özgür (BHÖ henceforth) consider general economies with static as well as

dynamic local and global interactions. Here, I will present their study of static economies. Their

most important contribution, that is, the study of the rational expectations equilibria of dynamic

local and global interaction economies with rational forward looking agents is studied in section

3.2. Here is their contribution in a nutshell:

(i) For the static complete and incomplete information economies with local interactions, they

provide conditions for existence, uniqueness, and Lipschitz continuity of equilibrium. More-

over, in their setup of the complete information economies with local interactions, BHÖ

show that the law of the configuration of the endogenous choices of agents is a Gibbs mea-

sure12 specified by a family of conditional probability distributions (agents’ behavioral

rules) given neighbors’ equilibrium choices.

(ii) For the dyamic economies with forward looking rational agents with both local and global

interactions, they show existence and Lipschitz continuity of stationary Markov equilibria.

To do that, they use a novel separation argument to treat local and global equilibrium

dynamics as independent processes and give conditions for these economies to converge to

a unique probability law independent of initial conditions.

(iii) Finally, for a class of local conformity and habit formation economies, they characterize

equilibria in closed form and study the effects of rationality, information, and dynamics on

the existence (or suppresion) of social multiplier effects.

Formally, they consider economies with a large number of agents; A is countably infinite to be

precise13. Hence each agent is ‘insignificant’ compared to the rest of the economy in the spirit

of common general equilibrium abstraction. Types, θa, are i.i.d. across agents, with law ν, and

support Θ. For each agent a, N(a) = {a+1}, i.e., the local interaction structure is one-sided. BHO

use this particular form to study in an abstract way economies where interactions are directed

(e.g. hierarchical interactions in organizations, local conformity and role model interactions)14

The preferences of each agent a are represented by the utility function

(
xa, xa+1, θa

)
→ u

(
xa, xa+1, θa

)
which is assumed to be continuous and strictly concave in its first argument. Prior to his choice,

each agent a ∈ A observes the realization of his own type θa as well as the realizations of the types

12Please see Georgii (1989), Liggett (1985), or Kindermann and Snell (1980)
13Their results apply to economies with a finite number of agents with straightforward modifications. Evidently,

existence results are easier to prove in that case.
14See the discussion at the end of this section for how to extend their ideas to more general interaction structures.
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θb of the agents b ∈ {a+ 1, a+ 2, ..., a+N}. The vector of types whose realization is observed by

the agent a = 0 is denoted θN := {θ0, θ1, . . . , θN}; by analogy T aθN :=
(
θa, . . . , θa+N

)
denotes

the vector of types whose realization is observed by the agent a ∈ A.15 If N = ∞ each agent

has complete information about the current configuration of types when choosing his action.

When instead N ∈ N, an agent only has incomplete information about the types of the other

agents. By convention, if N = 0, agents only observe their own types. Finally, the set of possible

configurations of types of all agents a ≥ 0 is given by Θ0 := {(θa)a≥0 : θa ∈ Θ}.
The infinite number of agents assumption makes the standard existence results for finite

economies unusable. Hence, in order to guarantee the existence and uniqueness of an equilibrium

for static economies with local interactions, BHÖ impose a form of strong concavity on the agents’

utility functions.

Definition 3 Let α ≥ 0. A real-valued function f : X → R is α-concave on X if the map

x 7→ f(x) + 1
2α|x|

2 from X to R is concave.

This definition is first due to Rockafellar (1976), and is used for related purposes in Montrucchio

(1987) and Santos (1991). Observe that a twice continuously differentiable map f : X → R is

α-concave, if and only if the second derivative is uniformly bounded from above by −α.

In order to obtain parametric continuity of the equilibrium map, BHÖ require any agent’s

marginal utility with respect to his own action to depend in a Lipschitz continuous manner on

the action taken by his neighbor. In this sense they impose a qualitative bound on the strength

of local interactions between different agents.

Assumption 1 The utility function u : X ×X ×Θ→ R satisfies the following conditions:

(i) The map x 7→ u(x, y, θ) is continuous and uniformly α-concave for some α > 0.

(ii) The map u is differentiable with respect to its first argument, and there exists a map L :

Θ→ R such that∣∣∣∣ ∂∂xu(x, y, θ0)− ∂

∂x
u(x, ŷ, θ0)

∣∣∣∣ ≤ L(θ0)|ŷ − y| and such that EL(θ0) < α. (8)

The quantity L(θ0) puts a bound on ∂2u(x,y,θ)
∂x∂y , whereas α may be viewed as a bound on ∂2u(x,y,θ)

∂x2 .

Thus, EL(θ0) < α means that, on average, the marginal effect of the neighbor’s action on an

agent’s marginal utility is smaller than the marginal effect of the agent’s own choice. It is in this

sense that (8) imposes a bound on the strength of the interactions between different agents. Notice

that the Moderate Social Influence condition in Glaeser and Scheinkman (2003) corresponds to the

stronger contraction condition L(θ0) < α. Assumption 1 can easily be verified for the following

example.

15Formally, T a : Ω 7→ Ω (a ∈ A) is the a-fold iteration of the canonical right shift operator T on Ω; that is,

T a((ωb)b∈A) = (ωb+a)b∈A; furthermore, T aθN :=
(
θ0(T aω), . . . , θN (T aω)

)
=
(
θa, . . . , θa+N

)
.
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Example 2 (Local Conformity) Let α1 α2 ≥ 0 and consider a utility function of the form

u(xa, xa+1, θa) := −α1(xa − θa)2 − α2(xa − xa+1)2. (9)

Quadratic utility functions of the form (9) describe preferences in which agents face a trade-off

between the utility they receive from matching their own idiosyncratic shocks and the utility they

receive from conforming to the action of their peers. The higher the ratio α2
α1

, the more intense is

the agent’s desire for conformity. It is easy to see that the map xa 7→ u(xa, xa+1, θa) is α-concave

for all α ≤ 2(α1 +α2). Moreover, Assumption 1 is satisfied with L(θ0) = L := 2 max{α1, α2} and

with α := 2(α1 + α2).

BHÖ study symmetric equilibria. Establishing the existence of a symmetric equilibrium is equiv-

alent to proving the existence of a measurable function g∗ : Θ0 → X which satisfies

g∗(θ) = arg max
xa∈X

u(xa, g∗ ◦ T (θ), θ0) P-a.s. (10)

Each such map is a fixed point of the operator V : B(Θ0, X) → B(Θ0, X) which acts on the

class B(Θ0, X) of bounded measurable functions f : Θ0 → X according to

V g(θ) = arg max
xa∈X

u(xa, g ◦ T (θ), θ0). (11)

On the other hand, each fixed point of V is a symmetric equilibrium. It is therefore enough to

show that V has an almost surely uniquely defined fixed point.

BHÖ are also interested in deriving conditions which guarantee that the economy admits a

Lipschitz continuous equilibrium map. Lipschitz continuity of the equilibrium map may be viewed

as a minimal robustness requirement on equilibrium analysis. In particular it justifies comparative

statics analysis. They metrize the product space Θ0 in a way that allows them to parametrize

the bound on the variation of the equilibrium policy. For an arbitrary constant η > 0 define a

metric dη on the product space Θ0 by

dη(θ, θ̂) :=
∑
a≥0

2−η|a||θa − θ̂a| (θ = (θa)a∈N, θ̂ = (θ̂a)a∈N) (12)

and denote by Lipη(1) the class of all continuous functions f : Θ0 → X which are non-expanding

with respect to the metric dη, i.e.,

Lipη(1) := {f : Θ0 → X : |f(θ)− f(θ̂)| ≤ dη(θ, θ̂)}

Their main result in this section is

Theorem 4 Let S be a static economy with local interactions and complete information.

(i) If the utility function u : X2 × Θ → R satisfies Assumption 1, then S admits a unique

symmetric equilibrium g∗.
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(ii) If, instead of (8), the utility function u satisfies the stronger condition,∣∣∣∣ ∂∂xu(x, y, θ)− ∂

∂x
u(x, ŷ, θ̂)

∣∣∣∣ ≤ L(|ŷ − y|+ |θ − θ̂|) with L < α, (13)

then there exists η∗ > 0 such that the unique symmetric equilibrium g∗ is almost surely

Lipschitz continuous with respect to the metric dη∗:

|g∗(θ)− g∗(θ̂)| ≤ L

α
dη∗(θ, θ̂) P-a.s..

An analogous result obtains for economies with incomplete information, where an individual agent

only observes a finite number N <∞ of types.

Theorem 5 Let S be a static economy with local interaction and incomplete information, that

is with N ∈ N .

(i) If the utility function u : X2 ×Θ→ R satisfies Assumption 1 and if it is continuously dif-

ferentiable with respect to its first argument, then S admits a unique symmetric equilibrium

g∗.

(ii) If u satisfies condition (13), then g∗ is almost surely Lipschitz continuous:

|g∗(θN )− g∗(θ̂N )| ≤ L

α
|θN − θ̂N | P-a.s..

Example 2 cont. (Local Conformity) For the local conformity preferences described in (9),

the equilibrium policy can be solved for in closed form. Let β1 := α1
α1+α2

and β2 := α2
α1+α2

. If the

agents have complete information, i.e., if N =∞, then the equilibrium takes the form

g∗ (T aθN ) = β1

∞∑
i=a

βi−a2 θi.

Observe that β1
∑∞

i=a β
i−a
2 = 1. Thus, in equilibrium, the action of an agent a ∈ A is given by a

convex combination of the types θb of the agents b ∈ {a, a+ 1, a+ 2, . . .}. If the agents only have

incomplete information, that is, if N <∞, then

g∗ (T aθN ) = β1

(
a+N∑
i=a

βi−a2 θi + βN+1
2 Eθa

)
.

BHÖ study the statistical properties of the equilibrium for an economy with the above specifi-

cation. In particular, they characterize the effects of local conformity on the variance and the

correlation structure of individual actions in the population as well as on the variance of the

mean action across different economies. When the variance of the mean action across economies
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is larger than the variance of each action in the population, they say that social interactions

generate a social multiplier effect. I postpone the discussion of this part to Section 2.3.

Economies with more general interaction structures. While the Moderate Social Influ-

ence assumption is generally not enough to obtain existence and uniqueness of equilibrium in

economies with more general interaction structures, a stronger condition, like condition (13), in

fact suffices for existence, uniqueness, and Lipschitz continuity. This is the case for both com-

plete and incomplete information economies. Consider the case in which agents are located on

the d-dimensional integer lattice Zd, and the preferences of the agent a ∈ Zd are described by a

utility function of the form(
xa, {xb}b∈N(a), θ

a
)
7→ û

(
xa, {xb}b∈N(a), θ

a
)

where N(a) := {b ∈ Zd : ‖a− b‖ = 1} denotes the set of the agent’s nearest neighbors. In such a

more general model, each symmetric equilibrium is given by a fixed point of the operator

V g(θ) = arg max
x0∈X

û
(
x0, {g ◦ T a(θ)}a∈N(0), θ

0
)
.

BHO show that, if the utility function satisfies the contraction condition∣∣∣∣ ∂∂xa û(xa, {xb}b∈N(a), θ
)
− ∂

∂xa
û
(
xa, {x̂b}b∈N(a), θ̂

)∣∣∣∣ ≤ Lmax{|x̂b − xb|, |θ − θ̂| : b ∈ N(a)},

then V satisfies the contraction condition

|V g − V ĝ| ≤ L

α
max{|g ◦ T b − ĝ ◦ T b| : b ∈ N(a)}.

Hence, V becomes a contraction that maps a set of Lipschitz continuous functions continuously

into itself. Two-sided interactions are simply a special case of this general model.

Finally, BHÖ also show that the results they obtain for static economies can be reinterpreted

(mathematically and economically) in two interesting ways:

(i) Equilibria in static economies can be characterized as stationary solutions to a stochastic

difference equation derived from optimality conditions and as such a mathematical structure

common to their environment and that of macroeconomic rational expectations models, e.g.

Blanchard and Kahn (1980), can be unearthed;

(ii) Föllmer (1974) considers an economy where the law of the configuration of agents’ exogenous

types is a Gibbs measure. In their setup of the complete information economies with local

interactions, BHÖ show that it is instead the law of the configuration of the endogenous

choices of agents that is a Gibbs measure specified by a family of conditional probability

distributions (agents’ behavioral rules) given neighbors’ equilibrium choices.
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Horst and Scheinkman (2006)

Horst and Scheinkman (HS henceforth) are interested in equilibrium existence and uniqueness

results in fairly general systems of static local and global interactions with an infinite number of

agents. They also examine the structure of the equilibrium distribution and derive a “Markov”

property for the equilibrium distribution of a class of spatially homogeneous systems.

Formally, the set of agents A ⊂ Zd. Each agent a ∈ A makes a choice xa from a common

compact and convex set X ⊂ Rl. The configuration space S := {x = (xb)b∈A : xb ∈ X} of all

action profiles is equipped with the product topology, and hence it is compact. Agent a’s utility is

affected by neighboring agents in varying degrees. To that end, let (Ja, θa) be a random variable

where Ja = (Ja,b)b 6=a with support Ξ := RA\{0} capturing bilateral strength of interactions and

θa with support Θ, agent a’s taste shock. Agent a’s reference group N(a) is defined by the values

of the realized interaction strength variable, i.e.,

N(a) :=
{
b ∈ A : Ja,b 6= 0

}
These are the agents who interact with agent a locally. The agents who are not in a’s reference

group possibly affect his utility through a global interaction variable (empirical distribution) p(x)

associated with each action profile x. However, this way of modeling the global effect is not always

appropriate for topological difficulties.16 GS uses a two-step method to separate local (micro)

and global (macro) interactions.

To that end, let (Ω,F ,P) := ((Ξ×Θ)A,B(Ξ×Θ)A,P) be the canonical probability space and

let p be a probability measure on the action set X, and letM(X) be the set of such measures.17

This way, a given aggregate belief p ∈ M(X) will simply be a parameter of the utility function

without any explicit link between x and p. Thus, the preferences of agent a are represented by a

utility function Ua : S ×M(X)× Ξ×Θ→ R such that

Ua(xa, {xb}b 6=a, p, Ja, θa) := ua(xa, {Ja,bxb}b 6=a, p, θa)

They call the equilibrium that comes out of this structure given a common exogenous aggregate

belief for all agents, a microscopic equilibrium, namely

Definition 4 Given p ∈ M(X), an action profile g(p, J, θ) = {ga(p, J, θ)}a∈A is a microscopic

equilibrium associated with p if

ga(p, J, θ) ∈ arg max
xa∈X

Ua(xa, {gb(p, J, θ)b 6=a, p, Ja, θa}) P− a.s.

16 Utility functions might not be continuous w.r.t product topology if x enters in a non-trivial fashion. In

addition, the configuration x does not have to have an empirical distribution. Hence, the continuity of the utility

functions already imposes a decay rate on the strength of interactions.
17M(X) is compact with respect to the topology of weak convergence.
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which they show to exist(not necessarily homogeneous) for any random social interactions system

(purely local ones in particular). When they talk about the full-fledged general equilibrium,

they require the aggregate belief p to be consistent with the empirical distribution of equilibrium

actions, say p(J, θ).

Definition 5 A random variable g(J, θ) = {ga(J, θ)}a∈A is an equilibrium for E if

(i) When E is not purely local, the empirical distribution associated with the action profile

g(J, θ) exists almost surely, i.e., the weak limit

lim
n→∞

1

|An|
∑
a∈A

δga(J,θ)(·) = p(J, θ)

exists almost surely for some random variable p(J, θ) ∈M(X) along the increasing sequence

of finite sets An := [−n, n]d ∩ A ↑ A and

(ii) No agent wants to deviate, i.e.,

ga(J, θ) ∈ arg max
xa∈X

Ua(xa, {gb(J, θ)b6=a, p(J, θ), Ja, θa}) P− a.s. (a ∈ A).

Unfortunately, unless some form of spatial homogeneity prevails, there is no reason to expect

that the empirical distribution associated with the equilibrium actions exists (condition (i) above).

For this reason, when global interactions are present, HS restrict themselves to homogeneous

systems, i.e.,

Definition 6 An economy E is homogeneous if A = Zd and

(i) There exists a measurable mapping U : S ×M(X)× Ξ×Θ→ R such that for all a ∈ A

Ua(xa, {xb}b 6=a, p, Ja, θa) = U(xa, {xb}b6=a, p, (T aJ)0, (T aθ)0)18

(ii) The distribution of the random variable (J, θ) = {(Ja, θa)}a∈A is stationary, i.e.,

P[(J, θ) ∈ B] = P[T a(J, θ) ∈ B]

for all a ∈ A and any measurable set B ∈ F .

The nice thing about the spatially homogenous systems, as they show, is that they can be viewed

as convex combinations of ergodic systems.19 In particular, a system where (Ja, θa)a∈A are i.i.d

18T a is simply a shift operator that individualizes a random variable to agent a as before.
19A homogeneous system E is called ergodic if, the probability measure P is ergodic, i.e., it satisfies a 0-1 law

on the σ-field of all shift invariant events. See for example Fristedt and Gray (1997), section 28.5 or Billingsley

(1995), section 24.
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is ergodic. Given a homogeneous system E , there exists a setM0 of ergodic probability measures

on (Ω,F) and a mixing measure π such that

P(·) =

∫
M0

ν(·)π(dν)

where the measures ν are mutually singular, i.e., there exists (a.s.) mutually disjoint sets Ων such

that

ν(Ων) = 1 and ν(Ων̂) = 0 for ν 6= ν̂.

Thus one can think of a homogeneous interaction economy in two steps. Nature first picks an

ergodic system using a distribution π, and then chooses an interaction pattern and a taste shock

according to the distribution of the selected ergodic system. Given this description of course the

equilibrium of the homogeneous system can be written as a family of equilibria of the associated

ergodic decomposition, i.e.,

Proposition 4 Let E be a homogeneous system of random social interactions with an associated

ergodic decomposition (Eν)ν∈M0.

(i) If g is a homogeneous equilibrium for E, then g coincides a.s. with a homogeneous equilib-

rium gν for Eν on Ων .

(ii) If for every ν, gν is a homogeneous equilibrium for Eν , then the random variable g given by

g(J, θ) = gν(J, θ) if (J, θ) ∈ Ων

defines a homogeneous equilibrium for E.

HS argue that to show the existence and uniqueness of homogeneous microscopic equilibria in

ergodic systems, they need to bound the strengths of interactions between agents and the effect of

the global interactions on the marginal utility. They say that MSI (Moderate Social Interactions)

holds if the best response function (unique optimum due to their strict concavity of the utility

function assumption) of agents, say agent 0, h0, is Lipschitz continuous and if the Lipschitz

constants can be chosen to satisfy ∑
a6=0

La(·) ≤ α < 1

Furhermore, MSI holds in strong form if one can choose La and Lp such that

supLp +
∑
a6=0

La(·) ≤ α < 1.

If MSI holds, they prove that an economy E that is ergodic has a unique homogeneous microscopic

equilibrium g(p, ·) with respect to every empirical distribution p, which prepares the background

for their main existence result.
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Theorem 6 If E is ergodic and has a homogeneous microscopic equilibrium g(p, ·) with respect

to every p ∈M(X), then

(i) The empirical distribution associated to the equilibrium action profile g(p, ·) exists and is

a.s. equal to µ(p), the distribution of the random variable g0(p, ·). That is,

lim
n→∞

1

|An|
∑
a∈An

δga(p,J,θ)(·) = µ(p) P− a.s.

(ii) If E satisfies MSI, then it has a homogeneous equilibrium whose associated empirical distri-

bution is a.s. independent of (J, θ).

(iii) If MSI holds in strong form, the equilibrium is unique.

The power of the ergodic structure is exploited fully in (ii) which says that the empirical dis-

tribution which is basically the aggregation of agents’ local equilibrium behavior is independent

of the realizations of local data. Given the equilibrium map, the behavior of the aggregates is

not dependent of a particular interaction structure. This is a very nice result. If a system is

homogeneous but not ergodic, then the empirical distribution would of course vary with (J, θ)

but would still be constant in each Ων .

For one-sided systems, HS obtain existence from the weaker assumption of average moder-

ate social interactions, AMSI, which basically says that the Lipschitz bounds hold on average.

Uniqueness follows when they assume strict concavity and a stronger version of AMSI (similar

to strong MSI but in expectations). Finally, HS also derive a spatial Markov property for the

equilibrium distribution of a class of homogeneous systems.

2.3 Multiple Equilibria and Social Multiplier

One of the most appealing aspects of local interaction models is their ability to generate excess

variation at the aggregate relative to the variation in exogenous data hence explain large dif-

ferences in outcomes across populations and time with small differences in exogenous variables.

Economists call this the social multiplier effect. The relevance of the social multiplier for

policy analysis stems from the fact that when interactions are quantitatively important, policy

interventions on single agents might have large aggregate effects.

The social multiplier concept is inherently related to two other issues: multiplicity of equilibria

and identifiability of sources of variations. Typically, the forces that lead to multiple equilibrium

also lead to large social multipliers. However, the former is not necessary for the latter as we will

see below. I would like to argue in this section that local interaction models provide a natural

outlet to tackle these issues; in particular, they suggest methods to obtain multiple equilibria and

generate aggregate variation in a systematic way.
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Cooper and John (1988) unearth the common features of Keynesian macroeconomic mod-

els. They ask what properties the economy should possess at the microeconomic level so that

one obtains multiple equilibria at the aggregate. In particular, they are interested in coordina-

tion failures, that is, Pareto ranked multiple equilibria, and multiplier effects. They argue that

the answer lies in strategic complementarities20 at the individual level if the nature of the

interaction is global.

They consider economies with A = {1, 2, . . . , I}, X = [0, E] where E is finite. The interaction

is through the average choice (global), i.e., N(a) = A \ {a} and agent a’s utility from choosing

xa when everyone else chooses x̄ is given by V (xa, x̄). They call x∗ ∈ X a symmetric Nash

equilibrium choice if V1(x∗, x∗) = 0. Their most important findings can be summarized as in this

Proposition 5 (Cooper and John (1988)) In an economy with pure global interactions as

described above, (i) strategic complementarity is necessary for multiple equilibria; (ii) strategic

complementarity is necessary and sufficient for multipliers; (iii) given multiple equilibria and

global positive spillovers (V2(xa, x̄) > 0), equilibria can be Pareto ranked by the equilibrium action

choice.

This is a nice result for static games with purely global interactions. It suggests a way to generate

multiplicity by focusing only on microeconomic fundamentals. However, Glaeser and Scheinkman

(2003) show through the following example that the necessity of strategic complementarity is not

robust in richer local interaction structures.

Example 3 (Glaeser and Scheinkman (2003)) There are two sets of agents {A1} and {A2},
with n agents in each set. For agents of a given set, the reference group consists of all agents of

the other set. For a ∈ Ak,

x̄a =
1

n

∑
b∈Al

xb

There are two goods, and the relative price is normalized to one. Each agent has an initial income

of one unit, and his objective is to maximize

ua(xa, x̄a) = log xa + log(1− xa) +
λ

2
(xa − x̄a)

Only the first good exhibits social interactions, and agents of each set want to differentiate from

the agents of the other set (λ > 0). There is NO strategic complementarity; an increase in the

action of others (weakly) decreases the marginal utility of an agent’s own action. An equilibrium

20The term strategic complements was introduced by Bulow, Geanokoplos, and Klemperer (1985) in the context

of multimarket oligopoly. Following BGK, Cooper and John say that strategic complementarities arise if an increase

in one player’s strategy increases the optimal strategy of the other players. More precisely, if V12(xa, x̄) > 0 which

in turn implies that ∂x∗(x̄)
∂x̄

> 0.
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(same choice for agents of the same set) is described by a pair (x, y) of actions for each set such

that

1− 2x+ λx(1− x)(x− y) = 0

1− 2y + λy(1− y)(y − x) = 0

Clearly x = y = 1/2 is always a symmetric equilibrium. If λ < 4, it is the unique equilibrium. For

λ > 4, there are other equilibria too, e.g., for λ = 4.040404, (x, y) = (.55, .45) is an equilibrium.

Consequently, so is (x, y) = (.45, .55). Hence existence of multiple equilibria does not imply

strategic complementarity.

Glaeser and Scheinkman argue further that one can have a unique equilibrium (thanks to their

MSI condition) in the presence of strategic complementarities (ua12(xa, x̄a, θa, p) > 0) and obtain

multiplier effects. Consider the effect of a change in the first component, p1, of the parameter

vector p. They show that if the partial of each agent’s best response w.r.t p1 is positive, one can

write the impact of that effect on optimal choices as

∂x

∂p1
= (I +H)

(
∂g1

∂p1
, . . . ,

∂gn

∂p1

)′
where H is a matrix with non-negative elements. This is equivalent to saying that there is a

social multiplier. Holding all other choices constant

dxa =
∂ga(x̄a, θa, p)

∂p1
dp1

whereas in equilibrium it becomes[
∂ga(x̄a, θa, p)

∂p1
+
∑
b

Hab
∂gb(x̄b, θa, p)

∂p1

]
dp1

Then,

dx̄ =
1

n

∑
a

∂ga(x̄a, θa, p)

∂p1
+
∑
a,b

Hab
∂gb(x̄b, θa, p)

∂p1

 dp1

which says that, average action changes not only because of the direct change in individual best

responses (first sum inside the brackets), but also because of the interactive change (second sum

inside brackets) in the behavior of all agents, of the same sign (Hab ≥ 0). The multiplier effect

through shocks works in a similar fashion. The size of the social multiplier depends on the slope

of the best response functions with respect to average choice. If this slope gets close to unity,

one can generate arbitrarily large social multiplier effects. This is a serious concern, as argued in

Glaeser, Sacerdote, and Scheinkman (2003), since it is common practice in empirical work in the

social sciences to infer individual behavior from aggregate data.
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Jovanovic (1987) is a critique along the same lines. He shows that any amount of aggregate

variation can be generated by ‘unique’ equilibria of games where shocks are independent across

agents. He argues that this is in stark contrast to standard macroeconomic ‘aggregate shocks’

methodology, either with intrinsic aggregate shocks (see Kydland and Prescott (1982)) or with

extrinsic aggregate shocks (see Cass and Shell (1983)). Hence the modeling choice, just on

theoretical grounds, in favor of aggregate shocks approach rather than the local interactions

approach is moot.

Bisin, Horst and Özgür (2006) show through their pure conformity economies that the presence

of local interactions is not sufficient for the existence of social multiplier effects. Consequently,

social multiplier effects might not be robust to changes in the nature of interactions. When agents

are rational and interact locally, multiplier effects may disappear and that the magnitude of social

multipliers (in both static and dynamic settings) depends on the amount of local information

people possess about the types of other individuals. For an interesting survey on the existence of

social multipliers and their dependence on the nature of interactions see Burke (2008).

Jovanovic (1987) argues that no model is perfect and left-out variables (unobserved) might

appear as aggregate shocks. A related point is in Glaeser and Scheinkman (2003), who argue that

in the presence of unobserved heterogeneity, it may be impossible to distinguish between a large

multiplier and multiple equilibria. It might be that either (i) within the same parameter regime,

small differences in fundamentals across areas are amplified by strong social multiplier effects; or

(ii) there are unaccounted influences (latent variables) that affect the aggregates in different ways

in two different geographical areas.

One last important remark for this section is that, in the presence of multiple equilibria, the

general framework of structural inference as presented in Koopmans (1949) (see also Koopmans

and Reiersøl (1950)) is inadequate since it assumes that once the exogenous data is specified,

the endogenous variables can be uniquely determined. Jovanovic (1989) warns that the set of

distributions on observable outcomes that are consistent with a given structure can be quite large

and consequently the model might be hard (if not impossible) to identify. For recent progress on

this issue in the literature, see Bisin et al. (2009) and Galichon and Henry (2009).

A different kind of identification problem arises when one asks the question: Does one observe

similar behavior by people within a group due to local interaction or due to the fact that people

with similar characteristics choose to be part of the same group? (see e.g., Manski (1993)). This

is an incredibly important question that permeates the social sciences. I will talk a little about

how recent advances in the dynamic theory of local interactions might help in Section 3.6

2.4 Discrete Choice Models

There exists a number of social phenomena for which the discrete choice framework has been

considered as a natural outlet, e.g., teenage pregnancy, technology adoption decisions, decision
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to enter or exit a market, staying in or dropping out of school, etc. Moreover, data sets rich in

quantitative individual information did not exist before, and data on individual behavior have

generally been categorized in a coarse yes-no, 0-1 fashion. Although this is changing now due to

the advances in survey and collection technologies and availability of micro-level data, discrete

choice methodology is widely used. For all these reasons, I will present two of the mostly cited

studies in the literature on social interactions with discrete choice, namely Brock and Durlauf

(2001) and Glaeser, Sacerdote, and Scheinkman (1996).

Brock and Durlauf (2001a)

Brock and Durlauf’s (BD henceforth) framework is the basic machinery behind many models

of binary choice with social interactions in the literature. I follow here their journal article

closely although they present their theoretical and econometric methods in numerous other review

and survey articles, e.g. Brock and Durlauf (2001b, 2002, 2007), Durlauf (1997, 2004, 2008).

Their contribution is a framework to study economies with global (mean-field) interactions

where agents interact through the population mean action. Their model being mathematically

equivalent to logistic models of discrete choice (Blume (1993), Brock (1993)) is easily amenable to

econometric analysis using the tools of the logistic models (see McFadden (1984) for the latter).

This being a survey of theoretical contributions, I will not go into the details of their econometric

analysis, although I will provide references for readers interested in further reading.

BD consider economies with a finite number of agents, each making a one-time choice xa

(simultaneously) from the common binary choice set X = {−1, 1}. Let x := (xb)b∈A and x−a :=

(xb)b 6=a. Agent a’s preferences are represented by

V (xa) = u(xa) + S(xa, µa(x−a)) + θ(xa)

where u is what they call the private utility, S the social utility, and θ a random utility term,

i.i.d. across agents whose realization is known to agent a at the time of his decision. Let

ma,b := Ea[xb] be the expected value of agent b’s choice with respect to agent a’s subjective belief

µa and m̄a := (|A| − 1)−1
∑

b6=am
a,b be the average expected choice among agents other than a

with respect to a’s subjective belief of their likelihood. They impose a particular form of strategic

complementarity on social utility, i.e.,

∂2S(xa, m̄a)

∂xa∂m̄a
= J > 0

which means that the marginal social utility to agent a’s of choosing any action increases by an

increase in the average expected action (from his point of view) in the rest of the population.

They consider two classes of preferences depending on their parametric choice of the social utility.

First, what they call the proportional spillovers case

S(xa, m̄a) = Jxam̄a
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and second, the pure conformity case (as in Akerlof (1997) and Bernheim (1994))

S(xa, m̄a) = −J
2

(xa − m̄a)2

Finally, they assume that the error terms θ(−1) and θ(1) are independent and extreme-value

distributed, so that the differences are logistically distributed

Prob (θ(−1)− θ(1) ≤ x) =
1

1 + exp(−βx)

Equilibrium analysis. They first study the equilibrium of the model under the proportional

spillovers assumption and claim later that the same results apply under the pure conformity case.

They argue that it is well known that under the extreme values hypothesis for θ(xa), xa will obey

Prob(xa) =
exp (β(u(xa) + Jxam̄a))∑

x̂a∈{−1,1} exp (β(u(x̂a) + Jx̂am̄a))

As β → ∞, the effect of the error term on agent a’s choice vanishes; as β → 0, the above

probability goes to .5 regardless of anything else. Under the i.i.d assumption, the joint probability

of the choice profile can be written

Prob(x) =
exp

(
β
∑

a∈A(u(xa) + Jxam̄a)
)∏

a∈A
∑

x̂a∈{−1,1} exp
(
β
∑

a∈A(u(x̂a) + Jx̂am̄a)
)21

Since choices are binary, one can write u(xa) = hxa + k where h and k are chosen such that

k + k = u(1) and −h+ k = u(−1) and this way linearize the expression of the joint distribution

above to get

E(xa) = 1 ·
exp

(
βh+ βJ(|A| − 1)−1

∑
b 6=am

a,b
)

exp
(
βh+ βJ(|A| − 1)−1

∑
b 6=am

a,b
)

+ exp
(
−βh− βJ(|A| − 1)−1

∑
b6=am

a,b
)

−1 ·
exp

(
βh+ βJ(|A| − 1)−1

∑
b6=am

a,b
)

exp
(
βh+ βJ(|A| − 1)−1

∑
b6=am

a,b
)

+ exp
(
−βh− βJ(|A| − 1)−1

∑
b6=am

a,b
)

= tanh(βh+ βJ(|A| − 1)−1
∑
b 6=a

ma,b). (14)

Finally, impose rational expectations, i.e., for all a, b ∈ A, ma,b = E(xb). Since the tanh function

is continuous and the support of choices is {−1, 1}A, an equilibrium exists, in particular it is

unique if βJ < 1, i.e.,

m∗ = tanh (βh+ βJm∗) (15)

In the rest of the paper, they study the behavior of the above fixed point equation under different

regimes for the parameters. In particular, they give conditions under which there are multiple

equilibria

21BD argue that their structure is equivalent to the mean field version of the Curie-Weiss model of statistical

mechanics, presented in Ellis (1985).
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Proposition 6 (i) If βJ > 1 and h = 0, there exist three roots: one positive, one equal to

zero, one negative.

(ii) If βJ > 1 and h 6= 0, there exists a threshold H such that

(a) for |βh| < H, there exist three roots, one of which has the same sign as h, the others

possessing opposite sign;

(b) for |βh| > H, there exists a unique root with the same sign as h.

Letting m∗− be the mean choice level in which the largest percentage of agents choose -1, m∗+ as

the one where they choose +1, and m∗ as the root between the two, they can characterize the

limiting percentage of positive and negative choices as a function of the parameters β, h, and J .

They then argue that if one reinterprets the equation (15) as a difference equation with mt as a

function of mt−1, one can show that, if there is a unique fixed point to that equation, that fixed

point is locally stable. However, if there are three roots, the fixed points m∗− and m∗+ are locally

stable but the third one is locally unstable. For the rest, they focus on stable equilibria solely.

Since for any equilibrium, with positive probability there are agents who like the other equi-

librium better and those who like the current one better, they cannot Pareto rank equilibria

ex-post. However, using the ex-ante symmetry of the agents, they show that when h > 0 (< 0),

the equilibrium associated with m∗+(m∗−) gives a higher level of expected utility than the one

associated with m∗−(m∗+). Moreover, when h = 0, the two equilibria give the same level of ex-

pected utility. Note that their analysis so far was based on expected average choice and expected

individual choices. However, they show that as the economy gets large (|A| → ∞), the sample

average population choice weakly converges to the expected population choice.

Local Interactions. BD argue that their global interaction model is nested into a class of local

interaction models where each agent interacts directly with only a finite number of others in the

population. In other words, global interaction models are simply special cases of local interaction

models.22 They study a symmetric local interaction model where each neighborhood has the

same size and each individual puts equal weights on his neighbors’ choices. They find that

Theorem 7 Any equilibrium expected individual and average choice level m for the global in-

teractions model is also an equilibrium expected individual and average choice in a homogeneous

local interactions model.

To be clear, they add that local interactions model being more general, can exhibit a variety of

other equilibria that one does not obtain in the global case.

22I discuss this issue carefully in dynamic environments in Section 3.3. When the population is finite, the claim

is true. When the population is infinite, one should take care of some mathematical difficulties. Please see Section

3.3 for more details. Also see Sec 2.2 for a similar analysis in static models of continuous choice.



30 Onur ÖZGÜR

Multinomial Choice. Concerned with the limitations of the binary choice setting in theoret-

ical and econometric studies, BD extend their model to a multiple discrete choice environment;

see Brock and Durlauf (2002). They find similar existence and multiplicity results and provide

conditions under which the interactions effects can be identified.

Social Planner’s Problem. One would expect a planner to make choices on behalf of the pop-

ulation to maximize the sum of individual utilities, as it is done in economics. Unfortunately, the

sum of extreme-value distributed random variables is not extreme-value distributed. To resolve

this issue, BD assume that the error term for the planner’s problem, θ(x) is itself independent and

extreme-value distributed across all possible configurations of x. Given this assumption however,

it is the planner’s error term that will determine x rather than the original individual terms.

BD remark that one can interpret this as noise in planner’s ability to calculate tradeoffs between

individual utilities. They look at the limit behavior of the joint law for planner’s allocation under

proportional spillovers and conformity effects. They find that under the first, equilibria are ineffi-

cient and can be Pareto ranked. Under the second though, equilibrium m∗ with the same signs as

h is efficient. BD argue that this is due to the fact that utility specification under pure conformity

punishes large deviations from the mean in a harsher way than the proportional spillovers case

does.

Finally, BD discuss some extensions of their model where social utility might depend on

past society behavior, might be asymmetric around the mean level, and private utility might

be heterogeneous. Most importantly, they study identification of their model’s parameters,

provide sufficient conditions for identification and discuss why their conclusions are different than

the ones in Manski’s (1993) analysis of identification in linear models with social interactions.

Interested reader should look at their section 6. Moreover, for good reviews of identification of

social interactions in general, see Blume et al. (2010, chapter 23), Blume and Durlauf (2005),

Brock and Durlauf (2007), Graham (2010, chapter 29), and Manski (1993, 2007).

Glaeser, Sacerdote, and Scheinkman (1996)

Glaeser, Sacerdote, and Scheinkman (GSS henceforth) are after an explanation for the excess

variation in crime rates across time and geography relative to the observable heterogeneity in

individual and area characteristics. To that end, they build a model of local interactions and

empirically test it using data on crime rates across US provided by FBI (six time points between

1970 and 1994), and crime rates across New York City, by precinct, from the 1990 Census. They

find that less than 30% of variation in cross-city or cross-precinct crime rates can be explained

by observable differences in local area attributes. Moreover, they argue that positive covariance

across agents’ decisions is the only explanation for the discrepancy between the variance in crime

rates observed and the variance predicted by local characteristics (social multiplier). They then
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show that their empirical findings are consistent with the existence of such local interactions.

Finally, they build an interaction index (strength of local interaction) for different categories of

crime and show that the value of the index is decreasing in the severity of crime.

This being a theory survey, I will present their baseline model which is inspired by the voter

models in statistical mechanics. There are 2n + 1 agents, A = {−n, . . . , 0, . . . , n}, placed on

a circle. Common action set is X = {0, 1}, 1 denoting committing a crime. The interaction

structure is one-sided, i.e., N(a) = a − 1. Type set is Θ = {0, 1, 2}. Type 1 and 0 agents are

fixed. They are criminal and non-criminal types, respectively. Their choices are their types.

Type 2 agents are marginals who are affected by the choice of their neighbors. Their choices are

equal to the choices of their neighbors. The probabilities of being of type 0 and 1 are p0 and p1

respectively and are i.i.d across agents. The proportion of agents who are of fixed types in a city

is π = p0 + p1.

Conditional on the realization and perfect observation of the types in the economy, there is

a unique Nash equilibrium: one observes sequences of 1s and 0s of varying sizes depending on

the realization of fixed agents’ locations. Then, each agent’s action xa can be thought of as a

binary random variable and the process {xa,−∞ < a < ∞} as stationary, with expected value

p := p1/(p0 +p1). GSS argue that the presence of fixed types create enough mixing in the system

so that a central limit behavior arises.23 Let

Sn :=
∑
|a|≤n

(
xa − p
2n+ 1

)

be the empirical average of the deviations from the mean crime rate for a sample of 2n+1 agents.

Then, as the population gets large, we have

lim
n→∞

E
[
(Sn
√

2n+ 1)2
]

= lim
n→∞

(2n+ 1)E[S2
n]

= var(x0) + 2 lim
n→∞

n∑
a=1

cov(x0, xa) (16)

The choices of 0 and a are perfectly correlated conditional on the event that there does not exist a

fixed type in the segment [1, a]. The probability of this event is (1−p0−p1)a. If the complement of

that event occurs, the covariance between these two agents is zero since they become independent.

Since x0 follows a binomial process, its variance is var(x0) = p(1− p). Hence, (16) can be written

23Choices of any two agents a > b are independent conditional on the existence of a fixed type between them.

The probability of that type nonexisting goes to zero exponentially as b − a → ∞. Consequently, the process

{xa,−∞ < a < ∞} satisfies a strong mixing condition with exponentially declining bounds and central limit

theorem obtains. See for example Fristedt and Gray (1997), p. 563.
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as

var(x0) + 2 lim
n→∞

n∑
a=1

cov(x0, xa) = p(1− p) + 2 lim
n→∞

n∑
a=1

p(1− p)(1− p0 − p1)a

= p(1− p) + 2p(1− p)(1− p0 − p1)

(p0 + p1)

= p(1− p)(2− π)

π
=: σ2

Since π > 0, 0 < σ2 <∞ and central limit behavior obtains

Sn
√

2n+ 1→ N(0, σ2)

and they have a very clean expression of how the average crime rates will be distributed in a

largely populated area. They interpret (2− π)/π as the degree of imitation. They estimate this

latter using their data to measure the proportion of the population that is immune to social

influences, π, which in turn provides and index of the degree of social interaction across cities

and across crimes.

GSS also provide a dynamic extension of their framework with two-sided interactions N(a) =

{a−1, a+1}, in order to motivate their analysis of the variance of the distribution of crime as the

stationary distribution of a myopic infinite horizon dynamic local interaction process. At time

t = 0, each agent chooses the action 1 independently with probability p > 0. Then, each agent is

determined either to be “frozen” or not with probability π > 0. Frozen agents are stuck in a set

S with their time 0 choices. Pick an agent a /∈ S. Associated with a is an independent Poisson

process with mean time 1. At each arrival, a will choose from among the actions of his neighbors

with equal probability. This defines the stochastic process {xat }a∈A. They show that for given

parameters (p, π), for any n, there exists a limit probability measure µn(p, π) defined over choices

{xa : |a| ≤ n}. Moreover, for m > n, µm(p, π) agrees with µn(p, π) on {xa : |a| ≤ n}.
GSS then consider the normalized sum 1/

√
2n+ 1

∑
|a|≤n(xa − p) as before. They show that

the presence of frozen agents, as before, provides enough mixing to obtain central limit behavior

for the normalized sum, and the asymptotic qualitative behavior of the variance matrix is exactly

as in the model in the text.

3 Dynamic Models

The theoretical literature studying local interactions is not yet fully integrated into the standard

dynamic economic analysis of equilibrium. Economists using the tools of the mainstream equilib-

rium analysis have predominantly built static models of local interactions until very recently.24

24The literature on dynamics modeled as population games and the later developed local interaction games with

adaptive, myopically best-responding agents is discussed in Section 3.5.1.
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The reason for this choice is the complexities involved in dynamic models with forward looking

agents forming rational expectations: interaction structures embody complicated non-convexities

to render standard fixed point arguments invalid (see Durlauf (1997)).

In many social phenomena of economic significance, static modeling leads to mis-specification

or underestimation of social effects. For example, Binder and Pesaran (2001) study life-cycle

consumption of agents who interact globally, through average consumption within local group

they belong to. They consider conformism, altruism, and jealousy as forms of interaction and

conclude that analyzing decisions of agents in static rather than dynamic settings is misleading.

Moreover, they argue that dynamic social interactions coupled with habit formation or prudence

might help solve the excess smoothness and excess sensitivity of consumption puzzles.

Recent empirical literature shifted attention to dynamic models, e.g. Kremer and Levy (2008)

on the dynamically persistent detrimental effect of having drinking roommates on student GPAs;

Carrell, Fullerton, and West (2008) on persistent group effects among randomly assigned students

at the United States Air Force Academy; Cutler and Glaeser (2007) on the dynamic effects of

smoking bans in the work place; DeCicca, Kenkel, and Mathios (2008) on the effect of cigarette

taxes on smoking initiation and cessation cycles.

The theoretical counterpart of this body of work is in its infancy. There is a ton of questions

to study and proper modeling to be done. In this section, I will first touch upon the early models

of interactions with myopic dynamics. Then, I will present and study economies with forward

looking rational agents and the implied rational expectations dynamics. As I mentioned in the

Introduction and since I know more about them, I will focus my attention more on the latter,

forward looking rational expectations economies.

3.1 Baseline Dynamic Model

The physical environment is the same as in the baseline model of Section 2.1 with the following

additions: evolution of preferences, neighborhood structure, and individual and reference group

characteristics. Similar to before, our theoretical object of study is a class of local interaction

economies, represented by the tuple E = (A, X,Θ, N, P, u, β, T ).

Interaction horizon is represented by T and can be finite or infinite. β > 0 is the common

discount factor agents use to discount future utilities. With the dynamic specification, one can

allow for interactions in a ‘changing environment’, that is

N : A× {1, 2, . . . , T} → 2A

meaning that the reference group Nt(a) of agent a can change from one period to another. It

is important to notice that even then, this is not about group formation but about a commonly

known and exogenously given law that governs the changes in the environment of agents.25

25I will mention a few things on group formation along the lines of the selection and sorting in Section 4
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Given the neighborhood structure, the contemporaneous preferences of an agent a ∈ A are

represented by a utility function ua of the form

(
xat−1, x

a
t , {xbt}b∈Nt(a), θ

a
t , p(xt)

)
→ ua

(
xat−1, x

a
t , {xbt}b∈Nt(a), θ

a
t , p(xt)

)
Last period choice xat−1 is introduced as an argument to study endogenous preference formation

(e.g., habits, addiction, norms) due to social interactions. As it is clear from the representation,

the type of an agent a is a stochastic process. The most common assumption is to assume that it

is i.i.d across agents and time. In principal, one can allow for intertemporal exogenous persistence,

in which case the information structure becomes very important.

3.2 Rational Forward-looking Interactions

This body of work argues that the study of equilibrium dynamics of economies with local inter-

actions, by allowing for rational expectations of forward looking agents, may elucidate several

important aspects of social interactions. An example of a specific socio-economic environment

might be helpful to illustrate the usefulness of the proper forward looking equilibrium analysis

of dynamic economies in the presence of local interactions26: Consider a teenager evaluating the

opportunity of dropping out of high school. His decision will depend on the conditions of the

labor market, and in particular on the relevant wage differentials, which requires him to form ex-

pectations about the wage and labor conditions he will face if he graduates from high school. The

teenager’s decision might depend also on the school attendance of a restricted circle of friends and

acquaintances: dropping-out is generally made simpler if one’s friends also drop-out (local inter-

actions). But as the decision of dropping out depends on the teenager’s expectations of the wage

differential, it will also in part depend on his consideration of the possibility that, for instance,

while his friends have not yet dropped out of school, they soon will, perhaps even motivated by

his own decision of dropping out. Similarly, our teenager might decide to stay in school even if

most of his friends dropped out, if he has reason to expect their decision to be soon reversed.

The teenager will form expectations about his friends’ future behavior as well as about the future

wage rate.

In the rest of this section, I will present two recent models of local interactions with forward

looking rational agents, namely Bisin, Horst and Özgür (2006) and Bisin and Özgür (2010). They

are both important methodological contributions in the direction of integrating local interactions

models into the standard dynamic economic analysis of equilibrium. I presented BHO’s study of

static economies with local interactions in Section 2.2. Here I will present their analysis of infinite

horizon economies with local interactions.

26The example comes from Bisin, Horst, and Özgür (2006).
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Bisin, Horst and Özgür (2006)

BHÖ study infinite-horizon economies with local interactions and with infinitely-lived agents.

While agents may interact locally, they are forward looking, and their choices are optimally

based on the past actions of the agents in their neighborhood, as well as on their anticipation of

the future actions of their neighbors. Their major contributions might be summarized as

(i) This is the first formal study in the literature, of rational expectations equilibria of infi-

nite horizon economies with local interactions. They provide conditions under which such

economies have rational expectations equilibria which depend in a Lipschitz continuous

manner on the parameters. They show that such conditions impose an appropriate bound

on the strength of the interactions across agents.

(ii) For a class of dynamic economies with Conformity Preferences (see e.g. Akerlof (1997),

Brock and Durlauf (2001a), Bernheim (1994)), they consider local as well as global (e.g.,

global externalities, general equilibrium effects) equilibrium dynamics and characterize long

run behavior of those joint processes. Moreover, they show formally that when agents have

rational expectations, the effect of the local conformity component of their preferences on

their equilibrium actions is reduced significantly with respect to the case in which agents

are myopic.

Formally, BHÖ study the following class of economies: a countably infinite number of agents

A = Z, common compact and convex action and type spaces X and Θ. Let X0 := {x = (xa)a≥0}.
Each agent a ∈ A interacts with his immediate neighbor N(a) = a + 1 only (local interactions).

Information is incomplete, that is, each agent observes only his own type and the history of

past choices in the economy before making a choice27 They focus attention on Markov perfect

equilibrium in pure strategies as the equilibrium concept.28 Each agent a ∈ A believes that

everyone else in the economy at any period t makes choices according to a given choice function

g : X0 ×Θ→ X in the sense that

xat = g(T axt−1, θ
a
t ) where T axt−1 = {xbt−1}b≥a.

Denote by πg(T
axt−1, θ

a
t ) the conditional law of the action xat , given the previous configuration

xt−1. This latter induces a Feller kernel (a law of motion) for the system in the sense that

27BHÖ argue that this is not restrictive and that all the results they obtain apply in a straightforward fashion

to the complete information economies.
28This is for reasons of parsimony and clarity of the message delivered. Moreover, by choosing to focus on MPEs,

they actually make their task more difficult since there are no generally accepted conditions that guarantee the

existence of pure strategy MPEs in any game. More generally, one can of course, consider more sophisticated

punishment strategies, and coordination devices to achieve particular behaviors.



36 Onur ÖZGÜR

Πg(x; ·) :=
∞∏
a=1

πg(T
ax; ·). (17)

The kernel Πg describes the stochastic evolution of the process of individual states {(xat )a>0}t∈N.

In this case, for any initial configuration of individual states x ∈ X0 and for each initial type θ0
1,

agent 0’s optimization problem is given by

max
{x0

t }t∈N


∫
u(x0

1, x
0, x1

1, θ
0
1)πg(Tx; dx1) +

∑
t≥2

βt−1

∫
u(x0

t , x
0
t−1, x

1
t , θ

0
t )Π

t
g(Tx; dxt)ν(dθ0

t )

 (18)

The value function associated with this dynamic choice problem is defined by the fixed point of

the functional equation

Vg(xt−1, θ
0
t ) = Vg(x

0
t−1, Txt−1, θ

0
t ) = max

x0
t∈X

{∫
u
(
x0
t−1, x

0
t , y

1
t , θ

0
t

)
πg(Txt−1; dy1

t ) (19)

+ β

∫
X0×Θ

Vg(x
0
t , x̂t, θ

1)Πg(Txt−1; dx̂t)ν(dθ1)

}
and the maximizer of this problem is denoted

ĝg
(
xt−1, θ

0
t

)
= arg max

x0
t∈X

{∫
u
(
x0
t−1, x

0
t , yt, θ

0
t

)
πg(Txt−1; dyt)

+ β

∫
Vg(x

0
t , x̂t, θ

1)Πg(Txt−1; dx̂t)ν(dθ1)

}
. (20)

Finally, what they mean by equilibrium is stated in the following

Definition 7 A symmetric Markov perfect equilibrium of a dynamic economy with forward look-

ing and locally interacting agents is a map g∗ : X0 ×Θ→ X such that

g∗
(
xt−1, θ

0
t

)
= arg max

x0
t∈X

{∫
u
(
x0
t−1, x

0
t , yt, θ

0
t

)
πg∗(Txt−1; dyt) (21)

+ β

∫
Vg∗(x

0
t , x̂t, θ

1)Πg∗(Txt−1; dx̂t)ν(dθ1)

}
.

BHÖ establish a series of results on the existence and the convergence of the equilibrium process.

Such results require conditions on the policy function, and hence are not directly formulated as

conditions on the fundamentals of the economy. They then introduce an economy with conformity

preferences which is amenable to study. For this economy they show that their general conditions

are satisfied, and hence are not vacuous.

In order to state a general existence result for equilibria in dynamic random economies with

forward looking interacting agents, they introduce the notion of a correlation pattern.
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Definition 8 For C > 0, let

LC+ := {c = (ca)a∈N : ca ≥ 0,
∑
a∈A

ca ≤ C}

denote the class of all non-negative sequences whose sum is bounded from above by C. A sequence

c ∈ LC+ will be called a correlation pattern with total impact C.

Each correlation pattern c ∈ LC+ gives rise to a metric

dc(x, y) :=
∑
a∈N

ca|xa − ya|

that induces the product topology on X0. Thus, (dc,X
0) is a compact metric space. In particular,

the class

LipCc := {f : X0 → R : |f(x)− f(y)| ≤ dc(x, y)}

of all functions f : X0 → R which are Lipschitz continuous with constant 1 with respect to the

metric dc is compact in the topology of uniform convergence.

The constant ca may be viewed as a measure for the total impact the current action xa of the

agent a ≥ 0 has on the optimal action of agent 0 ∈ A. Since C < ∞, we have lima→∞ ca = 0.

Thus, the impact of an agent a ∈ A on the agent 0 ∈ A tends to zero as a → ∞. In this

sense they consider economies with weak social interactions. The quantity C provides an upper

bound for the total impact of the configuration x = (xa)a≥0 on the current choice of the agent

0 ∈ A. Given this structure, a general existence result for symmetric Markov perfect equilibria

in dynamic economies with local interaction is given in the following

Theorem 8 (Existence and Lipschitz continuity) Assume that there exists C < ∞ such

that the following holds:

(i) For any c ∈ LC+, for all θ0 ∈ Θ and for each choice function g(·, θ0) ∈ LipCc , there exists

F (c) ∈ LC+ such that the unique policy function ĝg(·, θ0) which solves (20), is Lipschitz

continuous with respect to the metric dF (c) uniformly in θ0 ∈ Θ.

(ii) The map F : LC+ → LC+ is continuous.

(iii) We have limn→∞ ‖ĝgn(·, θ0)− ĝg(·, θ0)‖∞ = 0 if limn→∞ ‖gn − g‖∞ = 0.

Then the dynamic economy with local interactions has a symmetric Markov perfect equilibrium

g∗ and the function g∗(·, θ0) is Lipschitz continuous uniformly in θ0.

Once the existence of an MPE is obtained, a natural question to ask is how the economy behaves in

the long run given that individuals make choices according to the choice function whose existence



38 Onur ÖZGÜR

it is shown. To that effect, BHÖ study the limit properties of the t-fold iteration of the stochastic

kernel Πg∗(x; ·). To that end, they introduce the vector r∗ = (r∗a)a∈A defined as

r∗a := sup{‖πg∗(x; ·)− πg∗(y; ·)‖ : x = y off a}. (22)

Here, ‖πg∗(x; ·)− πg∗(y; ·)‖ denotes the total variation of the signed measure πg∗(x; ·)− πg∗(y; ·),
and x = y off a means that xb = yb for all b 6= a. The next theorem gives sufficient conditions for

convergence of the equilibrium process to a steady state. Its proof follows from a fundamental

convergence theorem by Vasserstein (1969).

Theorem 9 (Ergodicity) If
∑

a∈A r
a
g∗ < 1, then there exists a unique probability measure µ∗

on the infinite configuration space X such that, for any initial configuration x ∈ X, the sequence

Πt
g∗(x; ·) converges to µ∗ in the topology of weak convergence for probability measures.

Example 4 (Conformity Economies) These are dynamic extensions of economies with local

interactions that we saw in example 2. Let X = Θ = [−1, 1], and assume that Eθ0
t = 0, and

that an agent a ∈ A only observes his own type θa. If the instantaneous utility function takes the

quadratic form

u
(
xat−1, x

a
t , x

a+1
t , θat

)
= −α1

(
xat−1 − xat

)2 − α2 (θat − xat )
2 − α3

(
xa+1
t − xat

)2
(23)

for positive constants α1, α2 and α3, then BHÖ show that the hypotheses of Theorem 8 are satisfied

hence the economy has a symmetric Markov perfect equilibrium g∗. Moreover, the policy function

g∗ can be chosen to be of the linear form

g∗(x, θ0) = c∗0x
0 + γθ0 +

∑
b≥1

c∗bx
b

for some positive sequence c∗ = (c∗a)a≥0 and some constant γ > 0. For the same class of

economies, one can also show convergence to a unique steady state. Consider the representa-

tion

g∗(x; θ0) = c∗0x
0 + γ2θ

0 +
∑
a≥1

c∗ax
a.

of the policy function g∗. For any two configurations x, y ∈ X0 which differ only at site a ∈ A we

have

|g∗(x, θ0)− g∗(y, θ0)| ≤ c∗a|xa − ya|,

Thus, assuming that the taste shocks are uniformly distributed on [−1, 1] we obtain

|πg∗(x;A)− πg∗(y;A)| ≤ 2c∗a

for all A ∈ B([−1, 1]), and so
∑

a≥0 r
a
g∗ < 1 if

∑
a≥0 c

∗
a <

1
2 . Hence the conditions of Theorem 9

are satisfied, which means that we obtain convergence to a steady state whenever α1 is big enough

and if α3 is small enough, i.e., if the interaction between different agents is not too strong.
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I mentioned in the beginning of this section that BHÖ also study local and global equilibrium

dynamics together. I reserved this for Section 3.3. Finally, for their comparison of equilibria

generated by myopic and forward looking behavior, see Section 3.5.2

Bisin and Özgür (2010)

Bisin and Özgür (BÖ henceforth) take up the study of dynamic economies from where they left

and fill out many of the gaps they left for future research in Bisin, Horst, and Özgür (2006).

Their major contribution is twofolds:

(i) Existence, uniqueness, parametric continuity, ergodicity, and welfare properties of equilibria

of dynamic conformity economies with general interaction structures.

(ii) Most importantly, the identification of local interaction effects (from hidden correlated

effects) at the population, exploiting in a novel way the dynamic equilibrium behavior.

BÖ focus their attention on economies with conformity preferences. These are environments

in which each agent’s preferences incorporate the desire to conform to the choices of agents in

his reference group. They argue that in many relevant social phenomena, in fact, the effects of

preferences for conformity are amplified by the presence of limits to the reversibility of dynamic

choices. This is of course the case for smoking, alcohol abuse and other risky teen behavior,

which are hard to reverse because they might lead to chemical addictions. In other instances,

while addiction per se is not at issue, nonetheless behavioral choices are hardly freely reversible

because of various social and economic constraints, as is the case, for instance, of engaging in

criminal activity. Finally, exogenous and predictable changes in the composition of groups, as e.g.,

in the case of school peers at the end of a school cycle, introduce important non-stationarities

in the agents’ choice. These non-stationarity also call for a formal analysis of dynamic social

interactions. In order to provide a clean and simple analysis of dynamic social interactions in a

conformity economy, they impose strong(er than required) but natural assumptions. Namely

1. Time is discrete and is denoted by t = 1, . . . ,K. They allow both for infinite economies

(K =∞) and economies with an end period (K <∞).

2. Let A := Z represent a general social space. Each agent interacts with his immediate

neighbors, i.e., for all a ∈ A, N(a) := {a− 1, a+ 1}.29

29BÖ argue that the method of proof does not rely on the dimensionality of the social space. Hence, social space

can be represented, at an abstract level, by any d-dimensional integer lattice. Similarly for the action and type

spaces. The only thing that they cannot dispense with for their analysis is the convexity of the choice problem and

the interiority of the optimal trajectories.
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3. The contemporaneous preferences of an agent a ∈ A are represented by the utility function

u(xat−1, x
a
t , x

a+1
t , xa−1

t , θat ) := −α1(xat−1 − xat )2 − α2(θat − xat )2

−α3(xa−1
t − xat )2 − α3(xa+1

t − xat )2

where α1, α2, and α3, are positive constants.

4. Let X = Θ = [x, x̄] ⊂ R, where x < x̄, E [θ] =
∫
θdν =: θ̄ ∈ (x, x̄).

Let X := {x = (xa)a∈A : xa ∈ X} and Θ := {(θa)a∈A : θa ∈ Θ}. The timing of the type process

and agents’ choices are as in Bisin, Horst, and Özgür (2006). Each agent a ∈ A believes that

everyone else in the economy makes choices according to a given choice function g : X × Θ ×
{1, . . . ,K} → X. Similar to BHÖ, they are after

Definition 9 A symmetric Markov Perfect Equilibrium of a dynamic economy with social inter-

actions is a measurable map g∗ : X ×Θ × {1, . . . ,K} → X such that for all a ∈ A and for all

t = 1, . . . ,K

g∗K−(t−1)(T
axt−1, T

aθt) = arg max
xat∈X

E

[
u
(
xat−1, x

a
t , {g∗K−(t−1)(T

bxt−1, T
bθt)}b∈N(a), θ

a
t

)
+βV g∗

K−t

(
{g∗K−(t−1)(T

bxt−1, T
bθt}b∈A, θIt+1)

)]
(24)

Their first result shows that for finite horizon economies, there exists a unique MPE, which is

characterized in a simple and intuitive way: agent a’s optimal choice each period is a convex

combination of last period’s observed choices, today’s observed type realizations, and the average

type in the economy. Moreover, those weights capture an important phenomenon: Although

fundamentally, agent’s preferences are affected only by their immediate friends, in equilibrium

their optimal choices are affected by (hence correlated with) choices of everyone in the economy

in a decaying fashion, that is, farther an agent b is from an agent a, lesser weight agent a puts

on the last choice of agent b, as can be seen in Figure 1 for strong (high α3) and mild (low α3)

interactions. For an infinite horizon economy, the existence of a stationary MPE that behaves

similarly is guaranteed. All this is summarized formally in

Theorem 10 (Existence - Complete Information) Consider an economy with conformity

preferences and complete information.

1. If the time horizon is finite (K < ∞), then the economy admits an a.s. unique symmetric

Markov Perfect Equilibrium g∗ : X × Θ × {1, · · · ,K} 7→ X such that for all t, for all

(xt−1, θt) ∈ X×Θ

g∗K−(t−1)(xt−1, θt) =
∑
a∈A

caT−t+1 x
a
t−1 +

∑
a∈A

daK−(t−1) θ
a
t + eT−t+1 θ P− a.s.

where caτ , d
a
τ , eτ ≥ 0, a ∈ A, and eτ +

∑
a∈A(caτ + daτ ) = 1, 0 ≤ τ ≤ K.
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Figure 1: Weights on past history in the stationary policy function.

2. If the time horizon is infinite (K = ∞), then the economy admits a symmetric Markov

Perfect Equilibrium g∗ : X×Θ 7→ X such that

g∗(xt−1, θt) =
∑
a∈A

ca xat−1 +
∑
a∈A

da θat + e θ

where ca, da, e ≥ 0, for a ∈ A, and e+
∑

a∈A(ca + da) = 1.30

Their method of proof is constructive and the recursive map which induces the symmetric policy

function at equilibrium provides a direct and useful computation method which they repeatedly

exploit to characterize equilibria and to produce comparative dynamics exercises. All these are

summarized in the following

Theorem 11 (Recursive Computability) Consider a K(< ∞)-period economy with confor-

mity preferences (αi > 0, i = 1, 2, 3) and complete information. The coefficients (c∗s, d
∗
s, e
∗
s)
K
s=1

of the sequence of Markov polices whose existence is guaranteed by Theorem 10 are computable

recursively as the unique fixed points of the the recursive maps Ts : Lc → Lc, s = 1, . . . ,K, i.e.,

30The theorems in this section can be extended with straightforward modifications to the case of incomplete

information. Moreover, several assumptions can be relaxed while guaranteeing existence. In particular, the sym-

metry of the neighborhood structure can be substantially relaxed, adapting the analysis of Horst and Scheinkman

(2006) to our dynamic environment.
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for each a ∈ A
c∗as = ∆−1

s

(
α11{a=0} +

∑
b6=0 γ

b
sc
∗a−b
s

)
d∗as = ∆−1

s

(
α21{a=0} +

∑
b6=0 γ

b
sd
∗a−b
s

)
e∗as = ∆−1

s

(
µs + e∗s

∑
b 6=0 γ

b
s

) .

where ∆K , (γ
a
K)a6=0, µK are the total effects on agent 0’s marginal utility of an infinitesimal change

in x0
1, (xa1)a6=0, and θ̄ respectively evaluated at the equilibrium path. Moreover, limK→∞ (c∗K , d

∗
K , e

∗
K) =

(c∗∞, d
∗
∞, e

∗
∞) exists and is the coefficient sequence of an equilibrium policy function for the infinite

horizon economy.

Before closing this section, I would like to mention the welfare effects of local interactions. BÖ

argue that the equilibrium allocations of conformity economies are generally Pareto inefficient.

Individuals do not internalize the impact of their choices on other agents today and in the future.

The presence of social interactions might call for policy interventions. Most interventions

(Medicaid, Food Stamps, Social Security Act) are thought to work on the fundamentals but

generated social norms, e.g., welfare stigma. Well targeted policy interventions on a few agents

might spill over other agents (multiplier effect); see Moffit (2001).

BÖ study the problem of a social planner whose objective is to maximize the ex-ante expected

well-being of a generic agent, by restricting the planner to the same class of symmetric choice

rules, treating individuals equally. They show that, in his optimal choice, in order to internalize

the externalities generated by individual choices on other individuals, the planner puts more

weight on an agent’s neighbors’ type realizations and past choices than the generic agent does in

a laissez-faire equilibrium. Hence

Theorem 12 (Inefficiency of equilibrium) Equilibrium of an economy with conformity pref-

erences (finite or infinite horizon) is generically inefficient.

One of the most important contributions of Bisin and Özgür (2010) is their study of the iden-

tification of social determinants of individual choice behavior. BÖ argue, in a novel way, that

rational expectations dynamics might help the social scientist disentangle interaction effects from

correlated effects. This is material for Section 3.6.

3.3 Local vs. Global Dynamics

This section extends the analysis of dynamic economies with local interactions to economies in

which interactions have an additional global component. In particular, I present the methodology

proposed in Bisin, Horst, and Özgür (2006) to study economies in which each agent’s preferences

depend on the average action of all agents. They argue that such dependence might occur, for

instance, if agents have preferences for social status. Similarly, preferences to adhere to aggregate

norms of behavior, such as specific group cultures, give rise to global interactions. More generally,
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global interactions could capture other externality as well as price effects. When the population

is finite, global interactions are nested straightforwardly in local interaction models. When the

number of agents is infinite, there are technical subtleties.

Consider a class of dynamic conformity economies, in which the preferences of each agent

a ∈ A also depend on the average action of the agents in the economy,

p(x) := lim
n→∞

1

2n+ 1

n∑
a=−n

xa,

when the limit exists. Let Xe denote the set of all configurations such that the associated average

action exists:

Xe :=

{
x ∈ X : ∃ p(x) := lim

n→∞

1

2n+ 1

n∑
a=−n

xa

}
.

The preferences of the agent a ∈ A in period t are described by the instantaneous utility function

u : Xe ×Θ→ R of the conformity class

u
(
xat−1, x

a
t , x

a+1
t , θat , p(xt)

)
= −α1

(
xat−1 − xat

)2 − α2 (θat − xat )
2 − α3

(
xa+1
t − xat

)2 − α4 (p(xt)− xat )
2

for some positive constants αi, i = 1, 2, 3, 4. As before, assume that X = Θ = [−1, 1] and that

Eθ0 = 0. Assume also that information is incomplete so that an agent a ∈ A at time t only

observes his own type θat , and all agents’ past actions. Similar to before, a symmetric Markov

perfect equilibrium of this economy is defined as in

Definition 10 Let x ∈ Xe be the initial configuration of actions. A symmetric Markov perfect

equilibrium of a dynamic economy with local and global interactions is a map g∗ : X0×Θ×X → X

and a map F ∗ : X → X such that:

g∗
(
xt−1, θ

0
t , pt

)
= arg maxx0

t∈X
{∫

u
(
x0
t−1, x

0
t , y

1
t , θ

0
t , pt

)
πg∗(Txt−1; dy1

t )

+ β
∫
Vg∗

(
x0
t , x̂t, θ

1, pt+1

)
Πg∗(Txt−1; dx̂t)ν(dθ1)

} (25)

and

pt+1 = F ∗ (pt) ,

and

p1 = p(x) and pt = p (xt) almost surely.

At a symmetric Markov perfect equilibrium, apart from anticipating play according to the policy

function g∗, all agents rationally expect the sequence of average actions {p(xt)}t∈N to be deter-

mined recursively via the map F ∗. BHÖ argue that two fundamental difficulties arise in studying

existence of an equilibrium of a dynamic economy with local and global interactions



44 Onur ÖZGÜR

(i) The endogenous sequence of average actions {p(xt)}t∈N might not be well-defined for all t

(that is, xt might not lie in Xe for some t).

(ii) Even when xt ∈ Xe, an agent’s utility function depending on the action profile xt in a global

manner through the average action p(xt) will typically not be continuous in the product

topology. Thus, standard results from the theory of discounted dynamic programming

cannot be applied to solve the agent’s dynamic optimization problem in (25).

In order to circumvent these difficulties, BHÖ use a two-step approach in which each agent treats

the global dynamic process as exogenous and independent of choices, and makes optimal choices

using a stationary policy that depends on last period choices, current type realizations, and the

current value of the exogenous global process. They then show that the mean choice dynamics

in the economy is independent of particular choice configurations and agrees with the exogenous

global dynamics.31 To be able to do that, they show that

(i) The endogenous sequence of average actions {p(xt)}t∈N exists almost surely if the exogenous

initial configuration x belongs to Xe, and that

(ii) It follows a deterministic recursive relation.

More specifically, they first consider an economy where the agents’ utility depends on some

exogenous quantity p, constant over time and show that agents behave optimally according to a

symmetric policy function g∗ that has the following linear form

g∗(x, θ0, p) = e∗0x
0 + εθ0 +

∑
b≥1

e∗bx
b +A(p) (26)

where the correlation pattern e∗ = (e∗a)a≥0, and the constant ε > 0 are independent of p. So,

a change in p has only a direct effect on the chosen action but does not affect the dependency

of the action on the realized agent’s type nor on the neighbors’ actions. It is this independence

property that allows BHÖ to separate the local and global equilibrium dynamics. To that effect,

they extend the analysis to the case in which the agents’ utility depends on some exogenous but

time-varying quantity {pt}t∈N described in terms of a possibly non-linear recursive relation of the

form

pt+1 = F (pt) for some continuous function F : X → X. (27)

Since F is continuous, an agent’s optimization problem can again be solved using standard results

from the theory of discounted dynamic programming. They show that, in this case, the optimal

31For similar separation arguments applied in the context of static economies with locally and globally interacting

agents, see Horst and Scheinkman (2006) in Section 2.2. See also Föllmer and Horst (2001) for another application

to interacting Markov chains.
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symmetric policy function that each agent uses takes the form

g(x, θ0, p1) = e∗0x
0 + εθ0 +

∑
b≥1

e∗bx
b +

∑
t≥1

h∗t pt

for some correlation pattern e∗ = (e∗a)a≥0 and a positive sequence h∗ = (h∗t )t≥1. These sequences

can be chosen independently of F and satisfy∑
a≥0

e∗a +
∑
t≥1

h∗t ≤ 1.

Finally, BHÖ show that the recursive structure of {pt}t∈N is preserved when each element of the

sequence is required to be endogenously determined as the average equilibrium action: pt = p (xt),

for any t, at the equilibrium configuration xt. To that effect, take a continuous function F : X →
X that determines recursively the sequence {pt}t∈N as in (27). Assume that the exogenous initial

configuration x has a well defined average p := p(x), that is, assume that x ∈ Xe. Let F (t)

denote the t-fold iteration of F so that pt = F (t)(p). Since the agents’ types are independent

and identically distributed, it follows from the law of large numbers that the average equilibrium

action in the following period is almost surely given by

lim
n→∞

1

2n+ 1

n∑
a=−n

g(T ax, θa, p) = C∗p+
∑
t≥1

h∗tF
(t)(p) =: G(F )(p).

Thus, the average action in period t = 2 exists almost surely if the average action in period t = 1

exists, and an induction argument shows that the average action exists almost surely for all t ∈ N.

In order to establish the existence of an equilibrium, they first show that there exists a continuous

function F ∗ such that, with p1 := p(x) we have

p2 := F ∗(p1) = G(F ∗)(p1).

Finally, their main result can be summarized in

Theorem 13 For the dynamic economy with local and global interactions introduced in this sec-

tion, the following hold:

1. The economy has a symmetric Markov perfect equilibrium (g∗, F ∗) where g∗ : X0×Θ×X →
X and F ∗ : X → X.

2. In equilibrium, the sequence of average actions {p(xt)}t∈N exists almost surely.

3. The policy function g∗ can be chosen of the linear form

g∗(x, θ0) = e∗0x
0 + εθ0 +

∑
b≥1

e∗bx
b +B∗(p(x)) (28)

for some positive sequence e∗ = (e∗a)a≥0, a constant ε > 0, some constant B∗(p(x)) that

depends only on the initial average action.
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One note of precaution: It is important for their analysis in this section that the policy functions

are linear. Only in this case, in fact, can the dynamics of average actions {p(xt)}t∈N can be

described in terms of a recursive relation. In models with more general local interactions, the

average action typically is not a sufficient statistic for the aggregate behavior of the configuration

x; hence a recursive relation typically fails to hold, as shown e.g., by Föllmer and Horst (2001).

In such more general cases, the analysis must be pursued in terms of empirical fields. Interested

reader should see Föllmer and Horst (2001). I also found the book by

3.4 Ergodicity

Ergodicity is the mathematical study of measure-preserving transformations in general and long-

term average behavior of systems in particular. Economists are especially interested in the long-

run properties of equilibrium distributions of dynamic economies and games. In this section I will

present existing results on the (non-)ergodicity of equilibria of economies with social interactions.

Readers interested in general discussions of ergodicity should consult Halmos (1956), Petersen

(1989) (ch. 1 is a gentle introduction to the kind of questions ergodic theory is concerned with),

Nadkarni (1998), and Walters (2000). I also found the book by Meyn and Tweedie (1993) ex-

tremely helpful, especially when one deals with Markov processes with uncountable state spaces.

For random field models, see Kindermann and Snell (1980), Liggett (1985), and Spitzer (1971).

Durlauf (1993) studies the dynamics of local interlinkages between sectors in an economy and

the possibility of multiple long-run aggregate behavior emerging from the same local interactions

between sectors. He uses the mathematics of random field theory to formulize his approach.

Formally, at the local level, equilibrium technology, production, and capital accumulation choices

give rise to

µ
(
xat = 1 | xbt−1 = 1,∀b ∈ N(a) ∪ {a}

)
a system of local conditional probabilities of choosing a particular technology (either 0 or 1) given

last period technology choices of neighboring sectors (sectors that have linkages with sector a).

Using a result by Dobrushin (1968), he shows that there exists at least one joint probability

distribution on overall technology choices consistent with the local rules. The major economic

questions Durlauf are after come from the theory of economic growth: do economies with iden-

tical technologies and preferences converge to the same long run average output? Can leading

sectors tip off the economy from a low level equilibrium to a high level equilibrium due to strong

interlinkages, as proposed by Hirschman (1958)? Durlauf argue that although previous models

of increasing returns to scale and imperfect competition (e.g. Diamond (1982), Cooper and John

(1988), Romer (1986), Lucas (1988)) have generated multiple equilibria, these latter are constant

steady states entirely determined by initial conditions. Durlauf show that one can incorporate

meaningful stochastic dynamics, interesting cyclic behaviour, volatility of output at the cross-

section of industries into the model and still characterize conditions under which the economy
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is ergodic with a unique invariant distribution, independent of the initial conditions. He argues

that these conditions are: (i) positive and non-degenerate conditional probabilities, and (ii) not

too strong local spillovers.

Durlauf’s dynamics are backward looking because periodic production choices can be solved

independently due to the one-lagged Markov assumption on the dependence of current production

on past technology choices. Nevertheless, the analysis using random field theoretical tools to

obtain aggregate probability laws consistent with sectoral stochastic linkages is novel. Bisin,

Horst, and Özgür (2006) are interested in a similar issue but with fully rational forward-looking

agents. At an abstract level, agents interact only with their immediate neighbours, but anticipate

the future choices of these latter. Equilibrium conditions give rise to a system of conditional laws

that depend on past choices on the equilibrium path. Given the conditionally independent nature

of these rules, there is a unique consistent global phase. BHÖ show that under relatively mild local

interactions, there exists a unique long-run joint probability distribution on the space of individual

configurations to which the sequence of finite horizon global phases converge, independent of the

initial conditions of the economy.

For the class of conformity economies that they study, Bisin and Özgür (2010) show that no

matter how strong the strength of local interactions can be, given a stationary equilibrium policy,

the Markov process jointly induced by that policy and the sequence of individual shocks converges

to a unique long run probability distribution on the space of configurations. This is due to the

fact that the optimal policy is a stationary trade-off between dependence on the past, adaptation

to the stochastic shocks, and co-ordination on the mean shock. In the long run, iteration of

the same policy makes the dependence on the initial conditions die off. Consequently, it is the

path of realized shocks that determine the state of the economy. Since the system is ergodic, the

empirical distribution on all such paths converge to the same probability distribution in the long

run.

In this section, I focused my attention on the ergodicity of dynamic economies with local

interactions and its implications on the uniqueness of long-run limit distributions. A local inter-

action system can be ergodic at the cross-section (space) too. We saw the implications of this

on the existence of consistent aggregate laws, as presented in Horst and Scheinkman (2006), in

Section 2.2. For similar ideas in the context of population games, see Blume (1993) for a study

of stochastic strategy revision processes and their long run properties and see Anderlini (1998)

for an application to path dependence in local learning. A quick survey of (non)-ergodicity in

economics is Horst (2008).
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3.5 Myopia vs. Rationality

3.5.1 Myopic Interactions

Early models of dynamic social interactions mostly subscribe to the evolutionary point of view.

What distinguish evolutionary from the classical point of view in economics, according to Young

(1998), are the concepts of equilibrium and rationality. In the mainstream economic equi-

librium analysis, individual behavior is assumed to be optimal given expectations and expecta-

tions are correct, justified by the statistical evidence (rational expectations). Agents know

their environments, use all information they have to anticipate changes in them and act accord-

ingly. Evolutionary approach treats individuals as low-rationality agents. They still adapt

to changes in their environment. However, they account for neither their actions’ impact on the

evolution of their environment, nor the repercussions of this latter on their own future well-being.

Young argues that they too are interested in equilibrium but that equilibrium can be understood

only within a dynamic framework that explains how it comes about, by observing how things

look on average over long periods of time. Good surveys of this approach exist. Interested reader

should consult Blume (1997), Young (1998 and 2009), Sandholm (2010), and also Burke and

Young (2008, chapter 9) for applications to the study of social norms. I am going to give a quick

tour of the most cited articles in the literature.

One of the earliest models of local interactions in the social sciences is Schelling (1971). He

argues that segregation (or separation, or sorting) might happen along many lines: income,

sex, education, race, language, color, historical accidents; it might be the result of organizations,

communication systems, or correlation with other modes of segregation. He is interested in

segregation that results from discriminatory individual choices. He assumes that individuals,

when making choices, are not capable of generating (often not even conscious of) changes on

the aggregate dynamics of the system. Evolutionary processes stemming from individual

actions bring about those changes in the long run. He first studies a Spatial Proximity Model,

on a line and on a two-dimensional space. Population (finite) is divided into two permanent and

recognizable groups according to color. Individuals are concerned about the proportion of their

local neighbors of the opposite color. They each have a particular location at any time and can

move if they are not happy with the particular color composition of their current neighborhood.

Schelling uses different behavioral rules to represent individual choices. In one treatment,

everybody wants at least half his neighbors to be of the same color and moves to another location

otherwise. The rule about how agents move is deterministic and arbitrary. Nobody anticipates

the movements of others (myopic) and agents continue moving until there is no dissatisfied agent

in the system (equilibrium). When modeled on a two-dimensional space, agents move to the

most preferred empty spaces available when dissatisfied. Once again, the dynamics come to an

end when no one is dissatisfied with their neighborhood composition. In its essence, this is a



Local Interactions 49

local interaction model, with myopically best-responding agents. Schelling looks at the

segregation (or clustering, or sorting, or concentration) patterns that arise once the dynamics

settle: One observes clusters of same color agents living together separated from other groups

along well-defined boundaries. One interesting result is that minority tends to become more

segregated from majority, as its relative size diminishes. Another is that segregation is more

striking as the local demand for like-colored neighbors increases.

He then studies a Bounded-Neighborhood Model. This is a global interaction model, where

each agent’s utility is affected by the overall color composition of the neighborhood. Given a

distribution of ‘tolerance’ levels, each agent stays in the neighborhood if the relative proportion

of people of opposite color is less than his tolerance level; otherwise, he leaves. At each moment in

time, the agents with the lowest tolerance levels leave and new agents with tolerance levels higher

than the current composition enter. Schelling looks at the steady state of the induced determinis-

tic dynamic processes. There always exist two stable states involving complete segregation along

with a mixed (co-habitation of blacks and whites) state whose stability depends on the tolerance

distribution and the relative proportions of blacks and whites. Some interesting results are: co-

habitation is more likely with similar tolerance distributions for blacks and whites; in general,

for mixed equilibria to emerge, minority must be the more tolerant group. Schelling applies his

analysis to neighborhood tipping (the inflow of a recognizable new minority into a neighborhood

in sufficient numbers to cause the earlier residents to begin evacuating). He argues that main

determinants of a tipping phenomenon are whether the neighborhood size is fixed, whether the

new entrants are identifiable as a group, the relative sizes of the entrants with respect to the size

of the neighborhood, and the availability of alternative neighborhoods for evacuating people.

A large literature using evolutionary methodology as in Schelling (1971), but more formally,

studies social interaction in large populations. The common hypothesis is that individuals need

not know the total structure of the game but need information on the empirical distribution

of strategy choices in the population. Two pillars of this approach are a population game,

the structure of the global interaction to occur repeatedly, and a revision protocol, a myopic

procedure that describes who chooses when and how previous choices are revised. A population

game and a revision protocol jointly induce evolutionary game dynamics that describe how

the aggregate behavior in the population changes over time. When the resulting process is ergodic,

its long run behavior will focus on a subset of states called the stochastically stable set.

Most of the literature focuses on the relation between risk dominance (Harsanyi and Selten

(1988)) and stochastic stability. Kandori, Mailath, and Rob (1993) are the first ones to have

established that link. Essentially, they argue that the periodic shocks (mutations or mistakes

that are part of the revision protocol) in a 2 × 2 game reduce the set of long run equilibria

by acting as a selection mechanism. Provided that the population is sufficiently large, the risk

dominant equilibrium is stochastically stable. Young (1993) shows, using different techniques
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but the same equilibrium concept, that the connection between risk dominance and stochastic

stability is not robust to an increase in the number of strategies in the population game; the

resulting stochastically stable equilibrium may be neither risk dominant nor Pareto optimal.

One criticism of this approach is the speed at which an equilibrium is selected in the long run.

This process might take too long. Ellison (1993) shows that if agents respond to their immediate

neighbors (local interactions), the time to reach a stochastically stable state is reduced greatly.

Moreover, in large populations with uniform matching, play is determined largely by historical

factors; whereas where agents are matched with a small set of agents only, it is more likely that

the evolutionary forces determine the long run outcome. Blume (1993) studies local interaction

dynamics on integer lattices. He characterizes stationary distributions and the limit behavior of

these dynamic systems. He relates his results to equilibrium selection as in the rest of the literature

and also introduces statistical mechanics techniques to study this kind of strategic interaction.

Blume (1995) extends these results to K × K games when players update using a myopic best

response rule. Finally, Morris (2000) looks at the possibility of spread of a behavior initially

played by a small subset of the population to the whole population through local interactions. He

shows that maximal contagion happens in the presence of sufficiently uniform local interactions

and when the number of agents one can reach in k steps is not exponential in k.

3.5.2 Does it matter?

Does it matter to model interactions myopically rather than rationally? Does the modeling

choice (rational vs. myopic) affect the results that one gets significantly? The answer that Bisin,

Horst, and Özgür (2006) and Bisin and Özgür (2010) give is that myopic models have the general

tendency to overestimate the local interaction effects relative to the rational models. The main

idea is that a myopic agent is unable to anticipate the effect of his current action change on others’

behavior, on the evolution of the system, and the repercussions of these latter on his future well-

being, whereas a rational agent anticipates and incorporates these effects into his optimal choice.

Consequently, a rational agent is more immune to local behavioral and environmental changes

than a myopic agent.

This idea is nicely presented in Bisin, Horst, and Özgür (2006) using their example in Section

3.2. BHÖ study a simple two-period version of their conformity economies under two distinct

hypotheses: myopia and full rationality (see Section 4.3, p. 98 of their paper). They find two

differences between the behavior of myopic and rational agents: (i) whereas the myopic agent is

backward-looking by basing his choice on the past choices of his immediate neighbors only, the

fully rational agent’s choice is based on the past choices of all agents. This creates long cross-

sectional correlation terms. But most importantly (ii) the fully rational choice is more weighted

on the the mean shock than the past actions: a rationally anticipating agent will try to smooth

out local behavioral dependencies by anticipating that other agents will get a chance to change
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their actions next period. This further limits the component of local conformity in the choice of

agents in the economy.

A similar criticism is found in Blume (1997). Blume argues that one of the most important

barriers to the application of population game techniques to serious economic models is the

assumption of myopia. The separation between choice and dynamics due to myopia makes

the analysis of population games models particularly simple. But economic decision makers are

typically concerned about the future as well as the present. Consequently, they try to forecast

the strategy revision process, and take account of these forecasts when searching for the best

response at a strategy revision opportunity. If there is any connection between the forecasts and

the actual behavior of the strategy revision process, such as the hypothesis that expectations are

rational, then the dynamic behavior of the strategy revision process cannot be simply computed

from the choice rule. The framework used in the population games literature, to study stigma and

enforcement of social norms, subscribe to the myopic formulation; hence it misses the richness of

the account of individual choice that standard dynamic economic analysis offers. For instance,

Blume argues, it would be hard to formulate a question about the effect of punishment duration

in that framework. He points out that dispensing with the myopia hypothesis and recognizing

players as intertemporal decision makers models would allow evolutionary game theory to be

applicable to serious problems in the social sciences.

Blume (2003)

To exemplify such applicability, Blume (2003) models stigma and social control. Blume notes

that stigma is in essence a dynamic phenomenon. Its costs are born in the future, and the

magnitude of those costs are determined by the future actions of others. Hence, he rejects

myopia and he models dynamic stigma costs as a population game (global interactions) with

forward looking agents. This is a very nice and novel paper. Individuals in the model can

entertain random criminal opportunities. There are two types of costs: a one-time utility cost if

caught and a flow cost of stigma, when ‘marked’ as a criminal, that is increasing in the relative

ratio of the unmarked population (imposers of stigma). Stigma ends at a random time when the

agent gets ‘unmarked’. Blume’s agents perceive not only the immediate and current cost flow

effects of their actions on themselves but also the externalities they generate on others and their

repercussions on themselves in the future through the evolution of the marking and unmarking

processes. Blume shows that apart from the neoclassical effect (Becker (1968)) of decreasing

criminal activity, an increase in the arrest probability has a social interaction effect : it increases

the number of tagged individuals which in turn reduces the stigma effects of being tagged as a

criminal. Similar reasoning applies to the probability of getting untagged. Consequently, stigma

costs of long duration will lead to increased crime rates!
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3.6 Rational Dynamics and Identification

There are statistical problems that arise in the estimation of social interactions. Firstly, it is diffi-

cult to correctly identify individuals’ reference groups. Moreover, one should distinguish between

three effects in understanding group behavior (Manski (1993)): (1) correlation of individual char-

acteristics, (2) influence of group characteristics on individuals, and (3) the influence of group

behavior on individual behavior. The equilibrium allocations of economies with local interac-

tions are in general Pareto inefficient because local interactions are a form of direct preference

externalities. As a consequence, the presence of local interactions might call for policy interven-

tions. Most policy interventions such as Medicaid, Food Stamps, Social Security Act are thought

to operate on the fundamentals. However, there is documented evidence that responses of wel-

fare recipients generated norms, and unexpected community responses due to social interactions

(Moffitt (2001)). Thus, identifying the existence and nature of social interactions are of utmost

importance for efficient policy implementation.

The question of identification goes back, in economics, to Pigou (1910), Schultz (1938), Frisch

(1928, 1931, 1935, 1934, and 1938), Marschak (1942), Haavelmo (1944), Koopmans (1949), Koop-

mans, Rubin, and Leipnik (1950), Wald (1950), Hurwicz (1950). The standard definitons of

identification that we still use are owed to Koopmans (1949) and Koopmans and Reiersøl (1950),

both of which are very beautiful articles providing clear exhibitions of the main idea. More recent

surveys on the topic exist of course; see Rothenberg (1971), Hausman and Taylor (1983), Hsiao

(1983), Matzkin (2007), and Dufour and Hsiao (2008). Moreover, Blume and Durlauf (2005),

Brock and Durlauf (2007), Manski (2007, 2000), Blume et al. (2010, chapter 23) and Graham

(2010, chapter 29) in this volume, and Manski (1993, 2007) are good guides to the main questions

pertaining to social interactions. Since the pessimistic view expressed in Manski (1993), there has

been progress in the identification literature. Conley and Topa (2002, 2003) compare predictive

power of different neighborhood structures to identify the reference groups. Graham (2008) uses

excess variance across groups for identification. Davezies et al (2006) use size variation across

groups; Bramoullé et al (2009) uses reference group heterogeneity for identification. Other re-

cent contributions include Glaeser and Scheinkman (2001), Graham and Hahn (2005); De Paula

(2009), Evans, Oates and Schwab (1992), Ioannides and Zabel (2008), and Zanella (2007).

The main question is easy to state. A structure is a specification of both the distribution

of variables unobserved by the econometrician and the relationship connecting these latter to

the observed variables, which implies a unique probability distribution. A model is simply a

collection of admissible structures. One says that an admissible structure S is identifiable by

the model (or that the model identifies a given structure) if there exists no other structure S′

that induces the same probability distribution on the observable variables.

Bisin and Özgür (2010) argue that dynamic equilibrium processes generated by the actions of

rational agents might help identify certain interaction effects. In particular, they are interested
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in identifying correlated effects (unobserved to the econometrician) from local interactions. They

first argue that as suspected by Manski (1993) too, dynamic specification does not necessarily

solve the identification problem and the necessary support for a particular intertemporal spec-

ification should come from data. They show that in static as well as stationary dynamic

models, reflection problem presented in Manski (1993) kicks back. One interesting specification,

Bisin and Özgür argue, is environments where correlated effects follow a stationary law through

time whereas observed behavior is non-stationary. Take the question of whether adolescents’

substance use is affected by their peers and if there is variation in their propensity to consume

addictive substances across grades. If, as it is argued in Hoxby (2000a,b), for instance, the school

composition is stationary (with no significant trend), in the short run, and that the core friendship

groups have been formed already, any significant variation in adolescent behavior through time

must be due to local interactions. This simple observation is due to the rationality of the agents

in this dynamic environment. A rational agent, if his choice is affected by the choices of his peers,

will take into account how much longer he will interact with them. In particular, his propensity

to consume due to his peers’ consumption must be the lowest in the final year and monotonically

higher as one considers earlier years. This is exactly the equilibrium behavior Bisin and Özgür

obtain from a finite-horizon dynamic model with local interactions. Consequently, the probability

distributions on the observed adolescent behavior generated by the correlated structure and the

local interaction structure are different.

4 Concluding Remarks

This paper has presented the current state of affairs in the theoretical literature on local social

determinants of individual choice behavior. I discussed a variety of models on each side of many

division lines that the literature subscribes to: discrete vs. continuous choice, static vs. dynamic

interactions, rational vs. myopic behavior. For all the models I surveyed, I presented findings

on equilibrium existence and uniqueness, long run behavior, social multiplier effects and multiple

equilibria and identification of interaction effects. There is a lot more to be done on the theoretical

front combined with a better understanding of empirical social processes.

One very important issue is the determination of individual reference groups. Most

of the literature that I surveyed takes the assumption that when interactions are modeled, the

relevant reference groups and the nature of the interactions is known to the agents and to the

outsiders (read econometrician). However, when doing empirical work, it is not clear whether

these assumptions stand up to criticisms. This will probably be a joint effort between better

survey data collection and related theorizing.

Another future area of investigation is the use of proper dynamic models in empirical work

rather than one-shot myopic models. Needless to say, this goes once alongside the availability of
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rich panel data sets. These latter began to appear and although most of them initially collected by

sociologists, economists started to take an interest in them.32 The proper modeling of dynamics

might help identification of interaction effects as I argued in Section 3.6.

One last, but not least, future research area is the joint modeling of self-selection (or sorting)

and social interactions. There already exists a literature on network formation whose dynamic

counterpart is in the development stage. The joint modeling of these two phenomena would most

probably help the researcher disentangle the interactions part of individual choice behavior by

correctly accounting for behavior due to equilibrium self-selection or sorting. This latter is due to

the fact that sorting behavior of rational agents carry information about their attitudes towards

particular interaction processes that might follow.

32One interesting such data set is the National Longitudinal Study of Adolescent Health (Add Health). See

http://www.cpc.unc.edu/projects/addhealth for more info.
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Binder, M. and Pesaran, M. H. (2001), “Life-Cycle Consumption under Social Interactions,”

Journal of Economic Dynamics and Control , 25, 35-83.
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