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Résumé/abstract

We consider consistent estimation of parameters in a structural model by Indirect Inference (1) when
the exogenous variables can be missing at random (MAR) endogenously. We demonstrate that Il
procedures which simply discard sample units with missing observations can yield inconsistent
estimates of the true structural parameters. By inverse probability weighting (IPW) the “complete
case” observations, i.e., sample units with no missing variables for the observed and simulated
samples, we propose a new method of 1l to consistently estimate the structural parameters of interest.
Asymptotic properties of the new estimator are discussed. An illustration is provided based on a
multinomial probit model. A small scale Monte-Carlo study in this model demonstrates the severe bias
incurred by existing Il estimators, and its subsequent correction by our new Il estimator.
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1 Introduction

Since the seminal work of Smith (1990, 1993), Gourieroux et al. (1993) and Gallant and Tauchen (1996),
Indirect Inference (II) has been used for estimation in a variety of structural models where direct computation
of likelihood functions is difficult but simulation from the structural model is relatively straightforward.
Altonji et al. (2013) have recently remarked that in some circumstances “accommodating missing data in
II is straightforward: after generating a complete set of simulated data, one simply omits observations in
the same way they are omitted in the observed data.” Our focus of interest in this paper is precisely a case
where this argument is invalid due to the impossibility of simulating data that properly mimics the actual
missing data mechanism in the Data Generating Process (DGP). As stressed by Jiang and Turnbull (2004)
(Section 3.4), when data are not “Missing Completely At Random” (MCAR), the key tool of II, namely the
bridge relationship (resp. binding function) in Jiang and Turnbull (resp. Gourieroux et al.) terminology,
may be impossible to infer from simulations.

Generally speaking, IT sets the focus on estimation of structural parameters § € © C R% through an
intermediate or auxiliary statistic that consistently estimates the true unknown value 8° of some auxiliary
parameters 3 € B C R, dg > dy. For sake of expositional simplicity, we always define the true unknown

value % as the unique solution of the moment conditions

where W and X are random vectors. The vectorial function m(.,.,.) is known and can be assumed without
loss of generality to be of dimension dg.

Let {W;, X;}Y, stand for an i.i.d. sample drawn from the distribution of (W, X). The vector W; (resp.
X;) could include components corresponding to different time points for the i-th sample unit, and in this
sense our setup allows for panel data (large N, small T). However, for simplicity we will not pursue this
aspect further.

We are interested in the case where the econometrician does not observe (W;, X;) for all N sample units,
with the particular structure of the missingness being characterized by observing only a subsequence of
{Xi}i]il. Following common practice, define the binary random variable D; with D; = 1 when the vector
X; is observed. In other words, the econometrician knows the random subset of indices i € {1,2,..., N} for
which X; is missing, corresponding to the set of indices such that D; = 0.

Throughout, we maintain the assumption that data are “Missing at Random” (MAR). Following Rubin



(1976), data are MAR when “the conditional probability of the observed pattern of missing data, given the
missing data and the value of the observed data, is the same for all possible values of the missing data”.

With our notations, we enforce this condition by assuming that almost surely

Pr[D = 1|W, X] =Pr[D =1|W] > 0. (2)

Note that Wooldridge (2007) stresses the relevance of an extension of assumption (2) (see Wooldridge’s
Assumption 3.1 (iv) p. 1283) to also allow some components of the vector W; to be unobserved whenever
D; = 0. In the context of II, this extension will be immaterial as long as the components of W impacted
by the missing data mechanism are only endogenous variables. Generally speaking, if the above missing
data mechanism only pertains to endogenous variables then the sanguine statement of Altonji et al. (2013)
quoted above regarding the easy treatment of missing data in II is valid.

The focus of interest in this paper is a case where the solution put forward by Altonji et al. (2013) does
not work, precisely because the missing data mechanism pertains to exogenous variables that we denote
throughout by X and which we are not keen to simulate (see Section two for a more precise discussion). To
emphasize our focus on missing exogenous variables, albeit endogenously missing since they are not MCAR,
we will dub throughout the maintained assumption (2) the MAR-X property.

Under MAR-X, sample counterparts of the moment conditions (1) can only be deduced from the
“observed” or “complete case” units {D;-m(W;, X;, /B)}Z]\L 15 1i.e., when X; is not observed we can not compute

m(Wi, Xi, B). Then, revisiting (1) as the “observed” or complete case moment conditions

E[Dm(W, X, )] =0 (3)

would obviously lead to the textbook issue of selection bias. However, the use of (3) for II differs from the
textbook presentation (see, e.g., Little and Rubin, 2002 and Wooldridge, 2005 ) in at least two respects.

First, our focus of interest is not direct estimation of § but rather indirect estimation of structural
parameters 6 through auxiliary parameters S. Second, unlike direct inference with missing data, the key
necessary condition for validity of II is the ability of the simulated data to mimic the estimates of the
auxiliary model obtained from the observed data, irrespective of what this model is. In this respect the
important issue for simulation-based inference is not the difference between conditions (1) and (3), but to
what extent this difference can be accounted for in our simulation-based inference procedure.

While it may be possible to accommodate the consequences due to the differences between (1) and (3),



see Section two for specific details, our main goal is to modify the complete case moment conditions (3)
into moment conditions, that are “observed” and conformable to the initial moment conditions in equation
(1). To do so, we use the MAR-X assumption to revisit (3) as (possibly misspecified) conditional moment
restrictions given W and to resort to a well chosen instrumental variable h(W), leading to the “observed”
moment conditions

E[Dh(W)m(W, X, B)] = 0. (4)

Defining the true unknown propensity score as po(W) = Pr[D = 1|W], equation (4) will be conformable to

the initial moment conditions of interest that define 0 if, for all 8 € B,

E[Dh(W)m(W, X, )] = Elpo(W)h(W)m(W, X, 8)] = Elm(W, X, B)],

where the first equality follows from the Law of Iterated Expectations (LIE) and MAR-X. Equivalence

between moment conditions (1) and (4) then requires, by the LIE, for all 5 € B,

E[{1 = poW)h(W)} E[m(W, X, 8) [W]] = 0. (5)

The identity in (5) encapsulates the two main cases of interest. In the first case, following Wooldridge
(2007) (see Assumption 4.1 p. 1288), one can maintain the assumption of “exogenous selection”, meaning

that at 3°, the solution to (1), actually satisfies

Elm(W, X, %) [W] =0. (6)

Our focus of interest is not exogenous selection. In the II context, exogenous selection as in (6) amounts
to a structural assumption on the auxiliary model, which is somewhat logically inconsistent with the idea
of an auxiliary model:' II concerns indirect estimation of a structural model through a purely instrumental
auxiliary model not endowed with any kind of structural belief.

In the second case, exogenous selection is not maintained and the conditional expectation computed in
(6) may be any function of W.?2 As a result, obtaining the identity in equation (5) requires choosing the

“Instrument” h(IV) inversely proportional to the propensity score po(W) := Pr[D = 1|W]; that is, to rewrite

!The exogenous selection assumption in (6) actually extends Wooldridge’s (2007) definition for M-estimators to the case of
general estimating equations, which could correspond to the first order conditions of some M-estimator.

2This follows since we are not willing to maintain any restrictive assumption about the probability distribution of the
exogenous variables X.



our auxiliary model in (1) as the inverse probability weighted moment conditions

D

g po(W)

m(W, X, 8)| =0. (7)

Equivalence between moments (1) and (7) follows by the LIE and MAR-X.

While IPW has a long history in statistical inference with missing data, see, e.g., Horvitz and Thompson
(1952) and Robins et al. (1994), this paper constitutes, to the best of our knowledge, the first use of IPW
within simulation-based inference with endogenously missing exogenous variables. While seemingly different
from its historical use, our IPW strategy is underpinned by the maintained M AR-X hypothesis that has
found recent use in economics and econometrics. See, among others, Hirano et al. (2003), Chen et al. (2005),
Chen et al. (2008), Graham et al. (2012) for cases where the missingness pattern is similar to ours, while
Cattaneo (2010) and Chaudhuri and Guilkey (2014) consider more involved patterns of missingness. All of
the above papers use some form of MAR-X to correct for selection bias in moment conditions, as is done
herein.

However, unlike missing data in direct inference, because II can only conditionally simulate data given
all exogenous variables, the simulation step of II induces a perverse dependence between the simulated
endogenous variables and the missingness indicator, which is not present in the observed data. As a direct
consequence, the standard IPW-based arguments for direct inference outlined above are not valid for our
simulated counterpart. To rectify this issue, we detail a novel identification argument (see Section two)
that uses IPW, along with the MAR-X assumption and a particular simulation design, to (jointly) identify
the auxiliary parameters based on the simulated data. Together, the two IPW-based arguments allow for
identification of the structural parameters.

The remainder of the paper is organized as follows. Our proposed II strategy with MAR-X exoge-
nous variables as well as possible alternative strategies are discussed in Section two. Section three details
implementation of this new II strategy, states the asymptotic theory of our II estimator and proposes an
alternative implementation of our approach based on the generalized indirect inference (GII) approach orig-
inally proposed in Keane and Smith (2005), and elaborated on in Bruins et al. (2015), which is particularly
useful when the underlying moments are non-smooth in the structural parameters. In Section four, we il-
lustrate our new approach in a multinomial probit model similar to Section nine of Gourieroux et al. (1993)
and model four of Bruins et al. (2015). However, due to the missing data problem, we carefully revisit

identification of the structural parameters. Section four also contains a small scale Monte Carlo experiment



illustrating the performance of our approach in a multinomial probit model. Given the non-smoothness of
the binding function in the multinomial probit model, we also consider a GII implementation of our ap-
proach. The Monte Carlo results provide compelling evidence on the performance of our II strategy and its
alternative GII implementation. Section five concludes, and proofs of the theoretical results are collected in

the appendix.

2 1II with MAR Exogenous Variables

We sketch in Section 2.1 the general problem of II in the presence of missing data. The usefulness of the
MAR-X assumption for performing II is made explicit in Section 2.2. Since Section 2.1 simply sketches the

different possibilities, precise definitions of certain terms are only provided in Section 2.2.

2.1 Indirect Inference with Missing Data

To fix ideas, we focus on the simple structural model

Y =r(Z,X,¢0), (8)

where r(.) is a vector valued function known up to the finite dimensional parameter § € © C R%. ¢ is
the unobserved stochastic error whose probability distribution is assumed (without loss of generality) to be
known. Y denotes the endogenous variables while the variables X and Z are independent of € and treated
as exogenous. We maintain that it is not desirable to assume the distribution of X and Z (conditional or
unconditional on Y') is known. Let ° € © be the true value of # in our population of interest.

Let us first consider simulation of data from the structural model (8) when there is no missingness. Let
€ be a random variable drawn from the distribution of £ and independent of W = (Y’, Z’) and X. For the
given 0 € ©, consider the variables Y (#) simulated from equation (8): Y (0) = r(Z, X, ;0).

For a given value 6 € © used to simulate the endogenous variable Y (), II defines the binding function

3°() as the solution, in 3, to the simulated counterpart of moment conditions (1):

E[m(Y(6),Z,X,8)] =0. (9)

Since the conditional probability distribution of Y (6p), given X, Z has been devised to coincide with the

conditional probability distribution of Y given X, Z, [y is the solution of (9) for § = 6y. Moreover, if



0 — B°(0) is injective, 0V is the unique § € O satisfying 8% = 8°(#). Implementation of II is then based on
finite sample counterparts of equations (1) and (9).

It may sometimes be argued that missing data is immaterial for II, since we can purposefully omit
simulated observations in the same way they are missing in the observed data. In other words, selection bias

introduced when estimating the auxiliary parameters § using the observed moment conditions

E[Dm(Y,Z,X,B)] =0

may be inconsequential. After all, if Y, Z X, D can all be simulated, where with an abuse of notation
0 denotes all unknown parameters governing the simulation process, we can define the binding function

0 — 3(0) as the solution of the simulated counterpart

E[D(9) - m(Y (9), Z(6), X (6), B)] = 0.

However, our focus of interest in this paper renders the above solution infeasible for several reasons.

First, since we are unwilling to assume a distribution for the exogenous variables X, Z, obtaining sim-
ulated counterparts to X, Z is not feasible. As alluded to above, it is somewhat logically inconsistent to
specify a probability distribution for exogenous variables. Moreover, as shown by Gourieroux at al. (1993),
there is an efficiency gain to use for II a simulated path in which the exogenous variables are fixed at their
observed values in the actual data set.

Second, when only the endogenous variables Y are missing, fixing the exogenous variables at their

observed values yields a binding function for II defined as the solution to

E[D(0)m(Y (0), Z, X, 5)] = 0,

where 6 again denotes all unknown parameters governing the simulated process. Such a practice would be
accurate if we were to treat both Y and D as endogenous, with Y (6) and D(6) simulated according to an
augmented analog of the structural model in (8). However, simulation of Y (¢) and D(#) is not feasible in
our context since the missing data mechanism pertains to the exogenous variables X and so Y{(f) can not

be simulated when D = 0.



This inability to simulate Y'(#) when D = 0 also implies that II based on the complete case moments

E[Dm(Y,Z,X,8)] =0

E[Dm(Y (), Z,X,3)] =0

will not, in general, identify #°. Identification would require that the joint distributions of (D,Y,Z, X)
and (D,Y(0°),Z, X) be equivalent. However, this can not be true in general for the following reason:
the simulated error & used to generate Y (0°) is, by construction, independent of D, whereas the MAR-
X assumption does not demand independence between e (structural error in Y-equation) and D, either
unconditionally or conditional on X and Z. Hence, unless D is independent of ¢, which, in turn, rules out
endogenous missingness of X, one can not identify 6" following the above approach except by happenstance.
To further clarify this idea of identification failure, we refer the interested reader to Section 4.1 for a toy
example that illustrates this failure.

Interestingly enough, this double data missingness hurdle may actually suggest to modify the binding

function even more by considering the simulated moment conditions:

E[D-D(6) -m(Y(0), Z, X, 8)] = 0.

While this complicated simulated missing data mechanism may actually provide a feasible solution (see
Chaudhuri et al., 2016), our focus herein is rather to use the initial moment condition in (1) by considering
their IPW counterpart given in equation (7). While the MAR-X assumption ensures that the IPW moment
conditions in (7) are equivalent to those in (1), MAR-X also allows us to define a binding function for II

that identified the true structural parameters without simulating the missingness indicator D.

2.2 1II Based on IPW Under MAR-X

The MAR-X assumption in (2) allows us to correct for the effects of selection bias in the identification of

the auxiliary parameters 3; that is, for all § € B, we have, by MAR-X

D

b Po (W)

m(Y, Z, X,ﬂ)] = F [E ( ‘W,X) m(Y,Z, X, 5)] =E[m(Y,Z, X,B)]. (10)

D
po(W)



The key property for performing II using the auxiliary model based on equation (10) is to ensure the resulting

binding function will properly match. This matching requires that, for all 8 € B and for all § € O,

D
po(W)

E m(Y (0), Z,X,8)| = E[m(Y(9), Z, X, 8)] . (11)

Demonstrating satisfaction of (11) requires a more precise study of the expectations used above. In
equation (10) the notations are straightforward: expectations are computed with respect to the joint dis-
tribution of (D,Y, Z, X) given by the data generating process (DGP). The expectation operator in (11)
involves jointly the DGP for the observed and simulated data. To highlight this difference, we analyze each
case in turn, starting with the observed data.

The observed data {Di,Yi,Zi,DiXi}i]\Ll, where D;X; = 0if D; = 0 and X; else, can be seen as the
output of the following mechanism:

(O1) Exogenous variables {Z;, X;}¥ |, possibly partially latent, are generated by a completely unknown
DGP.

(02) Stochastic errors {¢;}¥; are drawn i.i.d. from the known probability distribution of ¢, with all draws
independent of {Z;, X;}¥,.

(03) Endogenous variables {Y;}¥, are observed as a result of the DGP: Y; = r(Z;, X;,&;;60°), with ° the
true unknown value of the structural parameters.

(04) {D;}Y, is drawn in the product of conditional distributions of D; given {Y;, Z;}¥ ;. Moreover, these
conditional distributions, for i = 1, ..., N, are assumed (by MAR-X) not to depend on X; when conditioned
on W;.

For the simulated data, a similar procedure is implicitly considered when simulating the endogenous vari-
ables. However, unlike step (O2) above, for some integer S > 1 we draw s = 1, ...,.S independent simulated
samples of i.i.d. errors {&;5})¥, from the known probability distribution of ¢ with {&;s})¥, independent of
{&i, Zi, Xi, Di}I¥; by construction. Given, {;s}}¥,, and in accordance with (O3) above, we define, for all
0 € ©: Yis(0) = r(Z;, Xi,€is;0). The s-th simulation step produces a sequence {Zi,DiXi,ei,Di,éis}f\;l of
i.i.d. draws in a joint distribution that defines, through known transformations, the joint distribution of the
variables at stake to compute the expectation in (11).

However, since {e}s}ij\;l is independent of {g;, Z;, X, Di}ij\il, it is also independent of the missing data
mechanism encapsulated by {Dz}fL Therefore, D; is endowed with an exogeneity status in regards to the

simulated errors €;s. In particular, because D; is independent of &;,, for each s = 1,..., S, given (g, Z;, X;)



since &, jointly independent of (&;, Z;, X;, D;), we have that
D; L Yis(0) | Wi, Xi. (12)

Note, however, that we can not compute Yjs(0) when D; = 0.
With the conditional independence D 1 Y (6) ‘ W, X generated through the simulation step, we can

demonstrate the validity of equation (11):

D [ D
Boqrm YO, 2.X6)| = BB _m(mm(y(e),z,x,ﬂ)’vv,)(” (by L.LE.)
[ D
- l[ D \W X} Em(Y(8).Z, X, B)|W, X@ (by (12))
[ D
= BB (W)‘W]E[m(Y(H),Z,X, B)|W,X]] (by MAR-X)
= E[m(Y(0),Z,X,B)] (by definition of po(W)). (13)

Equation (13) is precisely what we need to ensure an II approach that is feasible and valid, when based on
the auxiliary model (1), in spite of the missing data problem.?

More precisely, for 80 € B and 6 + 3°(6) defined by, respectively,

E[m(Y,Z,X,8%] = o,

E[m(Y(9),2Z,X,8°0))] = o,

under the standard identification assumption 3° = 3°(6) < 6 = 6°, comparison of (10) and (11) suggests a

feasible II approach with missing data using IPW moment conditions

m 0 =

E[pO(W) (Y,Z,X,B)] = 0 (14)
—m 0 =

E[pOE(W) (Y (0),2,X, 8 (9))] 0. (15)

This is where the novelty of our approach lies. Identification of #°, by means of (10) and (11), which is valid
by (13), does not result directly from the use of IPW and MAR-X in (2) but also requires the conditional
independence introduced through the simulation step, i.e., (12).

Clearly, implementation of the above strategy requires consistent estimation of pg(W). The complete

3Note that independence between ¢ and (¢, Z, X ), as in a standard II context, is insufficient to yield equation (13).

10



asymptotic theory will be developed in Section three in the framework of a fully parametric model. This
parametric model will define the set of possible DGPs according to steps (O1), (02), (03) and (0O4)

above, augmenting it by a parametric specification p(W;~) for Pr[D = 1|W] in step (O4) such that
po(W) = Pr[D = 1|W] = p(W;4)

for a unique 7° € Interior(T") C R%.

The reader familiar with nonparametric estimation of optimal instruments knows that an alternative
solution to using estimating equations like (14)-(15) would be to come up with a consistent, albeit nonpara-
metric, estimator of po(W). However, in the context of IPW, this would pave the way for new discussions
about efficient II with missing data: Chen et al. (2008) (see also Graham, 2011 and Chaudhuri et al.,
2016) show that a nonparametric estimator of po(W) would actually lead, in general, to a more accurate
estimator of 4°. This apparent paradox is easy to explain when one realizes that step (O4) provides a set
of conditional moment restrictions

E[D — po(W) W] = 0.

These conditional moment restrictions would in general bring relevant information about the unknown
parameter 5 beyond what can be brought by the parametric model p(W;~). It must be kept in mind that
maximum likelihood estimation of such a parametric model amounts to picking a subset (of dimension d.,)

of the above conditional moment restrictions,

D — po(W) 9

B o - pow)) 7™

Wiy =0

that is optimal for estimation of v°. However, this subset of the conditional moments may not exhaust all
relevant information for optimal estimation of 4. While our focus of interest is not efficient direct estimation
of 8 but indirect estimation of @, obviously, the two efficiency issues are tightly related but much beyond

the scope of this paper.

3 IPW Indirect Inference (IPW-II)

In this section we discuss precise implementation of our inverse probability weighted IT (IPW-II) approach
under MAR-X missing data. Asymptotic properties of the ensuing ITPW-II approach are discussed in

Section 3.4. Section 3.5 presents a computationally friendly implementation of this approach for non-smooth

11



problems using the generalized II approach first proposed in Keane and Smith (2005).

3.1 Estimation of the Auxiliary Model Parameters
3.1.1 Observed Data

Following the identification strategy outlined in Section two, define the estimator B\ ~ as the solution of

N
Z m(Y;, Zi, Xi, By) = 0,
i1 7,7’7N

where 7y is the maximum likelihood estimator, the solution to 0 = Zfil iy (), with l; () = Iy(Ds, Wi, )

the score vector of the parametric model describing the missing data mechanism:

[Di —p(Wi, ")l 9p(Wi, 7).

b () = - Tog [ (p(Wi, 1)) (1 = p(Wi, 7))~ "W)X -p(Wiy)) Oy

oy

Note that (ij,%v)’ can also be seen as a joint GMM estimator provided by the just identified moment

conditions

D;

E[p(Wmm(K',Zi,,Xi,ﬁ)} =0

E [li,'y(Dia lefy)} =0

It is well known (see, e.g., Breusch et al., 1999, Lemma 1, p93) that we can obtain an asymptotically

equivalent GMM estimator by instead considering the moment conditions:

E[m}(,8) =T [m;(v,8) | Liy(y)]] = 0
E[l,(Di,W;,y)] = 0 (16)

where mr(’yaﬁ) = %m(Yz,ZMXZMB) a’nd7 for B = BO and Y= 70’ II [m:(,70750) ‘ l’i,’}’(’yo)] the affine

population regression of m}(+°, 3°) on l; ,(°):

I [m; (7%, 8°) [ lin(°)] = Q12955Li(7°),

Qo = Cov [m;(7°,8%),1i5(3")], Qa2 = Var [li,(+°)] .
Clearly, the two moments in (16) are uncorrelated at 7, 3°, allowing us to compute directly the asymp-

12



totic distribution of the GMM estimator B\ N from its asymptotic expansion?

VN By - ) = —[Govcol " GV \FZ{ 080 = i 00,8 |1 0%)] } +0p(1)

1 N
Gy \/NZ{ (:°.8%) - [;-*wo,ﬁO)|zi,7<v°>]}+0p<1>,

where
o Di 8m(Wi,Xi,,80)
G = B ()
Vo = Var [m;(y",8°)] = Var [T [m}(v°, 8°) | lin(4")]] - (18)
Remarks:

(1) Applying again the MAR-X property to Gg yields

@ = |#

as if we had no missing data. However, due to the missing data problem, the formula (17) provides the

I

8m(Wi7Xi760> - E am(VI/MXZvﬁO)
|5 - e[

natural way to estimate G from its sample counterpart after plugging in consistent estimators of 7%, 3°.

Similarly,

Var [mi(1%,8%] = E[mf(° 8)mi(°, 8% = E mmm,xi,ﬁ%m'(mxi,ﬁ%

should be estimated from the sample counterpart of (18) rather than the above equation. However, the
division by p(W;;7°) in the above shows the price we pay, in terms of accuracy of ,/6’\ ', for the missing data
problem.

(2) The asymptotic variance of VN (B\ ~n — B%), given by Gy 1V()G'f)_l, is smaller (in terms of comparison
of positive semi-definite matrices) than the asymptotic variance of a GMM estimator for 3° obtained using

the true unknown propensity score po(W) = p(W;4") and only

D;
po(Ws)

E mi(Y,Z,X,8)| =0, (19)

for which the resulting asymptotic variance would be given by G|, L [Var {m:‘ (7°, ﬂo)}] Gf)_l.

4Precise regularity conditions ensuring the validity of this expansion are given as Assumptions A1-A5 in the appendix.
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This remark is sometimes summarized by a kind of puzzling statement: “it is better to estimate the
weights by a conditional MLE procedure than using known weights (if we knew them)” (Wooldridge, 2007).
The explanation of this anomalous statement is simple: we take advantage of the moments provided by
the score vector I; ,(7°) to reduce the variance of m}(7°, 3) by computing the residual of its regression on
li(7"). The possible efficiency loss when using GMM based only on (19) instead of the GMM estimator BN

is not due to the knowledge of 4* but to the omission of the second set of moment conditions /; ,(7°).

3.1.2 Simulated Data

For a given integer S > 1, we draw s = 1, ..., S independently simulated samples of i.i.d. errors {5is}¢]\;1 from
the known probability distribution of € with, for each s =1, ...., .5, {éis}i]il independent of {¢;, Z;, X;, Di}i]\il'

We can then compute Y;s(0) = r (Z;, X, €is;0) and define the estimator BMS(H) as the solution of

2 p(”f)%f) m (Yis(0), 2, X1, B (6)) =0
i=1 &

Following similar arguments to those developed in the previous section, when N is large, (see also (22))

N
I (a0) = ) = =Gt 7 3= {0 6909) T [ 0 40 1, 07)] 00, 20

where m} (v, 8;0) = p(V%;y)m(Yis(e)’ Zi, Xi, B),

IT[mi(7°,8%0) | iy(3°)] = Q12(0)%5 Liy(7°),

Q2(0) = Cov [m,(+°,%0),liy(+")]

Note that ©12(0) does not depend on (i, s) since all draws of (Z, X, &;5) are drawn in the same distribution,

which corresponds to the distribution of (Z;, X;,¢;). However, it is critical to note that,
Qu(6°) = Covlmi, (79, 8% 0°), Ui, (1°)] # Covlm? (1, 8), liy (1)] = iz,

which follows from the fact that, for D (g;, Z;, X;, D;) the joint probability distribution of (¢;, Z;, X;, D;), in
general

D (4, Zi, Xi, D) # D (4, Zi, Xy, D) .

14



This discrepancy is a consequence of the missingness indicator D; being exogenous with regards to the
simulated errors &4, since &5 is, by construction, independent of (Z;, X;, D;). In contrast to £;5, MAR-X
does not require that the error ¢; be independent of (Z;, X;, D;) since D; need not be independent of Y;
given (Z;, X;).

Following the first II estimator of Gourieroux et al. (1993) (see their Proposition 1 p. S89), an estimator
of #° can be obtained by calibrating the value of # in order to minimize the distance, in some norm, between

3 ~ and the average value of the simulated auxiliary estimators

BNS SZﬁNs

From By s(0) and (20), we deduce that, for given fixed S,

VN (Bw,s(6°) — 8°) = —GO_IN ZZ{ mi (70, 8% 6°) — 11 [mi (77, 8% 6°) | 1in(7°)] }+0P(1)-

i=1 s=1
3.2 The Calibration Step: Wald-type IPW-II

Given auxiliary parameter estimates B N, B ~,5(6), a Wald-type IPW-II estimator for 6° is obtained as

O () = axgmin By ~ Brs(0)] 5! [By — Brs(0)] 21)

where T is a sequence of positive-definite weighting matrix. The notation @]@/ () stresses that the asymp-

totic distribution of this estimator depends on the choice of the weighting matrix TJ_Vl.
Standard arguments for minimum distance estimators tell us that the optimal choice of weighting matrix
is to take Y —p Y(S), where

T(S) = lim Var{m (EN - BN,S(QO))}.

N—oo

To deduce the form of Y(S), we first use the expansions \/N(BN — 8% and VN (Bn,5(0°) — 8°), given in the

previous subsections, to find

+ OP(l)

\/N@N - EN,S(GO)) = -Gy'VN [§Ns Zlm )/N
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where C() = [Qu — 912(90)] and

1 N
1=

1 N
NZ[ (", 8°) — me 6090)]

Noting that,

N
Cov (f Ens > CoSlpy le )/VN ) = Co$5, Cl = Var (COQQ_;ZZZ-N@O)/\/N)
=1

=1

and for Wo(S) = limy e Var {\/NEN,S} -5 [@,S : ggys}, T(S) then has the following form:
T(S) =Gy [Wo(S) — Cofy CY) G V.

Remarks:

(1) The term Wy(S) in Y(S) can further be decomposed by noting the following. One,

Var [m;‘s(’70750§90)] = E[I?Q(W,i,i,,yo)m()/is(go)vZi’Xi’Bo)m/(ns(eo)’ZiinHBO)]
- E [M (Y, (6°), Zs, X;, 80)m! (Y (6°), Zz,XZ,BO)} = Var [m; (7", 8°)],

where the second equality comes from an argument similar to the one used to prove (13) and the third

equality is implied by the fact that the joint distributions satisfy

157 27

with this distributional equivalence being (partly) why simulated and observed expectations can still coincide,

such as, e.g., G defined in (17). Two, by the same logic, for s,s' =1, ..., S
Cov [m; (7", 8%),mi(7°, 8% 6°)] = Cov [m},(7°, 8% 6°), miy (7°, 8% 6°)] -
Introducing the notations,

Ip = Var [m;(7",8%)], Ko = Cov[m;(y",B%),m%(1" 5%6°)],
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elementary algebra then yields a familiar form (see Gourieroux et al., 1993, pS109):°
1
Wo(S)= {1+ g (Io — Ko).
(2) The term Ky can be further decomposed, by noting that, for s,s' =1,..., S, even if s = ¢,

Ky = Cov{Em}(1’ 8°6")|Z;, D;X;], E[m},(°,8%6°) | Z;, D; X;]}

= Var {E[m},(y",8°6")|Z;, D;X;]} = Var {Em} (1", 8°) | Zi, D; Xi, Di]}
which yields the following alternative specification for Iy — Kj:
Iy — Ko = Var {m;(7°, 8°) — E[m}(y°,8") |Z;, D: X;, D]} .
This expression makes explicit the efficiency gain due to the fact that we have not simulated (Z, X, D).

3.3 Alternative IPW-II Implementation

It is well-known that the different approaches to choosing a metric between B N and 3 N,s(8), for the purpose
of IT on 6, correspond to the trinity of asymptotic tests. As summarized by Bruins et al. (2015), following
a nomenclature “due to Eric Renault, the Wald and LR [likelihood ratio] approaches were first proposed in
Smith (1990, 1993) and later extended by GMR [Gourieroux et al., 1993]. The LM [Lagrange multiplier]
approach was first proposed in Gallant and Tauchen (1996).”

While Gourieroux et al. (1993) have stressed that the LR approach may imply some efficiency loss, they
also show (see their Section 2.5) that, as far as first order asymptotics are concerned, the family of Wald-II
estimators coincides with the family of LM-II estimators. However, due to the fact that our analysis depends
on the matrix Cp = Q12 — Q12(6°) # 0, in general, their results may not be directly applicable to our IPW-IT
estimators.

In addition, Gourieroux et al. (1993) consider the LM and LR approaches only in the context where the
moment conditions used to estimate the auxiliary parameters are defined by the gradient of some objective
function, like a pseudo-score. In such cases, Gg is a symmetric Hessian matrix, and in some circumstances
this Hessian matrix may coincide with the outer product matrix Iy. Since we only consider parameters

defined as zeros of just-identified moment conditions, the Jacobian matrix Gg is nonsingular but Gy has no

®The term Ky is non-zero in general because the observed and simulated samples both have in common the exogenous
variables X and Z.
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reason to coincide with the symmetric, positive-definite matrix Ij.
For a sequence of positive-definite weighting matrices U —, ¥, with ¥ positive-definite, a general Wald

IPW-II estimator gjv\[,/(\ll) of 6 can be defined as the solution to the minimization program:

s

N (0) = arg Iaréiél [BN - BN,S(Q)} / Uy [BN — Bns(0)] .

From Section 3.2, and standard argument for minimum distance estimation, the optimal choice ¥* of ¥ is

given by U* = T~1(S) = G4 H; *(S)Go, where

Ho(S) = Wo(S) — 00952106, Wo(S) = (1 + ;) [Io — Ko]

In the case where Cy = 0, and G a Hessian matrix, Gourieroux et al. (1993) demonstrate that LR-type II

estimators are asymptotically equivalent to 5‘]/\‘,/ (Gp) and not efficient in general since
Go # Go |1y — Ko]il Gé]'

The Wald-type II estimator GA]V\‘,/(\II) can be computationally expensive when By s(f) is not known in
closed form. Even though the moment conditions of the auxiliary model are not necessarily defined as a
gradient vector, we can extend the original LM-type II approach by defining a LM-type IPW-II estimator

§]LVM (A) as the solution of the minimization program:
ALM : 25 ! 25
GN (A) = arg rerélél |:MN,S (/6N7’7N7 9)i| AN [MN,S <6N7 YN, 9)] )
where Ay is a sequence of positive-definite matrices with probability limit A and
~ 1 L& D .
My, (By.An.0) = < 30D~ m(Yiu(0), Zi, X B).

When Cj = 0, Gourieroux et al. (1993) have shown that the estimator @}LVM (A) is asymptotically equiv-
alent to @J/\‘,/ (GoAGY)). The extension to our more general case is straightforward. In particular, the optimal
choice A* of A is A* = Hy1(S).

Exact implementation of the LM-type IPW-II approach can be carried out using the following algorithm,

which deals with potential non-smoothness, in 6, of My g (ENﬁN, 9) 6

5Such situations arise in simulation-based estimation of discrete choice models because the simulated dependent variable, as
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Algorithm for implementing of IPW-II

e Step 0: Using the observed {W;, D;}I¥ | estimate po(W;) := p(W;;qn) for each i = 1,..., N where Ay
is a the maximum likelihood estimator based on any given parametric specification p(W;~) for po(W),
and where v is some d, X 1 unknown parameter.

e Step 1: Using the observed sample {W;, D;, D; X;}Y,, obtain BN as:

~

/BN = argBEB {% Zf\il mm(}/ﬂ Z’HXZ;/B) = 0} )
e Step 2a: Sort the observed sample so that the first N3 = ZZ]L D; units have D; = 1, i.e., have X;
observed. For any given # € O, and for each i =1, ..., N1, generate:
Eis iid. Feo, Yis(0) =r(Z;, X;,0,;5) for s=1,...,8
where S is the pre-specified number of simulations. Set Y;s() = 0 for s = 1,...,5 and i = Ny +

1,...,N. (This is inconsequential because we will not use these remaining i’s.)

e Step 2b: For any given positive definite matrix Ay, obtain the IT estimator gjL\,M (A) as:

[ s (B B8 (@) < op (N72) + int || M (B 0)], - (25)

AN N
We call é\JL\,M (A) a LM-type IPW-II estimator of 6°.

Remarks:

(1) The IPW-II procedure models po(WW') parametrically and is susceptible to misspecification. Adverse
consequences of parametric misspecification of po(W) in Step 0, and remedy thereof by using doubly robust
estimating functions for 5 or by nonparametric estimation of po(W) have been studied for general direct
IPW estimators [e.g., Scharfstein et al. (1999), Hirano et al. (2003), Chen et al. (2008)]. Extensions of these
results to indirect estimators is considered in Chaudhuri et al. (2016).

(2) The optimal choice of A = plimAy follows from Gourieroux et al. (1993) with an additional mod-
ification due to the fact that the nuisance parameter po(W) is estimated. Even with the optimal A, the
relative efficiency of the II estimator of # with respect to the full information maximum likelihood estimator
ultimately depends on the “richness” of the auxiliary model. Bruins et al. (2015) provide an illuminating

demonstration with simulations.

a function of 8, i.e., Y(0), can change discretely (e.g. from 0 to 1) with an infinitesimal change in 6.
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3.4 Asymptotic Distribution of the IPW-II Estimator

In this subsection, we provide precise results for consistency and asymptotic normality of the IPW-II esti-
mator é\]L\,M (A) in (23).7 We deviate from the standard II treatment and present results that accommodate
non-smoothness with respect to  in the moment vector m(Y (), Z, X, 8), as in, e.g., discrete choice models.
The required technical assumptions A1-A7, along with the proofs of the stated results, which are similar in

spirit to and based on Pakes and Pollard (1989), are collected in the Appendix.

Proposition 3.1 Let A1-A6(1) in the Appendiz hold. Let S be fized and Ay Py A as N = oo where A is

positive definite. Then the IPW-II estimator in (23) satisfies: @LVM(A) L 90,

Proposition 3.2 Let Assumptions A1-A7 in the Appendiz hold. Let S be fized and Ay Py Adas N o
where A is symmetric and positive definite. Let %50(90) be full column rank. Then the IPW-II estimator

in (23) satisfies: \/N(@LVM(A) — 69 4N (0,%(A)) where:

_ aB°(6°) ., aB°(6°) -1 ap°(6°) _, aB°(6%) [88°(6°) _, 95°(6°) -1
Y(A) = |:89G0AG0 BT ] 50 GyAH)(S)AG BT 20 GoAGy 50 ,
1
Hy := Wo(S) — 0092_2106 = (1 + S> [I(] — K(]] - C()Q2_2106

Remarks: (1) The optimal A is A* = H,'(S). Hence, the optimal asymptotic variance given the
auxiliary model is: 3(A*) = [%GéH&l(S’)G()% _1. The missing X and the estimation of the
nuisance parameters v to model this missingness make this optimal asymptotic variance different from
that given in Proposition 4 of Gourieroux et al. (1993). Without the former, the term Wy(S) in Hy(S)
would reduce to the standard definitions given in Gourieroux et al. (1993); i.e., & g, defining the asymp-
totic expansion of \/N(BN - EN,S(GO)), and hence, \/N(@%M(A) — 6%, would reduce to m(Y;, Z;, X;, 3°) —
%Zle m(Yis(0%), Z;, X;, BY). Without the latter, 0092_216’6 would not appear.

(2) The matrix Ho(S) can be written in the equivalent form

Ho(S) == FE [(&',s — [&,slliy (7)) (&5 — H[&,slli,w(VO)])l] ;
. D N 0% 7 x40
gz,S = pO(Wi> m(maZquaB )_ S;m(lfzs(e )7ZZ7XZ76 )] ,

where I; ,(7) is the score of the missingness likelihood, and II[¢; s|l; - (7°)], stands for the affine regression of

&5 on l;, (7°). Using this formula the optimal asymptotic variance of the IPW-II estimator can be stated

"Equivalent results can be obtained for the Wald-type IPW-II estimator. However, the arguments mirror those in Gourieroux
et al. (1993) and so are not presented for brevity.
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as
-1
{85(;(090),% {E [(ﬁz‘,s — & slliy (4)]) (&irs — H[gi,5|li77(70)]),} }_1 Goaﬁgé’eo)] '
The above formula is similar to existing formulas describing the asymptotic variance of estimators in the
presence of missing data, see, e.g., Wooldridge (2007).

(8) The IPW-II estimator is based on inverse probability weighting the so called “complete cases”, i.e.,
sample units with no missing variables, to correct for the endogenous missingness/selection. This makes
it widely applicable to scenarios where the pattern of missingness is more complex [see Little and Rubin
(2002)]. For example, let X = (X1, X}) and suppose we observe (Y, Z’) for some sample units, (Y', 2, X1)’
for some and (Y, Z’, X')’ for the rest. This is a scenario of monotonic pattern in missingness. If there is
another subset of the sample units where we observe (Y’, Z’, X)), then this is a scenario of non-monotonic
pattern in missingness. The above algorithm can be directly applied under both scenarios since it works with
the “complete cases” only, i.e, sample units for which we observe (Y’, Z’, X’)'. However, the estimator will
not be semiparameterically efficient in the sense of Robins et al. (1994) and Robins and Rotnitzky (1995).

Since the driving force behind the potential loss in efficiency related to Remarks (2) and (3) above are

well understood now, we abstract from such efficiency considerations to keep this paper short.

3.5 Smoothed Implementation: IPW-GII Estimator

Implementation of the IPW-II estimator when My s (53,7,6) is non-smooth in § can be computationally
burdensome. Following Keane and Smith (2005) and Bruins et al. (2015), we consider an alternative esti-
mator that simplifies estimation via smoothing. The smoothed estimator is obtained in the same manner
as é\]LVM (A), except that Y;s(0) in the original algorithm is replaced by a transformation Y;s(6, hy) that is

smooth (continuously differentiable) in 6 for hy > 0, where
lim Yis(6,hn) =Yis(0) foralls=1,...,Sandi=1,...,N. (24)
h[\]—>0

The term hpy controls the smoothness of the transformation — larger (smaller) hy leads to a more (less)
smooth transformation but increases (decreases) estimation bias — and needs to be specified by the user
taking into consideration the sample size N and the simulation size S.

Such transformations are widely used in simulation-based estimation of discrete choice models to avoid
computational difficulties arising from the non-differentiability of the concerned estimating equations with

respect to 6 (see Train, 2009). To our knowledge, Keane and Smith (2005) were first to propose its use in
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the context of II. They named the ensuing IT procedure Generalized Indirect Inference (GII). Bruins et al.
(2015) present a thorough theoretical exposition of GII.
We formally define the GII (smoothed) estimator 5@ (A) as a solution of:

it (mamisan)],, < o () gt e, e

N N

where M]’\”Ls(ﬁ, 7,0) = w5 PR m Zle m(Y;,(0,hN), Zi, X2, B,) and refer to 97{,(14) as the IPW-GII
estimator of #°.

The proposed smoothing approach in Keane and Smith (2005) and Bruins et al. (2015) is more sophis-
ticated than (25) and involves choosing the appropriate smoothing parameter Ay in two steps, which is
not fully reflected in the definition (25). In our Monte Carlo experiment involving estimation of structural
parameters in a multinomial probit model, however, a naive one-step choice of hy for the IPW-GII esti-
mator provides significant improvements over the IPW-II estimator. In particular, not only does it reduce
the computational cost substantially but it also improves the asymptotic normality approximation for the
distribution of the II estimator.®

Asymptotic equivalence between 55{,(/1) and 5%” (A) is ensured by letting hy — 0 at a controlled rate

(VNhy = o(1)) and under additional, but standard, technical conditions on the quantities depending on

hn. We collect these conditions as Assumption A8 in the Appendix.

Proposition 3.3 Under Assumptions A1-A8 in the Appendiz, for some sequence of non-negative real

numbers hy satisfying vV Nhy = o(1),

VN (B5(A4) = 0%(4)) = op(1).

4 Illustrative Example: Multinomial Probit Model

Herein, we consider a multinomial probit model similar to Section 9 in Gourieroux et al. (1993). However, our
choice of the auxiliary model is different. It is based on moment conditions (14)-(15) and leads to ordinary
least squares computations, which has similarities with the auxiliary models in Keane and Smith (2005), Li
(2010) and Bruins et al. (2015). In particular, Keane and Smith (2005) and Bruins et al. (2015) use this

auxiliary model to estimate the parameters of a multinomial probit model. Section 4.1 specifies the auxiliary

8With minor modifications to the assumptions and the theoretical results presented in this paper one can also accommodate
the two-step procedure for the choice of hy, if needed, following the results in Bruins et al (2015).
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model for IT and establishes the identification conditions A2 and A3 (in the appendix) without explicit
consideration of the missing variables. However, missing variables under MAR-X can be accommodated
by simply replacing the moment vector for the auxiliary model by its inverse probability weighted version.
The satisfaction of A2 and A3 ensure the adequacy of the auxiliary model for use in II. Section 4.2 presents
a simulation study demonstrating the effectiveness in finite samples of the IPW-II and IPW-GII estimators

in this model when the exogenous variable X is missing endogenously following MAR-X in (2).

4.1 Indirect Inference: Multinomial Probit Model

Consider a (J + 1)-alternative multinomial probit model with the alternative 0 as the baseline:

Y; =1(U; >max(0,U;: k=1,...,J and k # j)), for j=1,...,J
Uj = Z;'O[-FX/)\]' + e, (26)

and (e1,...,ex) = QY?(e1, ... &) with QY2 lower triangular such that Q'/2Q"/? = Q.

Let (e1,...,ex) ~ N(0, I) be independent of Z = (Z],...,Z"), i.e., say the alternative dependent variables,
and X, i.e., say the purely individual specific variables.” This corresponds to the structural model (8). Let
the structural parameters be § = (o, h],..., b/}, ) where w are the unique unrestricted elements of €.
6 = 6° in our population of interest.

Our implementation of II in this multinomial probit model follows the same steps described in Section

3.1-3.3. One possible choice for m(.), which we follow in the Monte-Carlo experiment in Section 4.2, is to

take:
_ (R — B '
R !
m(R,Z, X, B) = (i CBJ)/ (27)
Ri — (' Ry — (b Bir ... Pig
vech : : — : : :
I Ry —('Bs Ry—('B; Brg - Big |

where R (stands for response) is either Y or Y (6), as appropriate. R; = 1(R = j) for j = 1,...,J and

B = (Bl,---, 85 B, Big, Bazs .o B2y, ..., Bry). ( is some vector valued function of Z and X; for

?Normality of ¢ rules out ties in U;’s almost surely in Z and X. Also assume that the usual restrictions for identification,
such as standardizing a, A;’s and Q with respect to the (1,1)-th element of 2, and/or any other context specific restrictions are
imposed. We abstract from all such issues that are peripheral to the message of our paper.
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example, ¢ = (1,2', X’). A “richer” function ¢, for example, that also includes quadratic terms in Z and
X, increases the “richness” of the auxiliary model and generally leads to higher efficiency of II; see Bruins
et al. (2015) for a careful demonstration.

This choice of m(.) has the benefit of only requiring simple computations of equation-by-equation ordinary
least squares in a seemingly unrelated regression (SUR) model with J response variables 1(Y = j) or
1Y (0) =j) for j =1,...,J; same set of regressors ¢ for all regressions; and regression errors with unknown
variance-covariance matrix. In particular, this choice of m(.) leads to the first order conditions (that are
efficient given () for the SUR model regression coefficients, augmented by the estimating equations for the
unique elements in the variance-covariance matrix of the SUR regression errors. Hence, for a given (, the
computation and efficiency consideration involved with this choice of m(.) are the same as that due to the
quasi maximum likelihood estimation of the parameters of the auxiliary model in Bruins et al. (2015).

Lemma 4.1 below shows that when no variables are missing, standard least squares identification con-
ditions are sufficient for the key identification conditions A2 and A3 to hold in II based on the auxiliary

model induced by the choice of m(.) in (27). The proof is trivial and hence omitted.

Lemma 4.1 Define Y; := 1(Y = j) and Y;(8) := 1(Y (0) = j). Then Assumption A2 in the Appendiz holds
if E[¢C'] is non-singular, while Assumption A3 in the Appendiz holds under the additional orthogonality
restriction E[((Y;(0) — Y;(0°)] = 0 or, equivalently, E[C(Y;(0) —Y;)] = 0 for j = 1,...,J if and only if
0 =60,

Remarks:

(1) The lemma also applies to other discrete response models as long as the non-singularity and orthog-
onality conditions hold. This does not contradict the well known results that, typically such orthogonality
(or even mean independence) conditions are not sufficient for non-parametric identification of the structural
parameters in discrete response models. While apparently no other distributional assumption has been
made in its statement, the lemma is highly parametric and could not possibly be used without knowing the
distribution of Y;(#) conditional on Z, X.

(2) Section 4.2 takes ¢ = (1,27, X')" and, therefore, according to Lemma 4.1 it implicitly requires for

identification of #° the following high level orthogonality conditions:
(a) P(Y;(0) =1) = P(Y;(6°) =1) for all j =1,...,J if and only if 6 = ¢°.

(b) E[Z(P(Y;(0) =1]|Z,X) — P(Y;(6°) =1|Z, X)) =0 for all j =1,...,J if and only if § = 6°.
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(c) B[X(P(Y;(0) =1|Z,X) — P(Y;(6°) =1|Z,X))] =0 for all j =1,...,J if and only if § = ¢°.

(3) A “richer” (, for example, that also includes quadratic terms in Z and X, would impose additional
such orthogonality conditions and thereby would lead to higher precision of the II estimates.

(4) The result directly applies to our framework of endogenously missing exogenous variables X by
replacing m(R, Z, X, B) in (27) by Wm(}?, Z, X, ) and appealing to MAR-X if R =Y, or by following
similar arguments to those in equation (13) if R = Y (0).

Finally, Lemma 4.1 can also be used to identify the pseudo-true 6 (call it 8*) estimated by II when the
exogenous variables X are missing endogenously following MAR-X in (2) and the missingness is simply
ignored. Hereafter, we will refer to an II procedure that simply ignores the missingness as standard II.

Consider the following toy example where, for simplicity of demonstration, we take J = 1, ignore Z, and

make specific and convenient distributional assumptions that are covered by our maintained assumptions.

Toy Example: Let the structural model and the missingness mechanism be characterized by:

Y=1XX+c>0) and D=1(Y7"+v>0)

where the scalar random variable X, the structural error ¢ and the missingness error v are assumed to be
independent. Let §° = \°. Following (27), define m(R, X,3) = X(R— XB) for R=Y or R =Y (). We
ignore the overidentifying (second moment) restrictions from (27) for simplicity.

Therefore, standard II defines 5° and £°(0) as follows:

3% solves E[DX (Y — XB)] =0, and B°(0) solves E[DX (Y (§) — X3)] = 0.

These are essentially the population version of the first two steps of standard II. The final step obtains 6*
by the matching exercise 3° = 5°(6*), which by Lemma 4.1 holds if and only if E[DXY (6*)] = E[DXY].

Letting Fr denote the distribution function of any variable T', we know:

E[DXY ()] = E[((1—Fo(-"))(1 ~ F(=X0°) + (1 = F,(0)F(~X0°)(1 — Fe(-X0")X],

EIDXY] = E[(1-Fy(—")(1 - F.(-X6")X].

The above equalities follow from using MAR-X in (2), the conditional (on X) independence between Y
and Y (0), and the fact that F. = Fz. For simplicity, assume the specific and convenient distributions:

e~ N(0,1),v ~ N(0,1) and X ~ Bernoulli(g). Denote the distribution function of N(0,1) by ®(.) and its
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inverse by ®71(.). Equating E[DXY (*)] = E[DXY], standard II yields

(1)@ (6°)
69) + ®(0)(1

(pseudo-true value) 6* = &1 <<I>(70)CI>( — @(00))> #6°  (true value),

unless 7 = 0, i.e., unless the missingness is exogenous. Hence, it is the endogeneity of the missingness that

causes the problem of identification with standard II. Our proposed IPW-II estimator solves this problem.

4.2 Simulation Study: Three Alternative (J = 2) Probit Model

The simulation design considered here is similar to Model 4 in Keane and Smith (2005) and Bruins et al.
(2015). In particular, we consider the multinomial probit model in (26) with J = 2 for simplicity. For
each i =1,..., N, we generate the exogenous regressors as: Zj; i X2 —1for j =1,2 and X; i N(1,2)
independent of each other. Normalizing all the parameters in the model by the (1,1)-th element of €, i.e.,
equivalently, by fixing w11 = 1 (not to be estimated), we take ° = (o = 1,7\ = 1,29 = 2,0, = .5, w9, = 1)".
We generate the structural errors ¢; iid. N(0,15) and e; = 901/2& independent of the regressors Zi;, Za;, X;

and, finally, we generate the outcome Y; following (26) for each i = 1,..., N.

We consider the following missingness mechanism that determines the observability of X. Generate
Dy =1(] x 1(Yi = 1) + 15 x 1(Y; = 2) + 73 X Za; > v;)

foreachi=1,..., N with v; oy (0,1) independent of the structural errors e; and the exogenous variables
Z; = (Z1i, Z2)" and X;. Hence, MAR-X in (2) holds. Take 7 = —.5,79 = .5 and +J = 1. This leads to
roughly 50% of sample units with missing X.

We consider the auxiliary model and parameters as defined by the moments m(.) in (27) with ¢ =
(1,21, Z9, X ). Four different LM-type II estimators are considered: the standard II estimator, an infeasible
IT estimator, the IPW-II and IPW-GII estimators introduced in Section 3. The standard II estimator
works with the complete case data {D;Y;, D;Z;, DiXi}i]\il, i.e., sample units without any missing variables.
Standard II ignores the endogenous missingness of X and thus can be biased, gauging the magnitude and
consequences of this bias is the first purpose of the simulation study. The infeasible II estimator works
with the infeasible full data set {Y;, Z;, Xi}i]\il, which is only available because we have generated the data,
and is not available in practice. The infeasible II is the II estimator that one would use if there were no
missingness in the data. Its finite-sample behavior provides an infeasible benchmark for the performance of

IT in this context. The IPW-II and IPW-GII estimators work with the observed data {D;,Y;, Z;, D; X;}Y
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but account for the endogeneity in the missingness of X. These estimators are designed to correct the
bias of the standard II estimator, and demonstrating this is the second purpose of the simulation study.
The third purpose of the study is to add a word of caution by demonstrating that the asymptotic normal
approximation for the IPW-II estimator in Proposition 3.2 may be inadequate even in reasonably large
samples. Lastly, the simulation study demonstrates that the IPW-GII estimator, thanks to the smoothing
proposed by Keane and Smith (2005) and Bruins et al. (2015), does not suffer from this issue and is much
faster to implement than the other IPW-II estimator.

We compute the mean bias (MBIAS), mean absolute bias (ABIAS), standard deviation (STD), in-
terquartile range (IQR) and the coverage of a 95% Wald-confidence interval (COV95) for all the estimators
of (% A, A9, wly, wdy) for sample sizes N = 200, 500,1000 and 5000. We take S = 10 for all estimators.
The standard 11, infeasible IT and TPW-II estimators are computed by the patternsearch routine in Matlab.
On the other hand, the smoothness of the optimization problem for the IPW-GII estimator allows the use
of the gradient-based Matlab routine fminunc. Following Bruins et al. (2015), the initial value is set at
the true parameter value for all four estimation procedures. All four estimators use the (estimator specific)
optimal weighting matrix (see Proposition 3.2), and in effect are continuously updated GMM estimators.
All results are based on 10,000 Monte-Carlo trials.

To abstract from biases due to small sample sizes and instead focus on the bias that arises because the
standard II estimator deliberately ignores the endogenous missingness, we only report the results for the

standard II estimator based on N = 5000 in Table 1.19

6 | MBIAS ABIAS STD IQR  COV95

a | 0.0331 0.0472 0.0647 0.0727  94.05
A1 | 0.0259 0.0487 0.0648 0.0698  91.73
A2 | 0.4905  0.4905 0.1013 0.5008 1.03
wig | -0.1297  0.2053 0.2216 0.2568  91.82
woo | 1.2701  1.2707 0.4538 1.3488  17.54

Table 1: Monte-Carlo results for the Multinomial probit (J = 2) model. MBIAS, ABIAS, STD, IQR and
COV95 are the mean bias, absolute bias, (Monte-Carlo) standard deviation, interquartile range and coverage

of a 95% Wald-type confidence interval for the standard II estimator for the different elements of 6§ when
N = 5000.

This estimator is badly biased (see MBIAS) and as a consequence, the coverage of the 95% confidence
intervals for the unknown parameters can be extremely low: indeed as low as 1%.

Table 2 reports the results for the other three estimators. As expected from the results in Section 3, the

IPW-II corrects the bias of the standard IT estimator. Its bias (MBIAS) decreases considerably as the sample

10Results for other sample sizes are available from the authors.
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size increases. ABIAS, STD and IQR also display similar pattern with the increase in sample size. The
coverage (COV95) is good. Overall, keeping in mind that X is missing for roughly 50% sample units, the
finite-sample behavior of the IPW-II estimator does not deviate much from that of the infeasible benchmark
provided by the infeasible II estimator, especially when the sample size is not too low.

Similar phenomenon of bias correction is observed for the IPW-GII estimator. However, its bias (MBIAS)
is larger than that of the IPW-II estimator. Its ABIAS, STD and IQR are also generally larger than that
of the IPW-II estimator. These features are possibly due to the naive one-step choice for the smoothing
parameter hy in the implementation of the IPW-GII estimator.!!

Nevertheless, the IPW-GII estimator indeed serves the dual purpose stated in Section 3. The IPW-GII
estimator is much faster than the IPW-II estimator, and more importantly, while the studentized IPW-II
estimator is far from from being normally distributed, even for sample size N = 5000, no such problem

arises for the IPW-GII estimator;'? Figure 1 gives precise details.

5 Conclusion

In this paper we have demonstrated the problems with identification and consistent estimation of the struc-
tural parameters by II when the exogenous variables can be endogenously missing following the MAR-X
assumption, which can arise in empirical work for reasons such as survey non-response, survey revisions,
cost-effective survey design, etc. Our proposed solution can be implemented as either the IPW-II or the
IPW-GII estimator, with the smoothed IPW-GII approach being particularly useful in non-smooth prob-
lems. This novel estimation method corrects for the sample selection bias in the estimation of the auxiliary
parameters with the observed data and the simulated data using the method of inverse probability weighting.
The desirable performance of the proposed II approach was demonstrated theoretically and via simulations.
The extremely poor performance of standard II estimators that simply discard sample units with missing-
ness was also demonstrated via simulations. We conclude by noting that the selection due to the missing
data is handled by our proposed method in one step that only involves the estimation of the missingness
(conditional) probabilities using a binary choice model, such as logit or probit, and hence the proposed

method retains the computational attractiveness of II procedures.

The smoothing parameter hy is .078, .0571, .0458, .0284 respectively for N = 200,500, 1000,5000. This is in rough
accordance to the requirements of Proposition 3.3 but with a slight tilt toward zero for the smaller sample sizes N = 200, 500
to reduce the bias due to smoothing.

12The same issue is also present in the infeasible II estimator. However, for both the infeasible IT and IPW-II, the quality of
the normal approximation is better if we use a richer auxiliary model by augmenting ¢ = (1, Z’, X’)’ with quadratic terms in Z
and X. This removes some wiggliness in the corresponding kernel density plots. These figures are not included for brevity but
can be found in the previous version of the paper and are available from the authors.
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A Appendix: Technical assumptions and proofs

A.1 Technical Assumptions

The following notations are used. For a d x d matrix A and a ¢ x d matrix B, define ||B|| 4 := /Trace(BAB’)
and || B|| := || B|la=1,. Define N5(68°) C ©, N5(3°) C B and N5(7°) C I as some generic open neighborhoods
of radius 6 for #°, B° and ~° respectively. Finally, define

D
p(W;7)

By the definition of 3° in (1), the definition of the binding function in (15), and the above Lemmas,

M(B,v) = E m(Y, 2, X,p)| and M(8,7,0) := E m(Y (0),Z,X,B)| .

b
p(W;7)
M(B°,~°%) = M(8°4°,6%) =o. (28)

Assumption Al:

(a) Structural Model in (8): ¢ has a known distribution F. = F? and is independent of Z and X whose
unknown distribution is F(z x) = F(OZ X):

(b) Strict overlap: For MAR in (2), po(W) := P(D = 1|W) € [p, 1) for a constant p > 0.

(c) Observed sample: {W;, D;, DiXi}i]\il are i.i.d. copies of W, D, and DX.
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Assumption A2: 3° is the unique solution to equation (1).

Assumption A3: For all § € O, the binding function 5(#) defined in equation (15) satisfies 3° = 3(0) if
and only if 6 = 6°.

Assumption A4 : There exists a unique 4° € ' and a function p(w,~) : Support(W) x I — (0, 1) such
that po(w) = p(w;~°) for all w € Support(W). I' C R% is compact and d, is finite.

Assumption Ab5:

(a) © C R% and B C R% are compact with 6° € interior(©) and 3° € interior(B).

(b) Forl = (l1,ls,13) where l; € Support(Y or Y (0)) (as appropriate) and (l2,3) € Support(Z, X): m(l, 3)
is continuous in A for all I, and ||m(l, 8)|> < ¢(I) for all [ and E[g(1)] < oo.

M - M
(C) For & > 0: sup H N,S(5777 9) (5777 6)” — Op(l).
0c0,8eN;(89),veN;(10) L T 1MN,s(B, 7, )| + | M (8,7, 0)]]

Assumption A6:

(a) p(w;~y) is continuous in v € I' for all w € Support(W).

(b) For some § > 0: p(w;~y) is twice continuously differentiable in v € N3(1°) for all w € Support(W), and
the derivatives p.(w;~y) := %p(w;fy) and py(w;y) = %p%(wyy) satisfy: sup,en;(10) | (w; ¥)[1? +
SUPAep(70) [Py (Wi V)| < b(was for all w € Support(W) where b(w) > 0 and E[b(w)] < co.

(c) The score I, (D, W;7) := (D — p(W;7))p,(W;7)/[p(W;7)(1 — p(W;~))] is such that
By := E [1,(D,W;4")ll,(D,W;~°)] is nonsingular.

Assumption AT:

(a) For each [ = (I,1l2,13) where 1 € Support(Y or Y (6)) (as appropriate) and (l2,l3) € Support(Z, X),
m(l,3) is continuously differentiable in 8 € Ns(BY) for some § > 0. Allow for changing the order of

differentiation and integration, i.e., let E [supﬁeNé(BO) lom(l, 8)/08||| < oc.

(b) Gp:=F [a%,m(Y, 7, X, BO)} =F [%m(Y(QO), 7, X, BD)} is nonsingular.

(c) VNEns % N (0,Wy(S)) where Wo(S) = (1+ %) (Io — Ko), Ens = S, &.s/N,

b~ vz X - LS Do), 2.x,50)
o p(Wa) S = p(W;~?) B

?

(d) For 0 = 6°: (0/00" )M (B°,4°,0) has rank dy and is continuously differentiable in 6.

(e) For every positive sequences {dx} and dy = o(1)

sup \/NHMN,S(B7’77 9) - M(ﬁa’% 9) - MN’S(BO’VO’ 00)”

= Op(l).
BENy (69),86Nsy, (B)7ENsy (10) L+ VN[ My s(8,7,0)[ + VN[ M(B,,0)]|

To establish the asymptotic properties of the GII estimator, additionally define for each h:

M"(B,7,0) .= E m(Y(0,h),Z,X,5)| .

b
p(W:7)
As before like (28) and further using (24),

M(B°,7%) = M(8°4°,6°) = M"=0(8°,+°,6°) = 0. (29)
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The following assumptions on M2 (8,v,60) M"(B,~,0) and M(B,7,0) are additionally maintained for the
asymptotic equivalence of the GII and II estimators.
Assumption A8: For some 6 > 0 and a finite b > 0, let the following hold for M ]@S() and its limit

counterpart M"(.):13
(a) sup | M™(B,~,0) — M(B,7,0)|| <bxh for h €0,5).
0€0,8eN;5(8%),7EN5(7°)

||M]’;L](ﬁa77 9) _Mh(ﬁa’%e)n
(b) sup sup =op(1).
he0,6) 0€0,8eN5(89),veNs (1) 1+ ||M]}\Lf(57779)|| + ‘|Mh(57’730)||

0
a(B',7")
0

0

(c) (i) sup sup
he(0,6) 0€N5(0°),8ENs(89),yENs(

(345200 = 314(5.7.)) | = 001

(c) (ii) sup sup
he(0,0) 0EN;(0°),B€Ns(B°),vENs (7°)

(d) 3 (5, 7 M"(B,7,0) is continuous in 3,7, 0, h for (B3,7,0) € N5(5°,~4°,6°) and h € [0,6).

© sup YNVIMR(E0,6%) = MMEP A0, 00) = M (B 2%. 0| _ g
he(d) 1A+ VNIME (840, 00)] + VN[ MA(50,40, 60|
Remark 1: It is well known that by Assumptions A4 and A6, the maximum likelihood estimator 7 that
gives po(w) = p(w,7n) for Step 0 of modified II satisfies:

(M452.6) = M"(5.2.9)) | = 0n(3 1),

VN@N —~°) = By Zz (Di, Wi;A°) + op(1). (30)
\F
Also, (2), Assumptions A1(b)-(c), A5(a)-(b) and AT(a)-(b) and (30) give for By from Step 1:
~ 1 Y
NGy =89 = =G5l = {mi (1", 5%) — 2129, i1 (D3, Wi 1)} + 0p (1), (31)
VN 5
D;
x(0 30 x(~0 30 0y/
m; 9 = T i1 0\ YL7ZZ7XZ7 Q :E mi 9 li, D17WZ7
0080 = 5. Q= B [mi (%, 80 (D1 Wi
See. e.g., Chaudhuri and Min (2012) for (30) and (31). Similar steps and (13) give for By (6°), defined as
Bn(0°) = arggep {Mns (8.9, 0°) =0}, (32)

the asymptotically linear representation

S

N
1
> {mi (1%, 8%6°%) — 012(0°)Q05' 1 (D, Wis1°) } + 0p(1), (33)
s=1

~ 4 1
VN(BN (%) - 8% = —Gg lﬁ ; 3
m:(s('yovﬁo;eo) = p[)(é/);;’y())m(ns(eo),ZiaXivﬁo)? Q12(90) =F [m;‘s(/yovﬁo;90))li,’Y(DivWi;'yo)l]

Therefore, under Assumption A7(c) and for a fixed S, using (30), (31) and (33) jointly give:

VN By - Bn(0°) = —Gy'VN [Ens — CoAn —1°)] 4N (0, Gngo(S)G61l> (34)
1
S

13Gee Remark 5 for an explanation of these assumptions.

Ho(S) = (1+ =)o — Ko) — CoBytC), Co= Q12— Q12(6%)
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Remark 2: It is important to point out that the equivalence of the Gy terms in the expansions (31) and
(33), follows since, under the maintained assumptions, for « being any one of 3,, 6,

oM, 8%6°) [ a1 D
T = {aa/ss:lE [Wm(n(9)7Z7X7B):|}

~{ B 0). 2.x. )}

89,00,7°

which follows by MAR-x and the knowledge that the S simulated samples are iid copies. More generally
then, the partial derivatives OM/00', OM /OB, OM/O~' (evaluated at the truth) do not depend on S.
Likewise, it is important to note the role that S does play in the asymptotic variance of ¢, N,S-

Remark 3: Assumption A5(c) is an uniform convergence condition for which the strict overlap assumption
in A1(b) plays a crucial role. The same holds for the stochastic equicontinuity condition Assumption A7(e)
that is similar to condition (iii) in Theorem 3.3 of Pakes and Pollard (1989), but additionally it allows
for nuisance parameters close to their true values. Such high-level assumptions need to be verified on a
case-by-case basis [see, e.g., Cattaneo (2010) or Chaudhuri and Guilkey (2014)].

Remark 4: Since it is also well known how to account for random weighting matrix [see Lemmas 3.4 and
3.5 of Pakes and Pollard (1989)], we abstract from it in all the proofs below and instead directly assume in
the concerned propositions that the weighting matrix Ay is possibly based on some preliminary consistent

estimators of the concerned parameters such that Ay Py A where A is a positive definite matrix. Hence in
what follows let Oy := 05M (A).

Remark 5: Assumption A8 is a high-level condition restricting the choice of kernels (e.g. logistic or normal)
used within the smoothing step of the generalized II procedure. Essentially it imposes sufficient smoothness
condition on M2 (.) and M"(.) to facilitate simple proofs of the desired asymptotic properties of the GII
estimator. The denominators in A8(b) and (d) add slightly more generality (similar to those in A5(d) and
A7(e)). The asymmetric treatment with respect to (3,7) and 6 in A8(c) (i) and (ii) respectively is due
to the fact that we do not formally establish v/ N-consistency of oh N prior to demonstrating its asymptotic
normality. The stronger condition in (ii) bears resemblance with the assumptions on suitable central limit
theorem for Jacobians in the weak identification literature (see Kleibergen (2005)).

A.2 Proofs

Proof of Proposition 3.1: For notational simplicity, in what follows we drop the S subscript from the
definition of My g(-) since S is assumed fixed.

The proof proceeds by showing that HM(ﬁO,WO,é\N)H = op(1). Under Assumptions A2 and A3, this
condition is sufficient for Oy —» 6° by virtue of (28), (30), (31) [where the last two give: Fn € Ns(1°)

and B N € N5(B%) respectively with probability approaching 1], and the continuity implied by Assumptions
A1(b), A6(a) and A5(b). Note that by the triangle inequality:

IM(B°,~°, 05| <IIM(8°,4°,0x) — M(Bn, 3w, 0x)| + [|M (Bx, A, On) — M (B, 3, 0n) |
+ || Mn (BN, AN, ON) |-

By (30), (31), and the continuity implied by Assumptions A1(b), A6(a) and A5(b), the first term on the
right hand side, i.e., || M(5°,~° ON)—M (ﬁN,’yN, HN )| is op(1). (30), (31) and Assumption A5(c) imply that
the second term ||M(5N,’YN,9N) MN(BN,VN, GN)H is op(1). The definition in (23) implies that the third
term ||Mn (Bn, AN, 08| < [|Mn By, 3w, 00| = [|M(Bx,3n, 60| + op(1) where the equality follows from
(30), (31) and Assumption A5(c). Since (30), (31) and, as before, the continuity of M (8,7, 6°) in B and v
imply that ||M(BN,7N,90)H = [|M(B°,+°,8%) || +op(1), it follows by (28) that the third term is also op(1). =

Proof of Proposition 3.2: For notational simplicity, again, in what follows we drop the S subscript from
the definition of My g(-).
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Since Oy = 6°, it follows by (28) and Assumption A7(d) that ||§N — 0% = Op (HM(BO,’yo,gN)H).

Under our maintained assumptions and (30) and (31), it can then be shown that || M (82,40, é\N)H and hence
|0n — 6°]] is Op(N~1/2). Details are available from the authors. Given this, and that our assumptions are
essentially same as that in Theorem 3.5 of Pakes and Pollard (1989), the rest of the proof is also similar.
Hence we only provide a sketch of the proof below, and highlight the differences that appear only to the end
of the proof.

For now let dy = dg. Justifying by virtue of (30), (31) and the v/ N-consistency of O, linearize My (Cy, 6)
in a v/ N-neighborhood of §° by the function [see, for example, Chen et al. (2003)]:

OM(B°,+0,6%)
op’

Define 63, = argming ||Ly(6)|. For the application of Assumption A7(e) in the remainder of the proof
choose 8y such that By € Niy (8%), An € N5y (7°), and both é\N,G}‘V € N5, (6°). It can now be shown
(details available from the authors) by (30), (31), Assumption A7(e) and the V/N-consistency of Ay that
| My (Bn, AN, 0) — Ln(0)|| = op(N~1/2) for both @ = O and 6 = 0%, and thus, subsequently, by Assumption
A7(d) that

OM(B°,+°,6%) OM(8°,~Y,6°)

L () := Mn(8°,7°,6°) + By — B°) + S (v 70 + = (0 — ).

VN Oy —6°) = VN Oy — 6°) = 0,(1). (35)
Now note by (32): BN(OO) satisfies 0 = MN(BN(GO),%V, 6°). Expanding the right hand side gives:
OM(8°,4°,6°)
op!

On the other hand, since 6% = argming ||Lyx(0)]], it follows that op(N~1/2) = Ly(0%). Hence by the
definition of Ly (0%) and using v/N-consistency of S, 7y and 0% it follows that:

OM(B°,1°,6°)

5 G =) +op (N (30)

OZMN(50770790)+ (B\N(GO)_/BO)+

aM(ﬁoa’Yano) |: ) / /.

op(N7V2) = My(8°,4°,6°) + R 8%, Gn =), (08 — 60%) (37)

Therefore, equating (36) and (37) gives:

oM (B°,+4°,6° . OM(B°,+°,6° ~ ~
G0 — o) = -2 C I N Gy B0 + o (1),
Until now in this proof we have disregarded the over-identifying nature of the system with respect to 6.

However, when dy < dg, and Ay Ly (positive definite), under Assumption A7(d), standard methods
modify the above relation as, up to an op(1) term:

OM'(8°,~°,6%) oM (8°,~°,6°) OM'(8°,~°,6%) oM (8°,~°,6°)
a0 4 o0’ VN B 00 A o5 VN

(6% — 6°) = (Bn — B (8°)).

From the above expression, and Remark 3, we see that %, and hence §N, depends on S only through the
dependence of {x 5 on S.
Differentiating M (8°(6),~°,6°) with respect to 6 at § = #° and using Assumption A7(d):

0 OOOO_a 0000800_ iOO
5 M (B(6).9°.6%) = S5 M(E(6).4".6) 558°(6°) = Go s B°(6°)

where the last equality follows by Assumption A3, A4, A7(a), (b) and MAR-X in (2). Combining the
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above and using (34) and (35) we obtain:

R 0090y
VN(Oy —0°) = %a(H)G’OAGO

o0’ 90 G6A\/N [EN»SV - CO(;Y\N - 70)] + OP(l)

8,30(90)] -1 8ﬂ0(90)/
where Cop = Q12 — Q12(0°) and y s = + Zi\il Lis =+ f\; [m;‘(’yo,ﬁo) - %Zle mi, (72, BY; 60)] Again,
by similar arguments to those in Remark 3, VN (@N — 0Y) depends on S only through the dependence of
¢n,s on S, which under the maintained assumptions yields

VN@Oy — 6°) 4 N(0,2(A)). =

Proof of Proposition 3.3: For notational simplicity, we will drop the N subscript from h (with the
understanding that for any given N, h > 0 but h = o(N~/2)) and the S subscript from the definition of
M ]’f, 5(+). Also, since the weighting matrix Ax can be handled in the same manner as in Propositions 3.2,
we 6nly consider the just-identified case (dg = dg) and take Ay = A = Iy,. The proof now proceeds in two

steps, first we demonstrate consistency of 5]’{, for #°, and we then demonstrate Hgﬁ, —6 nl =op(N71/2). The
entire proof closely follows that of Propositions 3.1 and 3.2 except that having established consistency we
slightly deviate to emphasize the fact that M2 (8,7, ) is indeed differentiable with respect to 6 for h > 0.
Consistency: Following Proposition 3.1, by continuity of M (3,7, #) in 8, the result follows if || M (8°,~°, 55{,) | =
op(1) as h — 0. This condition will be sufficient for é?v ﬁ 6° by the same arguments as Proposition

3.1. By the triangle inequality:

M (B°,7°, %) <IIM(B°,7°,8%) — M (B, An, 08| + [|M (B, An, 0%) — M" (B, An, %)
+ | M" (B, AN, 0%) — ME (B, AN, 08 || + | ME (B, A, 0%) |- (38)

As before, by Assumptions Al(b), A6(a) and A5(b), HM(ﬂO,'yO,g?]}(,) - M(ENﬁN,gj}{,)H is op(1). For
the second term on the RHS of (38) note that, due to (30) and (31), ¥ and B belong respectively in
Ns(yY) and Nj(BY) with probability approaching one. Hence the second term is op(1) by Assumption
A8(a) and the condition that h — 0. Similar arguments give the third term on the RHS to be op(1)
by virtue of Assumption A8(b). Finally consider the fourth term and note that: ||M]’\‘,(BN,ﬁN,§]}(,)H <
HM]}\L,(B\N,‘?N, 09)[| + op(1) = ||M"(Bx, 3N, 60| + op(1) where the first inequality follows from (25) and the
second by Assumption A8(b). Now, (i) the Lipschitz continuity of M”" in A8(a), (i) continuity of M|(.)
with respect to 3 and v that is implied by Assumptions A1(b), A5(b) and A6(a), along with (iii) (30) and
(31) give for b — 0, | M"(By,AN,0°)| = [|M (BN, AN, )| + op(1) = |M(8°,4°,6°)|| + op(1), and this is

op(1) by (29). Hence the fourth term is also op(1) and thus it follows that 5?\/ ﬁ 6°.
—

Asymptotic equivalence: In a just-identified model, g?v satisfies the definition in (25) if
op(1) = VNM (B, AN, 0%).

Denoting ¢ = (5',7/,6")’ for simplicity, and expanding the RHS we obtain:
0 - ~ d - _
op(1) = VNMR(¢") + %MJ%(CB,N)\/N(BN - 8%+ @ME(CW,N)\/N(VN -1°)
9 B _
+ LA G VR — )

for some (row-by-row) mean-values (g n, (y,n and (p y. Therefore, by v/N-consistency of EN and Ay from
(31) and (30), consistency of 6% (just established above), uniform convergence in Assumptions A8(c)(i)
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(applied to the second and third terms on RHS) and A8(c)(ii) (applied to the last term on RHS), the
continuity assumption in A8(d), it follows that

0 - ~ /
op(1) = VEMY(C®) + LSV [(By - ). Gy =) @ — 0]

Finally take 6 > 0 and 6y = o(N~'/2), and note that:
sup. VNIM{(C) = My < sup VN[(ME () = M%) — (Mn(¢®) = M ()]
]’LG(O,(SN) hE(O,éN)

+ sup VN[M"(¢%) — M ()|
he(0,0n)

< op(l)+ VNb x ON
with probability approaching 1, respectively by Assumptions A8 (d) (along with the fact that M(¢?) =

0) and (a). Since oy = o(N~'/?) as dictated by the statement of the Proposition, it now follows that
suppe (o) VNVIIM(C?) = My (¢”)]| = op(1) and hence

or(1) = VNMy(¢") + “gg“) VN [(By = 8%, G =), @ — 0°)] = VN Ln (@)

for Ly () defined in the proof of Proposition 3.2. Therefore, HLN(@\’/)H = op(N~1/2). Now by following
the same steps as in that proof we obtain v/ N||0% — Ox| = op(1). =
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