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samples, we propose a new method of II to consistently estimate the structural parameters of interest. 
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1 Introduction

Since the seminal work of Smith (1990, 1993), Gourieroux et al. (1993) and Gallant and Tauchen (1996),

Indirect Inference (II) has been used for estimation in a variety of structural models where direct computation

of likelihood functions is difficult but simulation from the structural model is relatively straightforward.

Altonji et al. (2013) have recently remarked that in some circumstances “accommodating missing data in

II is straightforward: after generating a complete set of simulated data, one simply omits observations in

the same way they are omitted in the observed data.” Our focus of interest in this paper is precisely a case

where this argument is invalid due to the impossibility of simulating data that properly mimics the actual

missing data mechanism in the Data Generating Process (DGP). As stressed by Jiang and Turnbull (2004)

(Section 3.4), when data are not “Missing Completely At Random” (MCAR), the key tool of II, namely the

bridge relationship (resp. binding function) in Jiang and Turnbull (resp. Gourieroux et al.) terminology,

may be impossible to infer from simulations.

Generally speaking, II sets the focus on estimation of structural parameters θ ∈ Θ ⊂ Rdθ through an

intermediate or auxiliary statistic that consistently estimates the true unknown value β0 of some auxiliary

parameters β ∈ B ⊂ Rdβ , dβ ≥ dθ. For sake of expositional simplicity, we always define the true unknown

value β0 as the unique solution of the moment conditions

E[m(W,X, β)] = 0, (1)

where W and X are random vectors. The vectorial function m(., ., .) is known and can be assumed without

loss of generality to be of dimension dβ.

Let {Wi, Xi}Ni=1 stand for an i.i.d. sample drawn from the distribution of (W,X). The vector Wi (resp.

Xi) could include components corresponding to different time points for the i-th sample unit, and in this

sense our setup allows for panel data (large N, small T). However, for simplicity we will not pursue this

aspect further.

We are interested in the case where the econometrician does not observe (Wi, Xi) for all N sample units,

with the particular structure of the missingness being characterized by observing only a subsequence of

{Xi}Ni=1. Following common practice, define the binary random variable Di with Di = 1 when the vector

Xi is observed. In other words, the econometrician knows the random subset of indices i ∈ {1, 2, ..., N} for

which Xi is missing, corresponding to the set of indices such that Di = 0.

Throughout, we maintain the assumption that data are “Missing at Random” (MAR). Following Rubin
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(1976), data are MAR when “the conditional probability of the observed pattern of missing data, given the

missing data and the value of the observed data, is the same for all possible values of the missing data”.

With our notations, we enforce this condition by assuming that almost surely

Pr[D = 1 |W,X] = Pr[D = 1 |W ] > 0. (2)

Note that Wooldridge (2007) stresses the relevance of an extension of assumption (2) (see Wooldridge’s

Assumption 3.1 (iv) p. 1283) to also allow some components of the vector Wi to be unobserved whenever

Di = 0. In the context of II, this extension will be immaterial as long as the components of W impacted

by the missing data mechanism are only endogenous variables. Generally speaking, if the above missing

data mechanism only pertains to endogenous variables then the sanguine statement of Altonji et al. (2013)

quoted above regarding the easy treatment of missing data in II is valid.

The focus of interest in this paper is a case where the solution put forward by Altonji et al. (2013) does

not work, precisely because the missing data mechanism pertains to exogenous variables that we denote

throughout by X and which we are not keen to simulate (see Section two for a more precise discussion). To

emphasize our focus on missing exogenous variables, albeit endogenously missing since they are not MCAR,

we will dub throughout the maintained assumption (2) the MAR-X property.

Under MAR-X, sample counterparts of the moment conditions (1) can only be deduced from the

“observed” or “complete case” units {Di ·m(Wi, Xi, β)}Ni=1; i.e., when Xi is not observed we can not compute

m(Wi, Xi, β). Then, revisiting (1) as the “observed” or complete case moment conditions

E[Dm(W,X, β)] = 0 (3)

would obviously lead to the textbook issue of selection bias. However, the use of (3) for II differs from the

textbook presentation (see, e.g., Little and Rubin, 2002 and Wooldridge, 2005 ) in at least two respects.

First, our focus of interest is not direct estimation of β but rather indirect estimation of structural

parameters θ through auxiliary parameters β. Second, unlike direct inference with missing data, the key

necessary condition for validity of II is the ability of the simulated data to mimic the estimates of the

auxiliary model obtained from the observed data, irrespective of what this model is. In this respect the

important issue for simulation-based inference is not the difference between conditions (1) and (3), but to

what extent this difference can be accounted for in our simulation-based inference procedure.

While it may be possible to accommodate the consequences due to the differences between (1) and (3),
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see Section two for specific details, our main goal is to modify the complete case moment conditions (3)

into moment conditions, that are “observed” and conformable to the initial moment conditions in equation

(1). To do so, we use the MAR-X assumption to revisit (3) as (possibly misspecified) conditional moment

restrictions given W and to resort to a well chosen instrumental variable h(W ), leading to the “observed”

moment conditions

E[Dh(W )m(W,X, β)] = 0. (4)

Defining the true unknown propensity score as p0(W ) = Pr[D = 1 |W ], equation (4) will be conformable to

the initial moment conditions of interest that define β0 if, for all β ∈ B,

E[Dh(W )m(W,X, β)] = E[p0(W )h(W )m(W,X, β)] = E[m(W,X, β)],

where the first equality follows from the Law of Iterated Expectations (LIE) and MAR-X. Equivalence

between moment conditions (1) and (4) then requires, by the LIE, for all β ∈ B,

E [{1− p0(W )h(W )}E[m(W,X, β) |W ]] = 0. (5)

The identity in (5) encapsulates the two main cases of interest. In the first case, following Wooldridge

(2007) (see Assumption 4.1 p. 1288), one can maintain the assumption of “exogenous selection”, meaning

that at β0, the solution to (1), actually satisfies

E[m(W,X, β0) |W ] = 0. (6)

Our focus of interest is not exogenous selection. In the II context, exogenous selection as in (6) amounts

to a structural assumption on the auxiliary model, which is somewhat logically inconsistent with the idea

of an auxiliary model:1 II concerns indirect estimation of a structural model through a purely instrumental

auxiliary model not endowed with any kind of structural belief.

In the second case, exogenous selection is not maintained and the conditional expectation computed in

(6) may be any function of W .2 As a result, obtaining the identity in equation (5) requires choosing the

“instrument” h(W ) inversely proportional to the propensity score p0(W ) := Pr[D = 1|W ]; that is, to rewrite

1The exogenous selection assumption in (6) actually extends Wooldridge’s (2007) definition for M-estimators to the case of
general estimating equations, which could correspond to the first order conditions of some M-estimator.

2This follows since we are not willing to maintain any restrictive assumption about the probability distribution of the
exogenous variables X.
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our auxiliary model in (1) as the inverse probability weighted moment conditions

E

[
D

p0(W )
m(W,X, β)

]
= 0. (7)

Equivalence between moments (1) and (7) follows by the LIE and MAR-X.

While IPW has a long history in statistical inference with missing data, see, e.g., Horvitz and Thompson

(1952) and Robins et al. (1994), this paper constitutes, to the best of our knowledge, the first use of IPW

within simulation-based inference with endogenously missing exogenous variables. While seemingly different

from its historical use, our IPW strategy is underpinned by the maintained MAR-X hypothesis that has

found recent use in economics and econometrics. See, among others, Hirano et al. (2003), Chen et al. (2005),

Chen et al. (2008), Graham et al. (2012) for cases where the missingness pattern is similar to ours, while

Cattaneo (2010) and Chaudhuri and Guilkey (2014) consider more involved patterns of missingness. All of

the above papers use some form of MAR-X to correct for selection bias in moment conditions, as is done

herein.

However, unlike missing data in direct inference, because II can only conditionally simulate data given

all exogenous variables, the simulation step of II induces a perverse dependence between the simulated

endogenous variables and the missingness indicator, which is not present in the observed data. As a direct

consequence, the standard IPW-based arguments for direct inference outlined above are not valid for our

simulated counterpart. To rectify this issue, we detail a novel identification argument (see Section two)

that uses IPW, along with the MAR-X assumption and a particular simulation design, to (jointly) identify

the auxiliary parameters based on the simulated data. Together, the two IPW-based arguments allow for

identification of the structural parameters.

The remainder of the paper is organized as follows. Our proposed II strategy with MAR-X exoge-

nous variables as well as possible alternative strategies are discussed in Section two. Section three details

implementation of this new II strategy, states the asymptotic theory of our II estimator and proposes an

alternative implementation of our approach based on the generalized indirect inference (GII) approach orig-

inally proposed in Keane and Smith (2005), and elaborated on in Bruins et al. (2015), which is particularly

useful when the underlying moments are non-smooth in the structural parameters. In Section four, we il-

lustrate our new approach in a multinomial probit model similar to Section nine of Gourieroux et al. (1993)

and model four of Bruins et al. (2015). However, due to the missing data problem, we carefully revisit

identification of the structural parameters. Section four also contains a small scale Monte Carlo experiment
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illustrating the performance of our approach in a multinomial probit model. Given the non-smoothness of

the binding function in the multinomial probit model, we also consider a GII implementation of our ap-

proach. The Monte Carlo results provide compelling evidence on the performance of our II strategy and its

alternative GII implementation. Section five concludes, and proofs of the theoretical results are collected in

the appendix.

2 II with MAR Exogenous Variables

We sketch in Section 2.1 the general problem of II in the presence of missing data. The usefulness of the

MAR-X assumption for performing II is made explicit in Section 2.2. Since Section 2.1 simply sketches the

different possibilities, precise definitions of certain terms are only provided in Section 2.2.

2.1 Indirect Inference with Missing Data

To fix ideas, we focus on the simple structural model

Y = r(Z,X, ε; θ), (8)

where r(.) is a vector valued function known up to the finite dimensional parameter θ ∈ Θ ⊂ Rdθ . ε is

the unobserved stochastic error whose probability distribution is assumed (without loss of generality) to be

known. Y denotes the endogenous variables while the variables X and Z are independent of ε and treated

as exogenous. We maintain that it is not desirable to assume the distribution of X and Z (conditional or

unconditional on Y ) is known. Let θ0 ∈ Θ be the true value of θ in our population of interest.

Let us first consider simulation of data from the structural model (8) when there is no missingness. Let

ε̃ be a random variable drawn from the distribution of ε and independent of W = (Y ′, Z ′)′ and X. For the

given θ ∈ Θ, consider the variables Y (θ) simulated from equation (8): Y (θ) = r(Z,X, ε̃; θ).

For a given value θ ∈ Θ used to simulate the endogenous variable Y (θ), II defines the binding function

β0(θ) as the solution, in β, to the simulated counterpart of moment conditions (1):

E [m(Y (θ), Z,X, β)] = 0. (9)

Since the conditional probability distribution of Y (θ0), given X,Z has been devised to coincide with the

conditional probability distribution of Y given X,Z, β0 is the solution of (9) for θ = θ0. Moreover, if
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θ 7→ β0(θ) is injective, θ0 is the unique θ ∈ Θ satisfying β0 = β0(θ). Implementation of II is then based on

finite sample counterparts of equations (1) and (9).

It may sometimes be argued that missing data is immaterial for II, since we can purposefully omit

simulated observations in the same way they are missing in the observed data. In other words, selection bias

introduced when estimating the auxiliary parameters β using the observed moment conditions

E[Dm(Y, Z,X, β)] = 0

may be inconsequential. After all, if Y,Z,X,D can all be simulated, where with an abuse of notation

θ denotes all unknown parameters governing the simulation process, we can define the binding function

θ 7→ β̃(θ) as the solution of the simulated counterpart

E[D(θ) ·m(Y (θ), Z(θ), X(θ), β)] = 0.

However, our focus of interest in this paper renders the above solution infeasible for several reasons.

First, since we are unwilling to assume a distribution for the exogenous variables X,Z, obtaining sim-

ulated counterparts to X,Z is not feasible. As alluded to above, it is somewhat logically inconsistent to

specify a probability distribution for exogenous variables. Moreover, as shown by Gourieroux at al. (1993),

there is an efficiency gain to use for II a simulated path in which the exogenous variables are fixed at their

observed values in the actual data set.

Second, when only the endogenous variables Y are missing, fixing the exogenous variables at their

observed values yields a binding function for II defined as the solution to

E[D(θ)m(Y (θ), Z,X, β)] = 0,

where θ again denotes all unknown parameters governing the simulated process. Such a practice would be

accurate if we were to treat both Y and D as endogenous, with Y (θ) and D(θ) simulated according to an

augmented analog of the structural model in (8). However, simulation of Y (θ) and D(θ) is not feasible in

our context since the missing data mechanism pertains to the exogenous variables X and so Y(θ) can not

be simulated when D = 0.
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This inability to simulate Y (θ) when D = 0 also implies that II based on the complete case moments

E[Dm(Y, Z,X, β)] = 0

E[Dm(Y (θ), Z,X, β)] = 0

will not, in general, identify θ0. Identification would require that the joint distributions of (D,Y , Z,X)

and (D,Y (θ0), Z,X) be equivalent. However, this can not be true in general for the following reason:

the simulated error ε̃ used to generate Y (θ0) is, by construction, independent of D, whereas the MAR-

X assumption does not demand independence between ε (structural error in Y -equation) and D, either

unconditionally or conditional on X and Z. Hence, unless D is independent of ε, which, in turn, rules out

endogenous missingness of X, one can not identify θ0 following the above approach except by happenstance.

To further clarify this idea of identification failure, we refer the interested reader to Section 4.1 for a toy

example that illustrates this failure.

Interestingly enough, this double data missingness hurdle may actually suggest to modify the binding

function even more by considering the simulated moment conditions:

E[D ·D(θ) ·m(Y (θ), Z,X, β)] = 0.

While this complicated simulated missing data mechanism may actually provide a feasible solution (see

Chaudhuri et al., 2016), our focus herein is rather to use the initial moment condition in (1) by considering

their IPW counterpart given in equation (7). While the MAR-X assumption ensures that the IPW moment

conditions in (7) are equivalent to those in (1), MAR-X also allows us to define a binding function for II

that identified the true structural parameters without simulating the missingness indicator D.

2.2 II Based on IPW Under MAR-X

The MAR-X assumption in (2) allows us to correct for the effects of selection bias in the identification of

the auxiliary parameters β; that is, for all β ∈ B, we have, by MAR-X

E

[
D

p0(W )
m(Y,Z,X, β)

]
= E

[
E

(
D

p0(W )

∣∣∣∣W,X)m(Y, Z,X, β)

]
= E [m(Y,Z,X, β)] . (10)
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The key property for performing II using the auxiliary model based on equation (10) is to ensure the resulting

binding function will properly match. This matching requires that, for all β ∈ B and for all θ ∈ Θ,

E

[
D

p0(W )
m(Y (θ), Z,X, β)

]
= E [m(Y (θ), Z,X, β)] . (11)

Demonstrating satisfaction of (11) requires a more precise study of the expectations used above. In

equation (10) the notations are straightforward: expectations are computed with respect to the joint dis-

tribution of (D,Y, Z,X) given by the data generating process (DGP). The expectation operator in (11)

involves jointly the DGP for the observed and simulated data. To highlight this difference, we analyze each

case in turn, starting with the observed data.

The observed data {Di, Yi, Zi, DiXi}Ni=1, where DiXi = 0 if Di = 0 and Xi else, can be seen as the

output of the following mechanism:

(O1) Exogenous variables {Zi, Xi}Ni=1, possibly partially latent, are generated by a completely unknown

DGP.

(O2) Stochastic errors {εi}Ni=1 are drawn i.i.d. from the known probability distribution of ε, with all draws

independent of {Zi, Xi}Ni=1.

(O3) Endogenous variables {Yi}Ni=1 are observed as a result of the DGP: Yi = r(Zi, Xi, εi; θ
0), with θ0 the

true unknown value of the structural parameters.

(O4) {Di}Ni=1 is drawn in the product of conditional distributions of Di given {Yi, Zi}Ni=1. Moreover, these

conditional distributions, for i = 1, ..., N, are assumed (by MAR-X) not to depend on Xi when conditioned

on Wi.

For the simulated data, a similar procedure is implicitly considered when simulating the endogenous vari-

ables. However, unlike step (O2) above, for some integer S ≥ 1 we draw s = 1, ..., S independent simulated

samples of i.i.d. errors {ε̃is}Ni=1 from the known probability distribution of ε with {ε̃is}Ni=1 independent of

{εi, Zi, Xi, Di}Ni=1 by construction. Given, {ε̃is}Ni=1, and in accordance with (O3) above, we define, for all

θ ∈ Θ: Yis(θ) = r(Zi, Xi, ε̃is; θ). The s-th simulation step produces a sequence {Zi, DiXi, εi, Di, ε̃is}Ni=1 of

i.i.d. draws in a joint distribution that defines, through known transformations, the joint distribution of the

variables at stake to compute the expectation in (11).

However, since {ε̃is}Ni=1 is independent of {εi, Zi, Xi, Di}Ni=1, it is also independent of the missing data

mechanism encapsulated by {Di}Ni=1. Therefore, Di is endowed with an exogeneity status in regards to the

simulated errors ε̃is. In particular, because Di is independent of ε̃is, for each s = 1, ..., S, given (εi, Zi, Xi)
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since ε̃is jointly independent of (εi, Zi, Xi, Di), we have that

Di ⊥ Yis(θ)
∣∣Wi, Xi. (12)

Note, however, that we can not compute Yis(θ) when Di = 0.

With the conditional independence D ⊥ Y (θ)
∣∣ W,X generated through the simulation step, we can

demonstrate the validity of equation (11):

E

[
D

p0(W )
m(Y (θ), Z,X, β)

]
= E

[
E

[
D

p0(W )
m(Y (θ), Z,X, β)

∣∣∣∣W,X]] (by L.I.E.)

= E

[
E

[
D

p0(W )

∣∣∣∣W,X]E [m(Y (θ), Z,X, β)|W,X]

]
(by (12))

= E

[
E

[
D

p0(W )

∣∣∣∣W]E [m(Y (θ), Z,X, β)|W,X]

]
(by MAR-X)

= E [m(Y (θ), Z,X, β)] (by definition of p0(W )). (13)

Equation (13) is precisely what we need to ensure an II approach that is feasible and valid, when based on

the auxiliary model (1), in spite of the missing data problem.3

More precisely, for β0 ∈ B and θ 7→ β0(θ) defined by, respectively,

E
[
m(Y,Z,X, β0)

]
= 0,

E
[
m(Y (θ), Z,X, β0(θ))

]
= 0,

under the standard identification assumption β0 = β0(θ)⇔ θ = θ0, comparison of (10) and (11) suggests a

feasible II approach with missing data using IPW moment conditions

E

[
D

p0(W )
m(Y, Z,X, β0)

]
= 0 (14)

E

[
D

p0(W )
m(Y (θ), Z,X, β0(θ))

]
= 0. (15)

This is where the novelty of our approach lies. Identification of θ0, by means of (10) and (11), which is valid

by (13), does not result directly from the use of IPW and MAR-X in (2) but also requires the conditional

independence introduced through the simulation step, i.e., (12).

Clearly, implementation of the above strategy requires consistent estimation of p0(W ). The complete

3Note that independence between ε̃ and (ε, Z,X), as in a standard II context, is insufficient to yield equation (13).
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asymptotic theory will be developed in Section three in the framework of a fully parametric model. This

parametric model will define the set of possible DGPs according to steps (O1), (O2), (O3) and (O4)

above, augmenting it by a parametric specification p(W ; γ) for Pr[D = 1|W ] in step (O4) such that

p0(W ) = Pr[D = 1 |W ] ≡ p(W ; γ0)

for a unique γ0 ∈ Interior(Γ) ⊂ Rdγ .

The reader familiar with nonparametric estimation of optimal instruments knows that an alternative

solution to using estimating equations like (14)-(15) would be to come up with a consistent, albeit nonpara-

metric, estimator of p0(W ). However, in the context of IPW, this would pave the way for new discussions

about efficient II with missing data: Chen et al. (2008) (see also Graham, 2011 and Chaudhuri et al.,

2016) show that a nonparametric estimator of p0(W ) would actually lead, in general, to a more accurate

estimator of β0. This apparent paradox is easy to explain when one realizes that step (O4) provides a set

of conditional moment restrictions

E[D − p0(W ) |W ] = 0.

These conditional moment restrictions would in general bring relevant information about the unknown

parameter β beyond what can be brought by the parametric model p(W ; γ). It must be kept in mind that

maximum likelihood estimation of such a parametric model amounts to picking a subset (of dimension dγ)

of the above conditional moment restrictions,

E

[
D − p0(W )

p0(W )(1− p0(W ))

∂

∂γ
p(W ; γ0)

]
= 0

that is optimal for estimation of γ0. However, this subset of the conditional moments may not exhaust all

relevant information for optimal estimation of β0. While our focus of interest is not efficient direct estimation

of β but indirect estimation of θ, obviously, the two efficiency issues are tightly related but much beyond

the scope of this paper.

3 IPW Indirect Inference (IPW-II)

In this section we discuss precise implementation of our inverse probability weighted II (IPW-II) approach

under MAR-X missing data. Asymptotic properties of the ensuing IPW-II approach are discussed in

Section 3.4. Section 3.5 presents a computationally friendly implementation of this approach for non-smooth
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problems using the generalized II approach first proposed in Keane and Smith (2005).

3.1 Estimation of the Auxiliary Model Parameters

3.1.1 Observed Data

Following the identification strategy outlined in Section two, define the estimator β̂N as the solution of

1

N

N∑
i=1

Di

p(Wi, γ̂N )
m(Yi, Zi, Xi, β̂N ) = 0,

where γ̂N is the maximum likelihood estimator, the solution to 0 =
∑N

i=1 li,γ(γ), with li,γ(γ) = lγ(Di,Wi, γ)

the score vector of the parametric model describing the missing data mechanism:

li,γ(γ) =
∂

∂γ
log
[
(p(Wi, γ))Di (1− p(Wi, γ))1−Di

]
=

[Di − p(Wi, γ)]

p(Wi, γ)(1− p(Wi, γ))

∂p(Wi, γ)

∂γ
.

Note that (β̂′N , γ̂
′
N )′ can also be seen as a joint GMM estimator provided by the just identified moment

conditions

E

[
Di

p(Wi; γ)
m(Yi, Zi, , Xi, β)

]
= 0

E [li,γ(Di,Wi, γ)] = 0

It is well known (see, e.g., Breusch et al., 1999, Lemma 1, p93) that we can obtain an asymptotically

equivalent GMM estimator by instead considering the moment conditions:

E
[
m∗i (γ, β)−Π

[
m∗i (γ, β)

∣∣ li,γ(γ)
]]

= 0

E [lγ(Di,Wi, γ)] = 0 (16)

where m∗i (γ, β) = Di
p(Wi;γ)m(Yi, Zi, Xi, β) and, for β = β0 and γ = γ0, Π

[
m∗i (γ

0, β0)
∣∣ li,γ(γ0)

]
the affine

population regression of m∗i (γ
0, β0) on li,γ(γ0):

Π
[
m∗i (γ

0, β0)
∣∣ li,γ(γ0)

]
= Ω12Ω−1

22 li,γ(γ0),

Ω12 = Cov
[
m∗i (γ

0, β0), li,γ(γ0)
]
, Ω22 = Var

[
li,γ(γ0)

]
.

Clearly, the two moments in (16) are uncorrelated at γ0, β0, allowing us to compute directly the asymp-
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totic distribution of the GMM estimator β̂N from its asymptotic expansion4

√
N
(
β̂N − β0

)
= −

[
G′0V

−1
0 G0

]−1
G′0V

−1
0

1√
N

N∑
i=1

{
m∗i (γ

0, β0)−Π
[
m∗i (γ

0, β0)
∣∣ li,γ(γ0)

]}
+ oP (1)

= −G−1
0

1√
N

N∑
i=1

{
m∗i (γ

0, β0)−Π
[
m∗i (γ

0, β0)
∣∣ li,γ(γ0)

]}
+ oP (1),

where

G0 = E

[
Di

p(Wi; γ0)

∂m(Wi, Xi, β
0)

∂β′

]
, (17)

V0 = Var
[
m∗i (γ

0, β0)
]
−Var

[
Π
[
m∗i (γ

0, β0)
∣∣ li,γ(γ0)

]]
. (18)

Remarks:

(1) Applying again the MAR-X property to G0 yields

G0 = E

[
E

[
Di

p(Wi; γ0)

∣∣∣∣Wi, Xi

]
∂m(Wi, Xi, β

0)

∂β′

]
= E

[
∂m(Wi, Xi, β

0)

∂β′

]
,

as if we had no missing data. However, due to the missing data problem, the formula (17) provides the

natural way to estimate G0 from its sample counterpart after plugging in consistent estimators of γ0, β0.

Similarly,

Var
[
m∗i (γ

0, β0)
]

= E
[
m∗i (γ

0, β0)m∗i (γ
0, β0)′

]
= E

[
1

p(Wi; γ0)
m(Wi, Xi, β

0)m′(Wi, Xi, β
0)

]

should be estimated from the sample counterpart of (18) rather than the above equation. However, the

division by p(Wi; γ
0) in the above shows the price we pay, in terms of accuracy of β̂N , for the missing data

problem.

(2) The asymptotic variance of
√
N(β̂N − β0), given by G−1

0 V0G
′−1
0 , is smaller (in terms of comparison

of positive semi-definite matrices) than the asymptotic variance of a GMM estimator for β0 obtained using

the true unknown propensity score p0(W ) = p(W ; γ0) and only

E

[
Di

p0(Wi)
mi(Y, Z,X, β)

]
= 0, (19)

for which the resulting asymptotic variance would be given by G−1
0

[
Var

{
m∗i (γ

0, β0)
}]
G′−1

0 .

4Precise regularity conditions ensuring the validity of this expansion are given as Assumptions A1-A5 in the appendix.
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This remark is sometimes summarized by a kind of puzzling statement: “it is better to estimate the

weights by a conditional MLE procedure than using known weights (if we knew them)” (Wooldridge, 2007).

The explanation of this anomalous statement is simple: we take advantage of the moments provided by

the score vector li,γ(γ0) to reduce the variance of m∗i (γ
0, β0) by computing the residual of its regression on

li,γ(γ0). The possible efficiency loss when using GMM based only on (19) instead of the GMM estimator β̂N

is not due to the knowledge of γ0 but to the omission of the second set of moment conditions li,γ(γ0).

3.1.2 Simulated Data

For a given integer S ≥ 1, we draw s = 1, ..., S independently simulated samples of i.i.d. errors {ε̃is}Ni=1 from

the known probability distribution of ε with, for each s = 1, ...., S, {ε̃is}Ni=1 independent of {εi, Zi, Xi, Di}Ni=1.

We can then compute Yis(θ) = r (Zi, Xi, ε̃is; θ) and define the estimator β̃N,s(θ) as the solution of

N∑
i=1

Di

p(Wi, γ̂N )
m
(
Yis(θ), Zi, Xi, β̃N,s(θ)

)
= 0.

Following similar arguments to those developed in the previous section, when N is large, (see also (22))

√
N
(
β̃N,s(θ

0)− β0
)

= −G−1
0

1√
N

N∑
i=1

{
m∗is(γ

0, β0; θ0)−Π
[
m∗is(γ

0, β0; θ0)
∣∣ li,γ(γ0)

]}
+ oP (1), (20)

where m∗is(γ, β; θ) = Di
p(Wi;γ)m(Yis(θ), Zi, Xi, β),

Π
[
m∗is(γ

0, β0; θ)
∣∣ li,γ(γ0)

]
= Ω12(θ)Ω−1

22 li,γ(γ0),

Ω12(θ) = Cov
[
m∗is(γ

0, β0; θ), li,γ(γ0)
]

Note that Ω12(θ) does not depend on (i, s) since all draws of (Z,X, ε̃is) are drawn in the same distribution,

which corresponds to the distribution of (Zi, Xi, εi). However, it is critical to note that,

Ω12(θ0) = Cov[m∗is(γ
0, β0; θ0), li,γ(γ0)] 6= Cov[m∗i (γ

0, β0), li,γ(γ0)] = Ω12,

which follows from the fact that, for D (εi, Zi, Xi, Di) the joint probability distribution of (εi, Zi, Xi, Di), in

general

D (εi, Zi, Xi, Di) 6= D (ε̃i, Zi, Xi, Di) .
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This discrepancy is a consequence of the missingness indicator Di being exogenous with regards to the

simulated errors ε̃is, since ε̃is is, by construction, independent of (Zi, Xi, Di). In contrast to ε̃is, MAR-X

does not require that the error εi be independent of (Zi, Xi, Di) since Di need not be independent of Yi

given (Zi, Xi).

Following the first II estimator of Gourieroux et al. (1993) (see their Proposition 1 p. S89), an estimator

of θ0 can be obtained by calibrating the value of θ in order to minimize the distance, in some norm, between

β̂N and the average value of the simulated auxiliary estimators

β̄N,S(θ) =
1

S

S∑
s=1

β̃N,s(θ).

From β̄N,S(θ) and (20), we deduce that, for given fixed S,

√
N
(
β̄N,S(θ0)− β0

)
= −G−1

0

√
N

N · S

N∑
i=1

S∑
s=1

{
m∗is(γ

0, β0; θ0)−Π
[
m∗is(γ

0, β0; θ0)
∣∣ li,γ(γ0)

]}
+ oP (1).

3.2 The Calibration Step: Wald-type IPW-II

Given auxiliary parameter estimates β̂N , β̄N,S(θ), a Wald-type IPW-II estimator for θ0 is obtained as

θ̂WN (Υ) := arg min
θ∈Θ

[
β̂N − β̄N,S(θ)

]′
Υ−1
N

[
β̂N − β̄N,S(θ)

]
, (21)

where ΥN is a sequence of positive-definite weighting matrix. The notation θ̂WN (Υ) stresses that the asymp-

totic distribution of this estimator depends on the choice of the weighting matrix Υ−1
N .

Standard arguments for minimum distance estimators tell us that the optimal choice of weighting matrix

is to take ΥN →P Υ(S), where

Υ(S) := lim
N→∞

Var
{√

N
(
β̂N − β̄N,S(θ0)

)}
.

To deduce the form of Υ(S), we first use the expansions
√
N(β̂N −β0) and

√
N(β̄N,S(θ0)−β0), given in the

previous subsections, to find

√
N
(
β̄N − β̂N,S(θ0)

)
= −G−1

0

√
N

[
ξ̄N,S − C0Ω−1

22

N∑
i=1

li,γ(γ0)/N

]
+ oP (1),
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where C0 =
[
Ω12 − Ω12(θ0)

]
and

ξ̄N,S =
1

N

N∑
i=1

ξi,S ≡
1

N

N∑
i=1

[
m∗i (γ

0, β0)− 1

S

S∑
s=1

m∗is(γ
0, β0; θ0)

]
.

Noting that,

Cov

(
√
Nξ̄N,S , C0Ω−1

22

N∑
i=1

li,γ(γ0)/
√
N

)
= C0Ω−1

22 C
′
0 = Var

(
C0Ω−1

22

N∑
i=1

li,γ(γ0)/
√
N

)

and for W0(S) = limN→∞Var
{√

Nξ̄N,S

}
= E

[
ξi,S · ξ′i,S

]
, Υ(S) then has the following form:

Υ(S) = G−1
0

[
W0(S)− C0Ω−1

22 C
′
0

]
G−1′

0 .

Remarks:

(1) The term W0(S) in Υ(S) can further be decomposed by noting the following. One,

Var
[
m∗is(γ

0, β0; θ0)
]

= E

[
Di

p2(Wi; γ0)
m(Yis(θ

0), Zi, Xi, β
0)m′(Yis(θ

0), Zi, Xi, β
0)

]
= E

[
1

p(Wi; γ0)
m(Yis(θ

0), Zi, Xi, β
0)m′(Yis(θ

0), Zi, Xi, β
0)

]
= Var

[
m∗i (γ

0, β0)
]
,

where the second equality comes from an argument similar to the one used to prove (13) and the third

equality is implied by the fact that the joint distributions satisfy

D (εi, Zi, Xi) = D (ε̃is, Zi, Xi) , (22)

with this distributional equivalence being (partly) why simulated and observed expectations can still coincide,

such as, e.g., G0 defined in (17). Two, by the same logic, for s, s′ = 1, ..., S

Cov
[
m∗i (γ

0, β0),m∗is(γ
0, β0; θ0)

]
= Cov

[
m∗is(γ

0, β0; θ0),m∗is′(γ
0, β0; θ0)

]
.

Introducing the notations,

I0 = Var
[
m∗i (γ

0, β0)
]
, K0 = Cov

[
m∗i (γ

0, β0),m∗is(γ
0, β0; θ0)

]
,
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elementary algebra then yields a familiar form (see Gourieroux et al., 1993, pS109):5

W0(S) =

(
1 +

1

S

)
(I0 −K0).

(2) The term K0 can be further decomposed, by noting that, for s, s′ = 1, ..., S, even if s = s′,

K0 = Cov
{
E[m∗is(γ

0, β0; θ0) |Zi, DiXi] , E[m∗is′(γ
0, β0; θ0) |Zi, DiXi]

}
= Var

{
E[m∗is(γ

0, β0; θ0) |Zi, DiXi]
}

= Var
{
E[m∗i (γ

0, β0) |Zi, DiXi, Di]
}

which yields the following alternative specification for I0 −K0:

I0 −K0 = V ar
{
m∗i (γ

0, β0)− E[m∗i (γ
0, β0) |Zi, DiXi, Di]

}
.

This expression makes explicit the efficiency gain due to the fact that we have not simulated (Z,X,D).

3.3 Alternative IPW-II Implementation

It is well-known that the different approaches to choosing a metric between β̂N and β̄N,S(θ), for the purpose

of II on θ, correspond to the trinity of asymptotic tests. As summarized by Bruins et al. (2015), following

a nomenclature “due to Eric Renault, the Wald and LR [likelihood ratio] approaches were first proposed in

Smith (1990, 1993) and later extended by GMR [Gourieroux et al., 1993]. The LM [Lagrange multiplier]

approach was first proposed in Gallant and Tauchen (1996).”

While Gourieroux et al. (1993) have stressed that the LR approach may imply some efficiency loss, they

also show (see their Section 2.5) that, as far as first order asymptotics are concerned, the family of Wald-II

estimators coincides with the family of LM-II estimators. However, due to the fact that our analysis depends

on the matrix C0 = Ω12−Ω12(θ0) 6= 0, in general, their results may not be directly applicable to our IPW-II

estimators.

In addition, Gourieroux et al. (1993) consider the LM and LR approaches only in the context where the

moment conditions used to estimate the auxiliary parameters are defined by the gradient of some objective

function, like a pseudo-score. In such cases, G0 is a symmetric Hessian matrix, and in some circumstances

this Hessian matrix may coincide with the outer product matrix I0. Since we only consider parameters

defined as zeros of just-identified moment conditions, the Jacobian matrix G0 is nonsingular but G0 has no

5The term K0 is non-zero in general because the observed and simulated samples both have in common the exogenous
variables X and Z.
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reason to coincide with the symmetric, positive-definite matrix I0.

For a sequence of positive-definite weighting matrices ΨN →p Ψ, with Ψ positive-definite, a general Wald

IPW-II estimator θ̂WN (Ψ) of θ can be defined as the solution to the minimization program:

θ̂WN (Ψ) = arg min
θ∈Θ

[
β̂N − β̄N,S(θ)

]′
ΨN

[
β̂N − β̄N,S(θ)

]
.

From Section 3.2, and standard argument for minimum distance estimation, the optimal choice Ψ∗ of Ψ is

given by Ψ∗ = Υ−1(S) ≡ G′0H
−1
0 (S)G0, where

H0(S) = W0(S)− C0Ω−1
22 C

′
0, W0(S) =

(
1 +

1

S

)
[I0 −K0]

In the case where C0 = 0, and G0 a Hessian matrix, Gourieroux et al. (1993) demonstrate that LR-type II

estimators are asymptotically equivalent to θ̂WN (G0) and not efficient in general since

G0 6= G0 [I0 −K0]−1G′0.

The Wald-type II estimator θ̂WN (Ψ) can be computationally expensive when β̄N,S(θ) is not known in

closed form. Even though the moment conditions of the auxiliary model are not necessarily defined as a

gradient vector, we can extend the original LM-type II approach by defining a LM-type IPW-II estimator

θ̂LMN (A) as the solution of the minimization program:

θ̂LMN (A) = arg min
θ∈Θ

[
MN,S

(
β̂N , γ̂N , θ

)]′
AN

[
MN,S

(
β̂N , γ̂N , θ

)]
,

where AN is a sequence of positive-definite matrices with probability limit A and

MN,S

(
β̂N , γ̂N , θ

)
=

1

N · S

N∑
i=1

S∑
s=1

Di

p(Wi; γ̂N )
m(Yis(θ), Zi, Xi, β̂N ).

When C0 = 0, Gourieroux et al. (1993) have shown that the estimator θ̂LMN (A) is asymptotically equiv-

alent to θ̂WN (G0AG
′
0). The extension to our more general case is straightforward. In particular, the optimal

choice A∗ of A is A∗ = H−1
0 (S).

Exact implementation of the LM-type IPW-II approach can be carried out using the following algorithm,

which deals with potential non-smoothness, in θ, of MN,S

(
β̂N , γ̂N , θ

)
.6

6Such situations arise in simulation-based estimation of discrete choice models because the simulated dependent variable, as
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Algorithm for implementing of IPW-II

• Step 0: Using the observed {Wi, Di}Ni=1 estimate p̂0(Wi) := p(Wi; γ̂N ) for each i = 1, . . . , N where γ̂N

is a the maximum likelihood estimator based on any given parametric specification p(W ; γ) for p0(W ),

and where γ is some dγ × 1 unknown parameter.

• Step 1: Using the observed sample {Wi, Di, DiXi}Ni=1, obtain β̂N as:

β̂N := argβ∈B

{
1
N

∑N
i=1

Di
p(Wi;γ)m(Yi, Zi, Xi, β) = 0

}
,

• Step 2a: Sort the observed sample so that the first N1 =
∑N

i=1Di units have Di = 1, i.e., have Xi

observed. For any given θ ∈ Θ, and for each i = 1, . . . , N1, generate:

ε̃is
i.i.d.∼ F 0

ε , Yis(θ) = r(Zi, Xi, θ, ε̃is) for s = 1, . . . , S

where S is the pre-specified number of simulations. Set Yis(θ) = 0 for s = 1, . . . , S and i = N1 +

1, . . . , N . (This is inconsequential because we will not use these remaining i’s.)

• Step 2b: For any given positive definite matrix AN , obtain the II estimator θ̂LMN (A) as:

∥∥∥MN,S

(
β̂N , γ̂N , θ̂

LM
N (A)

)∥∥∥
AN

≤ oP

(
N−1/2

)
+ inf
θ∈Θ

∥∥∥MN,S

(
β̂N , γ̂N , θ

)∥∥∥
AN

. (23)

We call θ̂LMN (A) a LM-type IPW-II estimator of θ0.

Remarks:

(1) The IPW-II procedure models p0(W ) parametrically and is susceptible to misspecification. Adverse

consequences of parametric misspecification of p0(W ) in Step 0, and remedy thereof by using doubly robust

estimating functions for β or by nonparametric estimation of p0(W ) have been studied for general direct

IPW estimators [e.g., Scharfstein et al. (1999), Hirano et al. (2003), Chen et al. (2008)]. Extensions of these

results to indirect estimators is considered in Chaudhuri et al. (2016).

(2) The optimal choice of A = plimAN follows from Gourieroux et al. (1993) with an additional mod-

ification due to the fact that the nuisance parameter p0(W ) is estimated. Even with the optimal A, the

relative efficiency of the II estimator of θ with respect to the full information maximum likelihood estimator

ultimately depends on the “richness” of the auxiliary model. Bruins et al. (2015) provide an illuminating

demonstration with simulations.

a function of θ, i.e., Y (θ), can change discretely (e.g. from 0 to 1) with an infinitesimal change in θ.
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3.4 Asymptotic Distribution of the IPW-II Estimator

In this subsection, we provide precise results for consistency and asymptotic normality of the IPW-II esti-

mator θ̂LMN (A) in (23).7 We deviate from the standard II treatment and present results that accommodate

non-smoothness with respect to θ in the moment vector m(Y (θ), Z,X, β), as in, e.g., discrete choice models.

The required technical assumptions A1-A7, along with the proofs of the stated results, which are similar in

spirit to and based on Pakes and Pollard (1989), are collected in the Appendix.

Proposition 3.1 Let A1-A6(1) in the Appendix hold. Let S be fixed and AN
P−→ A as N →∞ where A is

positive definite. Then the IPW-II estimator in (23) satisfies: θ̂LMN (A)
P−→ θ0.

Proposition 3.2 Let Assumptions A1-A7 in the Appendix hold. Let S be fixed and AN
P−→ A as N →∞

where A is symmetric and positive definite. Let ∂
∂θ′β

0(θ0) be full column rank. Then the IPW-II estimator

in (23) satisfies:
√
N(θ̂LMN (A)− θ0)

d−→ N (0,Σ(A)) where:

Σ(A) :=

[
∂β0(θ0)′

∂θ
G′0AG0

∂β0(θ0)

∂θ′

]−1
∂β0(θ0)′

∂θ
G′0AH0(S)AG0

∂β0(θ0)

∂θ′

[
∂β0(θ0)′

∂θ
G′0AG0

∂β0(θ0)

∂θ′

]−1

,

H0 := W0(S)− C0Ω−1
22 C

′
0 ≡

(
1 +

1

S

)
[I0 −K0]− C0Ω−1

22 C
′
0

Remarks: (1) The optimal A is A∗ = H−1
0 (S). Hence, the optimal asymptotic variance given the

auxiliary model is: Σ(A∗) =
[
∂β0(θ0)′

∂θ G′0H
−1
0 (S)G0

∂β0(θ0)
∂θ′

]−1
. The missing X and the estimation of the

nuisance parameters γ to model this missingness make this optimal asymptotic variance different from

that given in Proposition 4 of Gourieroux et al. (1993). Without the former, the term W0(S) in H0(S)

would reduce to the standard definitions given in Gourieroux et al. (1993); i.e., ξi,S , defining the asymp-

totic expansion of
√
N(β̂N − β̂N,S(θ0)), and hence,

√
N(θ̂LMN (A) − θ0), would reduce to m(Yi, Zi, Xi, β

0) −
1
S

∑S
s=1m(Yis(θ

0), Zi, Xi, β
0). Without the latter, C0Ω−1

22 C
′
0 would not appear.

(2) The matrix H0(S) can be written in the equivalent form

H0(S) := E
[(
ξi,S −Π[ξi,S |li,γ(γ0)]

) (
ξi,S −Π[ξi,S |li,γ(γ0)]

)′]
,

ξi,S :=
Di

p0(Wi)

[
m(Yi, Zi, Xi, β

0)− 1

S

S∑
s=1

m(Yis(θ
0), Zi, Xi, β

0)

]
,

where li,γ(γ) is the score of the missingness likelihood, and Π[ξi,S |li,γ(γ0)], stands for the affine regression of

ξi,S on li,γ(γ0). Using this formula the optimal asymptotic variance of the IPW-II estimator can be stated

7Equivalent results can be obtained for the Wald-type IPW-II estimator. However, the arguments mirror those in Gourieroux
et al. (1993) and so are not presented for brevity.
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as [
∂β0(θ0)′

∂θ
G′0

{
E
[(
ξi,S −Π[ξi,S |li,γ(γ0)]

) (
ξi,S −Π[ξi,S |li,γ(γ0)]

)′]}−1
G0

∂β0(θ0)

∂θ′

]−1

.

The above formula is similar to existing formulas describing the asymptotic variance of estimators in the

presence of missing data, see, e.g., Wooldridge (2007).

(3) The IPW-II estimator is based on inverse probability weighting the so called “complete cases”, i.e.,

sample units with no missing variables, to correct for the endogenous missingness/selection. This makes

it widely applicable to scenarios where the pattern of missingness is more complex [see Little and Rubin

(2002)]. For example, let X = (X ′1, X
′
2)′ and suppose we observe (Y ′, Z ′)′ for some sample units, (Y ′, Z ′, X ′1)′

for some and (Y ′, Z ′, X ′)′ for the rest. This is a scenario of monotonic pattern in missingness. If there is

another subset of the sample units where we observe (Y ′, Z ′, X ′2)′, then this is a scenario of non-monotonic

pattern in missingness. The above algorithm can be directly applied under both scenarios since it works with

the “complete cases” only, i.e, sample units for which we observe (Y ′, Z ′, X ′)′. However, the estimator will

not be semiparameterically efficient in the sense of Robins et al. (1994) and Robins and Rotnitzky (1995).

Since the driving force behind the potential loss in efficiency related to Remarks (2) and (3) above are

well understood now, we abstract from such efficiency considerations to keep this paper short.

3.5 Smoothed Implementation: IPW-GII Estimator

Implementation of the IPW-II estimator when MN,S (β, γ, θ) is non-smooth in θ can be computationally

burdensome. Following Keane and Smith (2005) and Bruins et al. (2015), we consider an alternative esti-

mator that simplifies estimation via smoothing. The smoothed estimator is obtained in the same manner

as θ̂LMN (A), except that Yis(θ) in the original algorithm is replaced by a transformation Yis(θ, hN ) that is

smooth (continuously differentiable) in θ for hN > 0, where

lim
hN→0

Yis(θ, hN ) = Yis(θ) for all s = 1, . . . , S and i = 1, . . . , N. (24)

The term hN controls the smoothness of the transformation – larger (smaller) hN leads to a more (less)

smooth transformation but increases (decreases) estimation bias – and needs to be specified by the user

taking into consideration the sample size N and the simulation size S.

Such transformations are widely used in simulation-based estimation of discrete choice models to avoid

computational difficulties arising from the non-differentiability of the concerned estimating equations with

respect to θ (see Train, 2009). To our knowledge, Keane and Smith (2005) were first to propose its use in
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the context of II. They named the ensuing II procedure Generalized Indirect Inference (GII). Bruins et al.

(2015) present a thorough theoretical exposition of GII.

We formally define the GII (smoothed) estimator θ̃hN (A) as a solution of:

∥∥∥Mh
N,S

(
β̂N , γ̂N , θ̃

h
N (AN )

)∥∥∥
AN

≤ oP

(
N−1/2

)
+ inf
θ∈Θ

∥∥∥Mh
N,S

(
β̂N , γ̂N , θ

)∥∥∥
AN

, (25)

where Mh
N,S(β, γ, θ) := 1

NS

∑N
i=1

Di
p(Wi;γ)

∑S
s=1m(Yis(θ, hN ), Zi, X

obs
i , β, ) and refer to θ̃hN (A) as the IPW-GII

estimator of θ0.

The proposed smoothing approach in Keane and Smith (2005) and Bruins et al. (2015) is more sophis-

ticated than (25) and involves choosing the appropriate smoothing parameter hN in two steps, which is

not fully reflected in the definition (25). In our Monte Carlo experiment involving estimation of structural

parameters in a multinomial probit model, however, a naive one-step choice of hN for the IPW-GII esti-

mator provides significant improvements over the IPW-II estimator. In particular, not only does it reduce

the computational cost substantially but it also improves the asymptotic normality approximation for the

distribution of the II estimator.8

Asymptotic equivalence between θ̃hN (A) and θ̂LMN (A) is ensured by letting hN → 0 at a controlled rate

(
√
NhN = o(1)) and under additional, but standard, technical conditions on the quantities depending on

hN . We collect these conditions as Assumption A8 in the Appendix.

Proposition 3.3 Under Assumptions A1-A8 in the Appendix, for some sequence of non-negative real

numbers hN satisfying
√
NhN = o(1),

√
N
(
θ̂LMN (A)− θ̃hN (A)

)
= oP (1).

4 Illustrative Example: Multinomial Probit Model

Herein, we consider a multinomial probit model similar to Section 9 in Gourieroux et al. (1993). However, our

choice of the auxiliary model is different. It is based on moment conditions (14)-(15) and leads to ordinary

least squares computations, which has similarities with the auxiliary models in Keane and Smith (2005), Li

(2010) and Bruins et al. (2015). In particular, Keane and Smith (2005) and Bruins et al. (2015) use this

auxiliary model to estimate the parameters of a multinomial probit model. Section 4.1 specifies the auxiliary

8With minor modifications to the assumptions and the theoretical results presented in this paper one can also accommodate
the two-step procedure for the choice of hN , if needed, following the results in Bruins et al (2015).
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model for II and establishes the identification conditions A2 and A3 (in the appendix) without explicit

consideration of the missing variables. However, missing variables under MAR-X can be accommodated

by simply replacing the moment vector for the auxiliary model by its inverse probability weighted version.

The satisfaction of A2 and A3 ensure the adequacy of the auxiliary model for use in II. Section 4.2 presents

a simulation study demonstrating the effectiveness in finite samples of the IPW-II and IPW-GII estimators

in this model when the exogenous variable X is missing endogenously following MAR-X in (2).

4.1 Indirect Inference: Multinomial Probit Model

Consider a (J + 1)-alternative multinomial probit model with the alternative 0 as the baseline:

Yj = 1 (Uj > max(0, Uk : k = 1, . . . , J and k 6= j)), for j = 1, ..., J

Uj = Z ′jα+X ′λj + ej ,

and (e1, . . . , ek)
′ = Ω1/2(ε1, . . . , εk)

′ with Ω1/2 lower triangular such that Ω1/2Ω1/2′ = Ω.

(26)

Let (ε1, . . . , εk)
′ ∼ N(0, Ik) be independent of Z = (Z ′1, . . . , Z

′
J)′, i.e., say the alternative dependent variables,

and X, i.e., say the purely individual specific variables.9 This corresponds to the structural model (8). Let

the structural parameters be θ = (α′, h′1, . . . , h
′
J , ω

′)′ where ω are the unique unrestricted elements of Ω.

θ = θ0 in our population of interest.

Our implementation of II in this multinomial probit model follows the same steps described in Section

3.1-3.3. One possible choice for m(.), which we follow in the Monte-Carlo experiment in Section 4.2, is to

take:

m(R,Z,X, β) =




ζ(R1 − ζ ′β1)

...

ζ(RJ − ζ ′βJ)



vech




R1 − ζ ′β1

...

RJ − ζ ′βJ




R1 − ζ ′β1

...

RJ − ζ ′βJ


′

−


β11 . . . β1J

...
...

...

β1J . . . βJJ





(27)

where R (stands for response) is either Y or Y (θ), as appropriate. Rj = 1(R = j) for j = 1, . . . , J and

β = (β′1, . . . , β
′
J , β11, . . . , β1J , β22, . . . , β2J , . . . , βJJ)′. ζ is some vector valued function of Z and X; for

9Normality of ε rules out ties in Uj ’s almost surely in Z and X. Also assume that the usual restrictions for identification,
such as standardizing α, λj ’s and Ω with respect to the (1, 1)-th element of Ω, and/or any other context specific restrictions are
imposed. We abstract from all such issues that are peripheral to the message of our paper.
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example, ζ = (1, Z ′, X ′)′. A “richer” function ζ, for example, that also includes quadratic terms in Z and

X, increases the “richness” of the auxiliary model and generally leads to higher efficiency of II; see Bruins

et al. (2015) for a careful demonstration.

This choice ofm(.) has the benefit of only requiring simple computations of equation-by-equation ordinary

least squares in a seemingly unrelated regression (SUR) model with J response variables 1(Y = j) or

1(Y (θ) = j) for j = 1, . . . , J ; same set of regressors ζ for all regressions; and regression errors with unknown

variance-covariance matrix. In particular, this choice of m(.) leads to the first order conditions (that are

efficient given ζ) for the SUR model regression coefficients, augmented by the estimating equations for the

unique elements in the variance-covariance matrix of the SUR regression errors. Hence, for a given ζ, the

computation and efficiency consideration involved with this choice of m(.) are the same as that due to the

quasi maximum likelihood estimation of the parameters of the auxiliary model in Bruins et al. (2015).

Lemma 4.1 below shows that when no variables are missing, standard least squares identification con-

ditions are sufficient for the key identification conditions A2 and A3 to hold in II based on the auxiliary

model induced by the choice of m(.) in (27). The proof is trivial and hence omitted.

Lemma 4.1 Define Yj := 1(Y = j) and Yj(θ) := 1(Y (θ) = j). Then Assumption A2 in the Appendix holds

if E [ζζ ′] is non-singular, while Assumption A3 in the Appendix holds under the additional orthogonality

restriction E[ζ(Yj(θ) − Yj(θ0)] = 0 or, equivalently, E[ζ(Yj(θ) − Yj)] = 0 for j = 1, . . . , J if and only if

θ = θ0.

Remarks:

(1) The lemma also applies to other discrete response models as long as the non-singularity and orthog-

onality conditions hold. This does not contradict the well known results that, typically such orthogonality

(or even mean independence) conditions are not sufficient for non-parametric identification of the structural

parameters in discrete response models. While apparently no other distributional assumption has been

made in its statement, the lemma is highly parametric and could not possibly be used without knowing the

distribution of Yj(θ) conditional on Z,X.

(2) Section 4.2 takes ζ = (1, Z ′, X ′)′ and, therefore, according to Lemma 4.1 it implicitly requires for

identification of θ0 the following high level orthogonality conditions:

(a) P (Yj(θ) = 1) = P (Yj(θ
0) = 1) for all j = 1, . . . , J if and only if θ = θ0.

(b) E[Z(P (Yj(θ) = 1|Z,X)− P (Yj(θ
0) = 1|Z,X))] = 0 for all j = 1, . . . , J if and only if θ = θ0.
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(c) E[X(P (Yj(θ) = 1|Z,X)− P (Yj(θ
0) = 1|Z,X))] = 0 for all j = 1, . . . , J if and only if θ = θ0.

(3) A “richer” ζ, for example, that also includes quadratic terms in Z and X, would impose additional

such orthogonality conditions and thereby would lead to higher precision of the II estimates.

(4) The result directly applies to our framework of endogenously missing exogenous variables X by

replacing m(R,Z,X, β) in (27) by D
p(W ;γ0)

m(R,Z,X, β) and appealing to MAR-X if R = Y , or by following

similar arguments to those in equation (13) if R = Y (θ).

Finally, Lemma 4.1 can also be used to identify the pseudo-true θ (call it θ∗) estimated by II when the

exogenous variables X are missing endogenously following MAR-X in (2) and the missingness is simply

ignored. Hereafter, we will refer to an II procedure that simply ignores the missingness as standard II.

Consider the following toy example where, for simplicity of demonstration, we take J = 1, ignore Z, and

make specific and convenient distributional assumptions that are covered by our maintained assumptions.

Toy Example: Let the structural model and the missingness mechanism be characterized by:

Y = 1(Xλ0 + ε ≥ 0) and D = 1(Y γ0 + v ≥ 0)

where the scalar random variable X, the structural error ε and the missingness error v are assumed to be

independent. Let θ0 = λ0. Following (27), define m(R,X, β) = X(R − Xβ) for R = Y or R = Y (θ). We

ignore the overidentifying (second moment) restrictions from (27) for simplicity.

Therefore, standard II defines β̃0 and β̃0(θ) as follows:

β̃0 solves E[DX(Y −Xβ)] = 0, and β̃0(θ) solves E[DX(Y (θ)−Xβ)] = 0.

These are essentially the population version of the first two steps of standard II. The final step obtains θ∗

by the matching exercise β̃0 = β̃0(θ∗), which by Lemma 4.1 holds if and only if E[DXY (θ∗)] = E[DXY ].

Letting FT denote the distribution function of any variable T , we know:

E[DXY (θ∗)] = E
[
((1− Fv(−γ0))(1− Fε(−Xθ0)) + (1− Fv(0))Fε(−Xθ0))(1− Fε(−Xθ∗))X

]
,

E[DXY ] = E
[
(1− Fv(−γ0))(1− Fε(−Xθ0))X

]
.

The above equalities follow from using MAR-X in (2), the conditional (on X) independence between Y

and Y (θ), and the fact that Fε = Fε̃. For simplicity, assume the specific and convenient distributions:

ε ∼ N(0, 1), v ∼ N(0, 1) and X ∼ Bernoulli(q). Denote the distribution function of N(0, 1) by Φ(.) and its
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inverse by Φ−1(.). Equating E[DXY (θ∗)] = E[DXY ], standard II yields

(pseudo-true value) θ∗ = Φ−1

(
Φ(γ0)Φ(θ0)

Φ(γ0)Φ(θ0) + Φ(0)(1− Φ(θ0))

)
6= θ0 (true value),

unless γ0 = 0, i.e., unless the missingness is exogenous. Hence, it is the endogeneity of the missingness that

causes the problem of identification with standard II. Our proposed IPW-II estimator solves this problem.

4.2 Simulation Study: Three Alternative (J = 2) Probit Model

The simulation design considered here is similar to Model 4 in Keane and Smith (2005) and Bruins et al.

(2015). In particular, we consider the multinomial probit model in (26) with J = 2 for simplicity. For

each i = 1, . . . , N , we generate the exogenous regressors as: Zji
i.i.d.∼ χ2

1 − 1 for j = 1, 2 and Xi
i.i.d.∼ N(1, 2)

independent of each other. Normalizing all the parameters in the model by the (1,1)-th element of Ω, i.e.,

equivalently, by fixing ω11 = 1 (not to be estimated), we take θ0 = (α0 = 1, λ0
1 = 1, λ0

2 = 2, ω0
12 = .5, ω0

22 = 1)′.

We generate the structural errors εi
i.i.d.∼ N(0, I2) and ei = Ω01/2εi independent of the regressors Z1i, Z2i, Xi

and, finally, we generate the outcome Yi following (26) for each i = 1, . . . , N .

We consider the following missingness mechanism that determines the observability of X. Generate

Di = 1(γ0
1 × 1(Yi = 1) + γ0

2 × 1(Yi = 2) + γ0
3 × Z2i ≥ vi)

for each i = 1, . . . , N with vi
i.i.d.∼ N(0, 1) independent of the structural errors ei and the exogenous variables

Zi = (Z1i, Z2i)
′ and Xi. Hence, MAR-X in (2) holds. Take γ0

1 = −.5, γ0
2 = .5 and γ0

3 = 1. This leads to

roughly 50% of sample units with missing X.

We consider the auxiliary model and parameters as defined by the moments m(.) in (27) with ζ =

(1, Z1, Z2, X)′. Four different LM-type II estimators are considered: the standard II estimator, an infeasible

II estimator, the IPW-II and IPW-GII estimators introduced in Section 3. The standard II estimator

works with the complete case data {DiYi, DiZi, DiXi}Ni=1, i.e., sample units without any missing variables.

Standard II ignores the endogenous missingness of X and thus can be biased, gauging the magnitude and

consequences of this bias is the first purpose of the simulation study. The infeasible II estimator works

with the infeasible full data set {Yi, Zi, Xi}Ni=1, which is only available because we have generated the data,

and is not available in practice. The infeasible II is the II estimator that one would use if there were no

missingness in the data. Its finite-sample behavior provides an infeasible benchmark for the performance of

II in this context. The IPW-II and IPW-GII estimators work with the observed data {Di, Yi, Zi, DiXi}Ni=1
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but account for the endogeneity in the missingness of X. These estimators are designed to correct the

bias of the standard II estimator, and demonstrating this is the second purpose of the simulation study.

The third purpose of the study is to add a word of caution by demonstrating that the asymptotic normal

approximation for the IPW-II estimator in Proposition 3.2 may be inadequate even in reasonably large

samples. Lastly, the simulation study demonstrates that the IPW-GII estimator, thanks to the smoothing

proposed by Keane and Smith (2005) and Bruins et al. (2015), does not suffer from this issue and is much

faster to implement than the other IPW-II estimator.

We compute the mean bias (MBIAS), mean absolute bias (ABIAS), standard deviation (STD), in-

terquartile range (IQR) and the coverage of a 95% Wald-confidence interval (COV95) for all the estimators

of (α0, λ0
1, λ

0
2, ω

0
12, ω

0
22) for sample sizes N = 200, 500, 1000 and 5000. We take S = 10 for all estimators.

The standard II, infeasible II and IPW-II estimators are computed by the patternsearch routine in Matlab.

On the other hand, the smoothness of the optimization problem for the IPW-GII estimator allows the use

of the gradient-based Matlab routine fminunc. Following Bruins et al. (2015), the initial value is set at

the true parameter value for all four estimation procedures. All four estimators use the (estimator specific)

optimal weighting matrix (see Proposition 3.2), and in effect are continuously updated GMM estimators.

All results are based on 10, 000 Monte-Carlo trials.

To abstract from biases due to small sample sizes and instead focus on the bias that arises because the

standard II estimator deliberately ignores the endogenous missingness, we only report the results for the

standard II estimator based on N = 5000 in Table 1.10

θ MBIAS ABIAS STD IQR COV95

α 0.0331 0.0472 0.0647 0.0727 94.05
λ1 0.0259 0.0487 0.0648 0.0698 91.73
λ2 0.4905 0.4905 0.1013 0.5008 1.03
ω12 -0.1297 0.2053 0.2216 0.2568 91.82
ω22 1.2701 1.2707 0.4538 1.3488 17.54

Table 1: Monte-Carlo results for the Multinomial probit (J = 2) model. MBIAS, ABIAS, STD, IQR and
COV95 are the mean bias, absolute bias, (Monte-Carlo) standard deviation, interquartile range and coverage
of a 95% Wald-type confidence interval for the standard II estimator for the different elements of θ when
N = 5000.

This estimator is badly biased (see MBIAS) and as a consequence, the coverage of the 95% confidence

intervals for the unknown parameters can be extremely low: indeed as low as 1%.

Table 2 reports the results for the other three estimators. As expected from the results in Section 3, the

IPW-II corrects the bias of the standard II estimator. Its bias (MBIAS) decreases considerably as the sample

10Results for other sample sizes are available from the authors.
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size increases. ABIAS, STD and IQR also display similar pattern with the increase in sample size. The

coverage (COV95) is good. Overall, keeping in mind that X is missing for roughly 50% sample units, the

finite-sample behavior of the IPW-II estimator does not deviate much from that of the infeasible benchmark

provided by the infeasible II estimator, especially when the sample size is not too low.

Similar phenomenon of bias correction is observed for the IPW-GII estimator. However, its bias (MBIAS)

is larger than that of the IPW-II estimator. Its ABIAS, STD and IQR are also generally larger than that

of the IPW-II estimator. These features are possibly due to the naive one-step choice for the smoothing

parameter hN in the implementation of the IPW-GII estimator.11

Nevertheless, the IPW-GII estimator indeed serves the dual purpose stated in Section 3. The IPW-GII

estimator is much faster than the IPW-II estimator, and more importantly, while the studentized IPW-II

estimator is far from from being normally distributed, even for sample size N = 5000, no such problem

arises for the IPW-GII estimator;12 Figure 1 gives precise details.

5 Conclusion

In this paper we have demonstrated the problems with identification and consistent estimation of the struc-

tural parameters by II when the exogenous variables can be endogenously missing following the MAR-X

assumption, which can arise in empirical work for reasons such as survey non-response, survey revisions,

cost-effective survey design, etc. Our proposed solution can be implemented as either the IPW-II or the

IPW-GII estimator, with the smoothed IPW-GII approach being particularly useful in non-smooth prob-

lems. This novel estimation method corrects for the sample selection bias in the estimation of the auxiliary

parameters with the observed data and the simulated data using the method of inverse probability weighting.

The desirable performance of the proposed II approach was demonstrated theoretically and via simulations.

The extremely poor performance of standard II estimators that simply discard sample units with missing-

ness was also demonstrated via simulations. We conclude by noting that the selection due to the missing

data is handled by our proposed method in one step that only involves the estimation of the missingness

(conditional) probabilities using a binary choice model, such as logit or probit, and hence the proposed

method retains the computational attractiveness of II procedures.

11The smoothing parameter hN is .078, .0571, .0458, .0284 respectively for N = 200, 500, 1000, 5000. This is in rough
accordance to the requirements of Proposition 3.3 but with a slight tilt toward zero for the smaller sample sizes N = 200, 500
to reduce the bias due to smoothing.

12The same issue is also present in the infeasible II estimator. However, for both the infeasible II and IPW-II, the quality of
the normal approximation is better if we use a richer auxiliary model by augmenting ζ = (1, Z′, X ′)′ with quadratic terms in Z
and X. This removes some wiggliness in the corresponding kernel density plots. These figures are not included for brevity but
can be found in the previous version of the paper and are available from the authors.
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A Appendix: Technical assumptions and proofs

A.1 Technical Assumptions

The following notations are used. For a d×d matrix A and a c×d matrix B, define ‖B‖A :=
√

Trace(BAB′)
and ‖B‖ := ‖B‖A=Id . Define Nδ(θ0) ⊂ Θ, Nδ(β0) ⊂ B and Nδ(γ0) ⊂ Γ as some generic open neighborhoods
of radius δ for θ0, β0 and γ0 respectively. Finally, define

M(β, γ) := E

[
D

p(W ; γ)
m(Y,Z,X, β)

]
and M(β, γ, θ) := E

[
D

p(W ; γ)
m(Y (θ), Z,X, β)

]
.

By the definition of β0 in (1), the definition of the binding function in (15), and the above Lemmas,

M(β0, γ0) = M(β0, γ0, θ0) = 0. (28)

Assumption A1:

(a) Structural Model in (8): ε has a known distribution Fε = F 0
ε and is independent of Z and X whose

unknown distribution is F(Z,X) = F 0
(Z,X).

(b) Strict overlap: For MAR in (2), p0(W ) := P (D = 1|W ) ∈ [p, 1) for a constant p > 0.

(c) Observed sample: {Wi, Di, DiXi}Ni=1 are i.i.d. copies of W,D, and DX.
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Assumption A2: β0 is the unique solution to equation (1).
Assumption A3: For all θ ∈ Θ, the binding function β(θ) defined in equation (15) satisfies β0 = β(θ) if
and only if θ = θ0.
Assumption A4 : There exists a unique γ0 ∈ Γ and a function p(w, γ) : Support(W ) × Γ 7→ (0, 1) such
that p0(w) = p(w; γ0) for all w ∈ Support(W ). Γ ⊂ Rdγ is compact and dγ is finite.
Assumption A5:

(a) Θ ⊂ Rdθ and B ⊂ Rdβ are compact with θ0 ∈ interior(Θ) and β0 ∈ interior(B).

(b) For l = (l1, l2, l3) where l1 ∈ Support(Y or Y (θ)) (as appropriate) and (l2, l3) ∈ Support(Z,X): m(l, β)
is continuous in β for all l, and ‖m(l, β)‖2 ≤ g(l) for all l and E[g(l)] <∞.

(c) For δ > 0: sup
θ∈Θ,β∈Nδ(β0),γ∈Nδ(γ0)

‖MN,S(β, γ, θ)−M(β, γ, θ)‖
1 + ‖MN,S(β, γ, θ)‖+ ‖M(β, γ, θ)‖

= oP (1).

Assumption A6:

(a) p(w; γ) is continuous in γ ∈ Γ for all w ∈ Support(W ).

(b) For some δ > 0: p(w; γ) is twice continuously differentiable in γ ∈ Nδ(γ0) for all w ∈ Support(W ), and
the derivatives pγ(w; γ) := ∂

∂γ′ p(w; γ) and pγγ(w; γ) := ∂
∂γ′ p

′
γ(w; γ) satisfy: supγ∈Nδ(γ0) ‖pγ(w; γ)‖2 +

supγ∈N (γ0) ‖pγγ(w; γ)‖ < b(w) for all w ∈ Support(W ) where b(w) ≥ 0 and E[b(w)] <∞.

(c) The score lγ(D,W ; γ) := (D − p(W ; γ))p′γ(W ; γ)/[p(W ; γ)(1− p(W ; γ))] is such that
B0 := E

[
lγ(D,W ; γ0)l′γ(D,W ; γ0)

]
is nonsingular.

Assumption A7:

(a) For each l = (l1, l2, l3) where l1 ∈ Support(Y or Y (θ)) (as appropriate) and (l2, l3) ∈ Support(Z,X),
m(l, β) is continuously differentiable in β ∈ Nδ(β0) for some δ > 0. Allow for changing the order of

differentiation and integration, i.e., let E
[
supβ∈Nδ(β0) ‖∂m(l, β)/∂β′‖

]
<∞.

(b) G0 := E
[
∂
∂β′m(Y, Z,X, β0)

]
≡ E

[
∂
∂β′m(Y (θ0), Z,X, β0)

]
is nonsingular.

(c)
√
Nξ̄N,S

d−→ N (0,W0(S)) where W0(S) =
(
1 + 1

S

)
(I0 −K0), ξ̄N,S :=

∑N
i=1 ξi,S/N ,

ξi,S :=
D

p(W ; γ0)
m(Y, Z,X, β0)− 1

S

S∑
s=1

D

p(W ; γ0)
m(Y (θ0), Z,X, β0).

(d) For θ = θ0: (∂/∂θ′)M(β0, γ0, θ) has rank dθ and is continuously differentiable in θ.

(e) For every positive sequences {δN} and δN = o(1)

sup
θ∈NδN (θ0),β∈NδN (β0),γ∈NδN (γ0)

√
N‖MN,S(β, γ, θ)−M(β, γ, θ)−MN,S(β0, γ0, θ0)‖

1 +
√
N‖MN,S(β, γ, θ)‖+

√
N‖M(β, γ, θ)‖

= oP (1).

To establish the asymptotic properties of the GII estimator, additionally define for each h:

Mh(β, γ, θ) := E

[
D

p(W ; γ)
m(Y (θ, h), Z,X, β)

]
.

As before like (28) and further using (24),

M(β0, γ0) = M(β0, γ0, θ0) = Mh=0(β0, γ0, θ0) = 0. (29)
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The following assumptions on Mh
N (β, γ, θ) Mh(β, γ, θ) and M(β, γ, θ) are additionally maintained for the

asymptotic equivalence of the GII and II estimators.
Assumption A8: For some δ > 0 and a finite b > 0, let the following hold for Mh

N,S(.) and its limit

counterpart Mh(.):13

(a) sup
θ∈Θ,β∈Nδ(β0),γ∈Nδ(γ0)

‖Mh(β, γ, θ)−M(β, γ, θ)‖ ≤ b× h for h ∈ [0, δ).

(b) sup
h∈[0,δ)

sup
θ∈Θ,β∈Nδ(β0),γ∈Nδ(γ0)

‖Mh
N (β, γ, θ)−Mh(β, γ, θ)‖

1 + ‖Mh
N (β, γ, θ)‖+ ‖Mh(β, γ, θ)‖

= oP (1).

(c) (i) sup
h∈(0,δ)

sup
θ∈Nδ(θ0),β∈Nδ(β0),γ∈Nδ(γ0)

∥∥∥∥ ∂

∂(β′, γ′)

(
Mh
N (β, γ, θ)−Mh(β, γ, θ)

)∥∥∥∥ = oP (1).

(c) (ii) sup
h∈(0,δ)

sup
θ∈Nδ(θ0),β∈Nδ(β0),γ∈Nδ(γ0)

∥∥∥∥ ∂

∂θ′

(
Mh
N (β, γ, θ)−Mh(β, γ, θ)

)∥∥∥∥ = OP (N−1/2).

(d) ∂
∂(β′,γ′,θ′)M

h(β, γ, θ) is continuous in β, γ, θ, h for (β, γ, θ) ∈ Nδ(β0, γ0, θ0) and h ∈ [0, δ).

(e) sup
h∈(0,δ)

√
N‖Mh

N (β0, γ0, θ0)−Mh(β0, γ0, θ0)−MN (β0, γ0, θ0)‖
1 +
√
N‖Mh

N (β0, γ0, θ0)‖+
√
N‖Mh(β0, γ0, θ0)‖

= oP (1).

Remark 1: It is well known that by Assumptions A4 and A6, the maximum likelihood estimator γ̂N that
gives p̂0(w) = p(w, γ̂N ) for Step 0 of modified II satisfies:

√
N(γ̂N − γ0) = B−1

0

1√
N

N∑
i=1

lγ(Di,Wi; γ
0) + oP (1). (30)

Also, (2), Assumptions A1(b)-(c), A5(a)-(b) and A7(a)-(b) and (30) give for β̂N from Step 1:

√
N(β̂N − β0) = −G−1

0

1√
N

N∑
i=1

{
m∗i (γ

0, β0)− Ω12Ω−1
22 li,γ(Di,Wi; γ

0)
}

+ oP (1), (31)

m∗i (γ
0, β0) =

Di

p0(Wi; γ0)
m(Yi, Zi, Xi, β

0), Ω12 = E
[
m∗i (γ

0, β0)li,γ(Di,Wi; γ
0)′
]

See. e.g., Chaudhuri and Min (2012) for (30) and (31). Similar steps and (13) give for β̂N (θ0), defined as

β̂N (θ0) := argβ∈B
{
MN,S

(
β, γ̂N , θ

0
)

= 0
}
, (32)

the asymptotically linear representation

√
N(β̂N (θ0)− β0) = −G−1

0

1√
N

N∑
i=1

1

S

S∑
s=1

{
m∗is(γ

0, β0; θ0)− Ω12(θ0)Ω−1
22 li,γ(Di,Wi; γ

0)
}

+ oP (1), (33)

m∗is(γ
0, β0; θ0) =

Di

p0(Wi; γ0)
m(Yis(θ

0), Zi, Xi, β
0), Ω12(θ0) = E

[
m∗is(γ

0, β0; θ0))li,γ(Di,Wi; γ
0)′
]

Therefore, under Assumption A7(c) and for a fixed S, using (30), (31) and (33) jointly give:

√
N(β̂N − β̂N (θ0)) = −G−1

0

√
N
[
ξ̄N,S − C0(γ̂N − γ0)

] d−→ N
(

0, G−1
0 H0(S)G−1′

0

)
(34)

H0(S) = (1 +
1

S
)(I0 −K0)− C0B

−1
0 C ′0, C0 = Ω12 − Ω12(θ0)

13See Remark 5 for an explanation of these assumptions.
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Remark 2: It is important to point out that the equivalence of the G0 terms in the expansions (31) and
(33), follows since, under the maintained assumptions, for α being any one of β, γ, θ,

∂M(γ0, β0, θ0)

∂α′
=

{
∂

∂α′
1

S

S∑
s=1

E

[
D

p(W ; γ)
m(Ys(θ), Z,X, β)

]} ∣∣∣∣
β0,θ0,γ0

=

{
∂

∂α′
E [m(Ys(θ), Z,X, β)]

} ∣∣∣∣
β0,θ0,γ0

,

which follows by MAR-x and the knowledge that the S simulated samples are iid copies. More generally
then, the partial derivatives ∂M/∂θ′, ∂M/∂β′, ∂M/∂γ′ (evaluated at the truth) do not depend on S.
Likewise, it is important to note the role that S does play in the asymptotic variance of ξ̄N,S .
Remark 3: Assumption A5(c) is an uniform convergence condition for which the strict overlap assumption
in A1(b) plays a crucial role. The same holds for the stochastic equicontinuity condition Assumption A7(e)
that is similar to condition (iii) in Theorem 3.3 of Pakes and Pollard (1989), but additionally it allows
for nuisance parameters close to their true values. Such high-level assumptions need to be verified on a
case-by-case basis [see, e.g., Cattaneo (2010) or Chaudhuri and Guilkey (2014)].
Remark 4: Since it is also well known how to account for random weighting matrix [see Lemmas 3.4 and
3.5 of Pakes and Pollard (1989)], we abstract from it in all the proofs below and instead directly assume in
the concerned propositions that the weighting matrix AN is possibly based on some preliminary consistent

estimators of the concerned parameters such that AN
P−→ A where A is a positive definite matrix. Hence in

what follows let θ̂N := θ̂LMN (A).
Remark 5: Assumption A8 is a high-level condition restricting the choice of kernels (e.g. logistic or normal)
used within the smoothing step of the generalized II procedure. Essentially it imposes sufficient smoothness
condition on Mh

N (.) and Mh(.) to facilitate simple proofs of the desired asymptotic properties of the GII
estimator. The denominators in A8(b) and (d) add slightly more generality (similar to those in A5(d) and
A7(e)). The asymmetric treatment with respect to (β, γ) and θ in A8(c) (i) and (ii) respectively is due
to the fact that we do not formally establish

√
N -consistency of θ̃hN prior to demonstrating its asymptotic

normality. The stronger condition in (ii) bears resemblance with the assumptions on suitable central limit
theorem for Jacobians in the weak identification literature (see Kleibergen (2005)).

A.2 Proofs

Proof of Proposition 3.1: For notational simplicity, in what follows we drop the S subscript from the
definition of MN,S(·) since S is assumed fixed.

The proof proceeds by showing that ‖M(β0, γ0, θ̂N )‖ = oP (1). Under Assumptions A2 and A3, this

condition is sufficient for θ̂N
P−→ θ0 by virtue of (28), (30), (31) [where the last two give: γ̂N ∈ Nδ(γ0)

and β̂N ∈ Nδ(β0) respectively with probability approaching 1], and the continuity implied by Assumptions
A1(b), A6(a) and A5(b). Note that by the triangle inequality:

‖M(β0, γ0, θ̂N )‖ ≤‖M(β0, γ0, θ̂N )−M(β̂N , γ̂N , θ̂N )‖+ ‖M(β̂N , γ̂N , θ̂N )−MN (β̂N , γ̂N , θ̂N )‖

+ ‖MN (β̂N , γ̂N , θ̂N )‖.

By (30), (31), and the continuity implied by Assumptions A1(b), A6(a) and A5(b), the first term on the
right hand side, i.e., ‖M(β0, γ0, θ̂N )−M(β̂N , γ̂N , θ̂N )‖ is oP (1). (30), (31) and Assumption A5(c) imply that
the second term ‖M(β̂N , γ̂N , θ̂N )−MN (β̂N , γ̂N , θ̂N )‖ is oP (1). The definition in (23) implies that the third
term ‖MN (β̂N , γ̂N , θ̂N )‖ ≤ ‖MN (β̂N , γ̂N , θ

0)‖ = ‖M(β̂N , γ̂N , θ
0)‖ + oP (1) where the equality follows from

(30), (31) and Assumption A5(c). Since (30), (31) and, as before, the continuity of M(β, γ, θ0) in β and γ
imply that ‖M(β̂N , γ̂N , θ

0)‖ = ‖M(β0, γ0, θ0)‖+oP (1), it follows by (28) that the third term is also oP (1).

Proof of Proposition 3.2: For notational simplicity, again, in what follows we drop the S subscript from
the definition of MN,S(·).

35



Since θ̂N
P−→ θ0, it follows by (28) and Assumption A7(d) that ‖θ̂N − θ0‖ = OP

(
‖M(β0, γ0, θ̂N )‖

)
.

Under our maintained assumptions and (30) and (31), it can then be shown that ‖M(β0, γ0, θ̂N )‖ and hence
‖θ̂N − θ0‖ is OP (N−1/2). Details are available from the authors. Given this, and that our assumptions are
essentially same as that in Theorem 3.5 of Pakes and Pollard (1989), the rest of the proof is also similar.
Hence we only provide a sketch of the proof below, and highlight the differences that appear only to the end
of the proof.

For now let dθ = dβ. Justifying by virtue of (30), (31) and the
√
N -consistency of θ̂N , linearize MN (ζ̂N , θ)

in a
√
N -neighborhood of θ0 by the function [see, for example, Chen et al. (2003)]:

LN (θ) := MN (β0, γ0, θ0) +
∂M(β0, γ0, θ0)

∂β′
(β̂N − β0) +

∂M(β0, γ0, θ0)

∂γ′
(γ̂N − γ0) +

∂M(β0, γ0, θ0)

∂θ′
(θ − θ0).

Define θ∗N = arg minθ ‖LN (θ)‖. For the application of Assumption A7(e) in the remainder of the proof

choose δN such that β̂N ∈ NδN (β0), γ̂N ∈ NδN (γ0), and both θ̂N , θ
∗
N ∈ NδN (θ0). It can now be shown

(details available from the authors) by (30), (31), Assumption A7(e) and the
√
N -consistency of θ̂N that

‖MN (β̂N , γ̂N , θ)−LN (θ)‖ = oP (N−1/2) for both θ = θ̂N and θ = θ∗N , and thus, subsequently, by Assumption
A7(d) that √

N(θ̂N − θ0) =
√
N(θ∗N − θ0) = op(1). (35)

Now note by (32): β̂N (θ0) satisfies 0 = MN (β̂N (θ0), γ̂N , θ
0). Expanding the right hand side gives:

0 = MN (β0, γ0, θ0) +
∂M(β0, γ0, θ0)

∂β′
(β̂N (θ0)− β0) +

∂M(β0, γ0, θ0)

∂γ′
(γ̂N − γ0) + oP (N−1/2). (36)

On the other hand, since θ∗N = arg minθ ‖LN (θ)‖, it follows that oP (N−1/2) = LN (θ∗N ). Hence by the

definition of LN (θ∗N ) and using
√
N -consistency of β̂N , γ̂N and θ∗N it follows that:

oP (N−1/2) = MN (β0, γ0, θ0) +
∂M(β0, γ0, θ0)

∂(β′, γ′, θ′)

[
(β̂N − β0)′, (γ̂N − γ0)′, (θ∗N − θ0)′

]′
. (37)

Therefore, equating (36) and (37) gives:

∂M(β0, γ0, θ0)

∂θ′

√
N(θ∗N − θ0) = −∂M(β0, γ0, θ0)

∂β′

√
N(β̂N − β̂N (θ0)) + oP (1).

Until now in this proof we have disregarded the over-identifying nature of the system with respect to θ.

However, when dθ < dβ, and AN
P−→ A (positive definite), under Assumption A7(d), standard methods

modify the above relation as, up to an oP (1) term:

∂M ′(β0, γ0, θ0)

∂θ
A
∂M(β0, γ0, θ0)

∂θ′

√
N(θ∗N − θ0) = −∂M

′(β0, γ0, θ0)

∂θ
A
∂M(β0, γ0, θ0)

∂β′

√
N(β̂N − β̂N (θ0)).

From the above expression, and Remark 3, we see that θ∗N , and hence θ̂N , depends on S only through the
dependence of ξ̄N,S on S.

Differentiating M(β0(θ), γ0, θ0) with respect to θ at θ = θ0 and using Assumption A7(d):

∂

∂θ′
M(β0(θ0), γ0, θ0) =

∂

∂β′
M(β0(θ0), γ0, θ0)

∂

∂θ′
β0(θ0) = G0

∂

∂θ′
β0(θ0)

where the last equality follows by Assumption A3, A4, A7(a), (b) and MAR-X in (2). Combining the
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above and using (34) and (35) we obtain:

√
N(θ̂N − θ0) =

[
∂β0(θ0)′

∂θ
G′0AG0

∂β0(θ0)

∂θ′

]−1
∂β0(θ0)′

∂θ
G′0A
√
N
[
ξ̄N,S − C0(γ̂N − γ0)

]
+ oP (1)

where C0 = Ω12 −Ω12(θ0) and ξ̄N,S = 1
N

∑N
i=1 ξi,S ≡

1
N

∑N
i=1

[
m∗i (γ

0, β0)− 1
S

∑S
s=1m

∗
is(γ

0, β0; θ0)
]
. Again,

by similar arguments to those in Remark 3,
√
N(θ̂N − θ0) depends on S only through the dependence of

ξ̄N,S on S, which under the maintained assumptions yields

√
N(θ̂N − θ0)→d N(0,Σ(A)).

Proof of Proposition 3.3: For notational simplicity, we will drop the N subscript from h (with the
understanding that for any given N , h > 0 but h = o(N−1/2)) and the S subscript from the definition of
Mh
N,S(·). Also, since the weighting matrix AN can be handled in the same manner as in Propositions 3.2,

we only consider the just-identified case (dθ = dβ) and take AN = A = Idβ . The proof now proceeds in two

steps, first we demonstrate consistency of θ̃hN for θ0, and we then demonstrate ‖θ̃hN − θ̂N‖ = oP (N−1/2). The
entire proof closely follows that of Propositions 3.1 and 3.2 except that having established consistency we
slightly deviate to emphasize the fact that Mh

N (β, γ, θ) is indeed differentiable with respect to θ for h > 0.

Consistency: Following Proposition 3.1, by continuity ofM(β, γ, θ) in θ, the result follows if ‖M(β0, γ0, θ̃hN )‖ =

oP (1) as h → 0. This condition will be sufficient for θ̃hN
P−−−→
h→0

θ0 by the same arguments as Proposition

3.1. By the triangle inequality:

‖M(β0, γ0, θ̃hN )‖ ≤‖M(β0, γ0, θ̃hN )−M(β̂N , γ̂N , θ̃
h
N )‖+ ‖M(β̂N , γ̂N , θ̃

h
N )−Mh(β̂N , γ̂N , θ̃

h
N )‖

+ ‖Mh(β̂N , γ̂N , θ̃
h
N )−Mh

N (β̂N , γ̂N , θ̃
h
N )‖+ ‖Mh

N (β̂N , γ̂N , θ̃
h
N )‖. (38)

As before, by Assumptions A1(b), A6(a) and A5(b), ‖M(β0, γ0, θ̃hN ) − M(β̂N , γ̂N , θ̃
h
N )‖ is oP (1). For

the second term on the RHS of (38) note that, due to (30) and (31), γ̂ and β̂ belong respectively in
Nδ(γ0) and Nδ(β0) with probability approaching one. Hence the second term is oP (1) by Assumption
A8(a) and the condition that h → 0. Similar arguments give the third term on the RHS to be oP (1)
by virtue of Assumption A8(b). Finally consider the fourth term and note that: ‖Mh

N (β̂N , γ̂N , θ̃
h
N )‖ ≤

‖Mh
N (β̂N , γ̂N , θ

0)‖+ oP (1) = ‖Mh(β̂N , γ̂N , θ
0)‖+ oP (1) where the first inequality follows from (25) and the

second by Assumption A8(b). Now, (i) the Lipschitz continuity of Mh in A8(a), (ii) continuity of M(.)
with respect to β and γ that is implied by Assumptions A1(b), A5(b) and A6(a), along with (iii) (30) and
(31) give for h → 0, ‖Mh(β̂N , γ̂N , θ

0)‖ = ‖M(β̂N , γ̂N , θ
0)‖ + oP (1) = ‖M(β0, γ0, θ0)‖ + oP (1), and this is

oP (1) by (29). Hence the fourth term is also oP (1) and thus it follows that θ̃hN
P−−−→
h→0

θ0.

Asymptotic equivalence: In a just-identified model, θ̃hN satisfies the definition in (25) if

oP (1) =
√
NMh

N (β̂, γ̂N , θ̃
h
N ).

Denoting ζ = (β′, γ′, θ′)′ for simplicity, and expanding the RHS we obtain:

oP (1) =
√
NMh

N (ζ0) +
∂

∂β′
Mh
N (ζ̄β,N )

√
N(β̂N − β0) +

∂

∂γ′
Mh
N (ζ̄γ,N )

√
N(γ̂N − γ0)

+
∂

∂θ′
Mh
N (ζ̄θ,N )

√
N(θ̃hN − θ0)

for some (row-by-row) mean-values ζ̄β,N , ζ̄γ,N and ζ̄θ,N . Therefore, by
√
N -consistency of β̂N and γ̂N from

(31) and (30), consistency of θ̃hN (just established above), uniform convergence in Assumptions A8(c)(i)
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(applied to the second and third terms on RHS) and A8(c)(ii) (applied to the last term on RHS), the
continuity assumption in A8(d), it follows that

oP (1) =
√
NMh

N (ζ0) +
∂M(ζ0)

∂ζ ′

√
N
[
(β̂N − β0)′, (γ̂N − γ0)′, (θ̃hN − θ0)′

]′
.

Finally take δN > 0 and δN = o(N−1/2), and note that:

sup
h∈(0,δN )

√
N‖Mh

N (ζ0)−MN (ζ0)‖ ≤ sup
h∈(0,δN )

√
N‖(Mh

N (ζ0)−Mh(ζ0))− (MN (ζ0)−M(ζ0))‖

+ sup
h∈(0,δN )

√
N‖Mh(ζ0)−M(ζ0)‖

≤ oP (1) +
√
Nb× δN

with probability approaching 1, respectively by Assumptions A8 (d) (along with the fact that M(ζ0) =
0) and (a). Since δN = o(N−1/2) as dictated by the statement of the Proposition, it now follows that
suph∈(0,δ)

√
N‖Mh

N (ζ0)−MN (ζ0)‖ = oP (1) and hence

oP (1) =
√
NMN (ζ0) +

∂M(ζ0)

∂ζ ′

√
N
[
(β̂N − β0)′, (γ̂N − γ0)′, (θ̃hN − θ0)′

]′
=
√
NLN (θ̃hN )

for LN (θ) defined in the proof of Proposition 3.2. Therefore, ‖LN (θ̃hN )‖ = oP (N−1/2). Now by following

the same steps as in that proof we obtain
√
N‖θ̃hN − θ̂N‖ = oP (1).
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