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Résumé/abstract 

 
The standard description of two-step extremum estimation amounts to plugging-in a first-step 

estimator of nuisance parameters to simplify the optimization problem and then deducing a user 

friendly, but potentially inefficient, estimator for the parameters of interest. In this paper, we consider 

a more general setting of two-step estimation where we do not necessarily have “nuisance parameters” 

but rather awkward occurrences of the parameters of interest. The efficiency problem associated with 

two-step estimators in this context is more difficult than with standard nuisance parameters as even if 

the true unknown value of the parameters were plugged-in to alleviate the awkward occurrences of the 

parameters, the resulting second-step estimator may not be efficient. In addition, standard approaches 

to restore efficiency for two-step procedures may not work due to a consistency issue. To alleviate this 

potential issue, we propose a new computationally simple two-step estimation procedure that relies on 

targeting and penalized to enforce consistency, with the second-step estimators maintaining asymptotic 

efficiency. We compare this new method with existing iterative methods in the framework of copula 

models and asset pricing models. Simulation results illustrate that this new method performs better 

than existing iterative procedures and is (nearly) computationally equivalent. 

 

Mots clés/keywords : Targeting, Penalization, Multivariate Time Series Models, 

Asset Pricing 

 

 

 

 
 

1  Introduction 
 

The standard treatment of two-stage estimation (see e.g. Pagan, 1986 or Newey and McFadden, 

1994, section 6) is generally motivated by the following sequence of arguments as coined by 

Pagan (1986): 

 

(i) Econometricians are often faced with the troublesome problem that \in order to estimate 

the parameters they are ultimately interested in, it becomes necessary to quantify a number of 

                                                 
*
 We thank the editors and two anonymous referees for their helpful comments, which greatly improved the 

paper. 
†
 Department of Econometrics and Business Statistics, Monash University. email: david.frazier@monash.edu 

‡
 Department of Economics, Brown University. email: eric renault@brown.edu 



nuisance parameters (...) it is the presence of these parameters which converts a relatively simple
computational problem into a very complex one”.

(ii) “Because estimation would generally be easy if the nuisance parameter were known, a very
common strategy for dealing with them has emerged: they are replaced by a nominated value
which is estimated from the data”. Then, the key issue for asymptotic theory is to assess the
effect of first-step estimators on second-step standard errors (see Newey and McFadden, 1994,
subsection 6.2) and the most favorable situation is when ignoring the first step would be valid:
the asymptotic distribution on the second-step estimator for the parameters of interest does not
depend on the first step estimator for the nuisance parameters and would have been the same
whether the nuisance parameters had been known upfront.

Our focus of interest in this paper is germane to the above one but more general. The main
difference is that we do not necessarily have such thing as nuisance parameters but rather awk-
ward occurrences of the parameters of interest. By awkward, we mean that within the estimating
equations for a vector of unknown parameters of interest θ, some occurrences of θ may be com-
putationally tricky, either due to the complexity of the relationship, or numerical instability, or
both. In order to disentangle these unpleasant occurrences from user-friendly ones, we denote the
sample-based estimating functions as qT [θ, ν(θ)], where ν(θ) encapsulates all the occurrences of
θ considered as somewhat awkward while T stands for the sample size. Generally speaking, our
estimator of interest is θ̂T defined as a zero of the vector function fT (θ) = qT [θ, ν(θ)].

Note that, this general framework obviously encompasses the standard nuisance parameter
setting described above. If, within the vector θ of unknown parameters, we distinguish some
parameters of interest, denoted by θ1, and some nuisance parameters, denoted by θ2, such that
θ = (θ′1, θ

′
2)′ and ν(θ) = θ2, we are back to the standard case as far as efficient estimation of

θ1 is concerned. Note that, up to a slight change of notation, our setup nests the case where
the function ν(θ) would be a sample dependent one νT (θ), for instance because ν(θ) shows up
after some nuisance parameters have been profiled out. Up to a specific discussion on how to
accommodate this case (see the Appendix), the simpler notation ν(θ) will be kept throughout.

Our leading example will be the case of an extremum estimator

θ̂T = arg max
θ
QT [θ, ν(θ)], (1)

so that the estimating equations correspond to first-order conditions:

qT [θ, ν(θ)] =
∂QT [θ, ν(θ)]

∂θ
+
∂ν ′(θ)

∂θ

∂QT [θ, ν(θ)]

∂ν
. (2)

θ̂T may be the MLE if the function QT [θ, ν(θ)] is a well-specified (log)likelihood function. We will
see θ̂T throughout as our benchmark estimator for the purpose of asymptotic efficiency.

We highlight two important classes of examples in this paper. First, in Section 4, we consider
a class of additively separable log-likelihood functions that are usually encountered in the so-
called“estimation from likelihood of margins” (see e.g. Joe, 1997). In this setting, the components
of θ can be split into two parts θ = (θ′1, θ

′
2)′: θ1 characterizes the likelihood of the margins and

θ2 characterizes the dependence between components, let’s say the “cross-dependence”, through
some link functions (typically linear correlations or copulas). However, the link function describing
the cross-dependence applies to data components that have been first standardized using the
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knowledge of θ1. In other words, the log-likelihood portion capturing cross-dependence also
involves the parameters θ1 that describe the marginal distributions. Such occurrences of θ1 are an
example of the awkward occurrences mentioned earlier, in that these situations can be difficult to
deal with in practice; i.e., ν(θ) = θ1 corresponds to the occurrences of θ1 in the cross-dependence
portion of the log-likelihood. Fortunately, a consistent user friendly estimator of θ1 is available
from the likelihood of the margins and can be plugged into the cross-dependence portion in order
to estimate θ2. This approach is popular in the estimation of nonlinear multivariate time series
models like multivariate GARCH or copulas models. However, as explained below, the simplicity
obviously entails an efficiency loss since the information in the cross-dependence model about the
margin parameters θ1 is overlooked.

In Section 5, we consider nonlinear models in which observable variables are viewed as func-
tions of some latent state variables. Typically, the latent model, which is characterized by a vector
of unknown parameters θ, specifies a Markov process for the state variables and defines their (pos-
sibly nonlinear) transition equation. Such an approach becomes difficult when the measurement
equation of this non-linear state space model, which relates observable variables to latent ones,
also depends on the same unknown parameters through a vector ν(θ). While it would have been
relatively easy to estimate θ from the observations on the latent variables, inference using avail-
able observations is complicated by the additional awkward occurrence of θ, namely ν(θ), in the
transformation from latent-to-observable variables. The issue we have in mind is not about fil-
tering latent variables since we only consider cases where the latent-to-observable relationship is
one-to-one. Hence, backing out the latent variables from the observations would have been easy if
not polluted by the additional awkward occurrence of unknown parameters in the measurement
equation. This kind of situation is common in modern arbitrage-based asset pricing models with
hedging of various sources of risk defined by an underlying model for the state variables. Since
this measurement equation, which could for instance be an arbitrage-based asset pricing formula,
is one-to-one, we follow Pan (2002) and dub “Implied States” the value of latent variables that
can be backed out from observations for a given value of ν(θ).1

In this setting we are then faced with the following trade off between asymptotic efficiency
and computational cost (both in terms of computational complexity and stability). On the one
hand, we still contemplate that estimation would be easy if the awkward part ν(θ) were known.
Therefore, there is still some rationale to estimate it in a first stage, that is, if θ0 stands for the true
unknown value of θ, to replace ν(θ0) by a consistent sample counterpart ν̃T . On the other hand,
it is well known (see Newey and McFadden, 1994 for a discussion) that the two-step estimator
obtained by plugging in the first-step consistent estimator ν̃T of the nuisance parameters would
be inefficient in general. However, we want to stress that in our more general case where ν is not
necessarily a nuisance parameter but may be a known function ν(θ) of parameters of interest,
there is even no reason to believe that we would get a more accurate estimator by computing the
infeasible estimator θ̆T , the solution of

qT [θ̆T , ν(θ0)] = 0. (3)

On the contrary, there are many circumstances (see Pastorello et al., 2003 and references

1Extending the approach put forward by Renault and Touzi (1996) (and later revisited by Pastorello et al.,
2003), Pan (2002) used this structure to devise the so-called “Implied States GMM” estimator.
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therein) in which the infeasible estimator θ̆T is actually less accurate than θ̂T . This inefficiency
is due to the estimator θ̆T disregarding the information about θ contained in the function ν(θ)
(see also Crepon et al., 1997 for a similar remark in a GMM context). More precisely, (under
standard conditions) the efficient estimator θ̂T in (1) satisfies

√
T (θ̂T − θ0) = −

[
∂qT
∂θ′

[θ0, ν(θ0)] +
∂qT
∂ν ′

[θ0, ν(θ0)]
∂ν

δθ′
(θ0)

]−1√
TqT [θ0, ν(θ0)] + oP (1),

whereas the infeasible estimator θ̆T satisfies

√
T (θ̂T − θ0) = −

[
∂qT
∂θ′

[θ0, ν(θ0)]

]−1√
TqT [θ0, ν(θ0)] + oP (1).

Two standard strategies are available in the literature to address this efficiency issue. A first
possibility, as recently developed by Fan, Pastorello and Renault (2015) (hereafter, FPR) is to

devise a sequence of estimators θ̂
(k)
T , k = 1, 2, ..., from a feasible counterpart of (3)

qT [θ̂
(k+1)
T , ν(θ̂

(k)
T )] = 0, (4)

with, for instance, the aforementioned consistent first-step estimator θ̃T as the initial value (θ̂
(1)
T =

θ̃T ). In the case of separable log-likelihood functions (see Section 4 below) a simplified version
of (4) was proposed in a seminal paper by Song, Fan and Kalbfleich (2005) (hereafter, SFK),
with their proposed algorithm being dubbed “Maximization by Parts” (MBP hereafter). The

key feature of (4) is that each step of the iteration to compute θ̂
(k+1)
T from θ̂

(k)
T is no more

computationally demanding than the solution of (3). Moreover, by contrast with (3), this iterative

procedure may allow us to reach efficiency since, when the iterative procedure (4) has a limit θ̂
(∞)
T ,

this limit must coincide with the efficient estimator θ̂T .2 However, it is worth realizing that the
required contraction mapping property to secure convergence of (4) need not be fulfilled in finite
samples.3 Therefore, a feasible efficient estimator relies upon the choice of a tuning parameter
k(T ), going to infinity at a sufficiently fast rate with the sample size T , in order to obtain an

estimator θ̂
(k(T ))
T that is asymptotically equivalent to θ̂T . This may obviously come with the

computational cost of a large number k(T ) of iterations, especially when the required population
contraction mapping property is nearly unfulfilled. Needless to say, the situation is even worse
when it is not fulfilled at all, as illustrated in Section 4 below.

The main goal of this paper is to promote a new efficient two-step procedure that does not
require a contraction mapping property. We will argue that even though its second-step may be
more computationally involved than each step of MBP, it keeps some of its simplicity, in particular
by comparison with the brute force computation of the efficient estimator θ̂T . Our efficient
two-step procedure is actually an extension of a two-step extremum estimator first proposed
by Trognon and Gourieroux (1990). The key intuition is to correct the naive two-step objective

2A similar results is obtained for the iterative estimators studied in Dominitz and Sherman (2005).
3It is well known that consistent estimation of a function does not imply consistent estimation of its derivative.

Therefore, a contraction mapping condition, stated as the norm of the derivative for the limit function being
smaller than unity, may not be satisfied in finite sample.
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function QT [θ, ν̃T ] to compensate for the inefficiency caused by plugging in the first-step consistent
estimator ν̃T . Our proposed extremum estimator would then be

θ̂extT = arg max
θ
Q̃T [θ, ν̃T ], (5)

with

Q̃T [θ, ν̃T ] = QT [θ, ν̃T ] +
∂QT [θ, ν̃T ]

∂ν ′
. [ν(θ)− ν̃T ]− 1

2
[ν(θ)− ν̃T ]′ JT (θ) [ν(θ)− ν̃T ] (6)

and

plim
T→∞

[
JT (θ0) +

∂2QT [θ0, ν(θ0)]

∂ν∂ν ′

]
= 0.

We show that, when consistent, the estimator θ̂extT is asymptotically equivalent to the efficient

estimator θ̂T . The main intuition for this result is that, up to the occurrence of unknown θ inside
the matrix JT (θ), the first-order conditions of the maximization program (5) can be seen as a
linearization of first order conditions (2) of the efficient program (1), namely, linearization with
respect to ν in the neighborhood of the first-step estimator ν̃T . Then, the efficiency argument
will be based on a generalization of an argument extensively studied by Robinson (1988). In this
seminal paper, general efficiency comparisons are led between roots of rival estimating equations,
in particular, as provided by local linearizations. However, we point out a difficulty that seems to
have been overlooked in the literature so far. When linearization around a preliminary consistent
estimator is applied to a vector of estimating equations, like, fT (θ) = qT [θ, ν(θ)], but linearization
is performed only with respect to the second set of occurrences of θ (the so-called awkward
occurrences within ν(θ)), the fact that fT (θ) may also depend nonlinearly on θ through first
occurrences, say θ = θ∗ in qT [θ∗, ν(θ)], can impair consistency of estimators defined as roots of
this (partially) linearized estimating equation. More precisely, local identification is granted but
not global identification.

Our proposed hedge against this risk is the addition of a penalty term αT ‖ν(θ)− ν̃T‖2 to the
(partially linearized) estimating equations, with a tuning parameter αT going to infinity slower
than the rate of convergence of our initial estimator ν̃T . In other words, both the MBP approach
and our new penalized two-step procedure come with the cost of a tuning parameter. While
MBP requires choosing the number k(T ) of iterations, our approach must choose the rate of
divergence α(T ) for the penalty weight. We will see, for instance, that in the standard case where
all estimators are

√
T -consistent, a rate T 1/4 is well suited. Moreover, we propose two simplified

versions of this approach, both based on partial linearization, depending upon whether one has
at her disposal a first-step consistent estimator of θ0 (the full vector) or only of ν(θ0) (only the
awkward occurrences).

The remainder of the paper is organized as follows. The proposed extension of the Trognon
and Gourieroux (1990) efficient two-step procedure is studied in Section 2. Our general result
explains why some well known two-step estimators are efficient, in spite of the appearance to the
contrary: Hatanaka (1974) for a dynamic regression model, Gourieroux, Monfort and Renault
(1996) for a GMM estimator. It is worth stressing that efficiency is warranted in these two spe-
cific examples because consistency is not an issue. However, we also point out other examples,
such as, nonlinear least squares and GMM, where consistency is not warranted, except if one
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uses the penalty strategy that we have devised through first-order conditions. Robinson’s (1988)
comparison of estimators is developed in Section 3 and allows us to develop two simplified pe-
nalized two-step estimators. Section 4 sets the focus on the separable estimation problem with a
detailed comparison with MBP, both analytically and through Monte Carlo experiments in the
framework of a copula example. Section 5 addresses the applications of this approach in the
setting of ‘so-called’ implied states issue. For brevity we focus on the case of Maximum likelihood
estimation, while noting that our results can easily be applied to GMM as well. Again, in this
section we are able to provide a detailed comparison with MBP, both analytically and through
Monte Carlo experiments, in the simple framework of Merton’s credit risk model. Concluding
remarks are given in Section 6. All proofs are gathered in the Appendix.

2 An Efficient Two-Step Extremum Estimator

2.1 General Framework

Let Θ ⊂ Rp be a compact parameter space, and θ0 the true unknown value of θ. Additional
parameters ν are defined by some continuous function ν(.) from Θ to some subset Γ of Rq. We
assume that the extremum estimator θ̂T of θ, defined by (1), is a consistent asymptotically normal
estimator of θ0. In addition, we assume the following standard regularity conditions are satisfied.

Assumption A1: There is a real-valued deterministic function Q∞[., .], continuous on Θ × Γ
and such that:

(i) plim
T→∞

{
sup
θ∈Θ
|Q∞[θ, ν(θ)]−QT [θ, ν(θ)]|

}
= 0 and

(ii) θ0 = arg max
θ∈Θ

Q∞[θ, ν(θ)].

Assumption A2: The following are satisfied

(i) ν(.) is twice continuously differentiable on Int(Θ), the interior of Θ.

(ii) θ0 ∈ Int(Θ) and ν0 = ν(θ0) ∈ Int(Γ).

(iii) The function QT [θ, ν] is twice continuously differentiable on Int(Θ)× Int(Γ). For qT [θ, ν(θ)]
defined by (2)

(1)
√
T
(
∂QT [θ0,ν(θ0)]

∂θ′
, ∂QT [θ0,ν(θ0)]

∂ν′

)′
→d N [0,W0] and

√
TqT [θ, ν(θ)]→d N [0, I0].

(2) plim
T→∞

{
∂qT [θ0,ν(θ0)]

∂θ′
+ ∂qT [θ0,ν(θ0)]

∂ν′
.∂ν(θ0)
∂θ′

}
= F and non-singular

In addition, we maintain the following high-level assumptions.

Assumption A3: (θ̂′T , ν̃
′
T )′ is a

√
T -consistent asymptotically normal estimator of (θ0′, ν0′)′ and

plim
T→∞

{
sup
θ∈Θ

∣∣∣∣JT (θ) +
∂2QT [θ, ν̃T ]

∂ν∂ν ′

∣∣∣∣} = 0.
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The examples in subsections 2.2 and 2.3 below demonstrate that, for simplicity, in practice one
may want to define the matrix−JT different from (albeit asymptotically equivalent to) the Hessian
matrix.

The focus of interest in this section is the comparison of the efficient estimator θ̂T , with the
two-step alternative θ̂extT defined in the introduction. To this end, we have the following result.

Theorem 2.1: Under the maintained assumption that they are
√
T -consistent, θ̂T and θ̂extT are

asymptotically equivalent.

It is worth elaborating on this result to discern the reason why the two-step approach is not
responsible for any efficiency loss. Consider the case of genuine nuisance parameter discusses in
Trognon and Gourieroux (1990):

θ = (θ′1, θ
′
2)′, ν(θ) = θ2.

Then, the modified objective function becomes

Q̃T [θ, ν̃T ] = QT [θ, ν̃T ] +
∂QT [θ, ν̃T ]

∂ν ′
. [θ2 − ν̃T ]− 1

2
[θ2 − ν̃T ]′ JT (θ) [θ2 − ν̃T ] ,

and the parameters of interest for efficient estimation are included in the sub-vector θ1. With
this point in mind, we can set the focus on an even simpler two-step estimator obtained as the
maximizer of the following simplified objective function, where for sake of avoiding confusion
about partial derivatives, we use two different notations for the same first-step estimator

θ̃2,T = ν̃T

Q̆T [θ, ν̃T ] = QT [θ1, θ̃2,T , ν̃T ] +
∂QT [θ1, θ̃2,T , ν̃T ]

∂ν ′
. [θ2 − ν̃T ]− 1

2
[θ2 − ν̃T ]′ JT (θ1,θ̃2,T ) [θ2 − ν̃T ]

Then, it is easy to profile θ2 out of Q̆T [θ, ν̃T ]

∂Q̆T [θ, ν̃T ]

∂θ2

= 0⇔ θ2 = ν̃T +
[
JT (θ1,θ̃2,T )

]−1 ∂QT [θ1, θ̃2,T , ν̃T ]

∂ν
.

Plugging the above value of θ2 into Q̆T [θ, ν̃T ], we can concentrate the objective function with
respect to the nuisance parameters ν(θ) = θ2 and obtain the following profile objective function

Q̆c,T [θ1, ν̃T ] = QT [θ1, θ̃2,T , ν̃T ] +
1

2

∂QT [θ1, θ̃2,T , ν̃T ]

∂ν ′

[
JT (θ1,θ̃2,T )

]−1 ∂QT [θ1, θ̃2,T , ν̃T ]

∂ν
.

For sake of interpretation, let us consider instead the infeasible objective function and its
profile counterpart. Then, the concentrated score vector is

∂Q̆0
c,T [θ1, ν]

∂θ1

=
∂QT [θ1, θ̃2,T , ν]

∂θ1

+
∂2QT [θ1, θ̃2,T , ν]

∂θ1∂ν ′

[
JT (θ0

1, θ̃2,T )
]−1 ∂QT [θ1, θ̃2,T , ν]

∂ν

7



so that, under Assumption A2 and from the definition of JT , we deduce

plim
T→∞

∂Q̆0
c,T [θ0

1, ν
0]

∂θ1∂ν ′
= 0. (7)

Equation (7) is precisely the standard condition (see e.g Newey and McFadden, 1994, formula
(6.6) pp 2179) to ensure that the asymptotic distribution of the estimated parameters θ1 do not
depend on the asymptotic distribution of the estimated nuisance parameters ν. This provides
clear intuition as to why Theorem 2.1 works in the particular case considered by Trognon and
Gourieroux (1990): the modified objective function in (6) restores the asymptotic independence
between the two kinds of parameters.

We stress that it is only the careful analysis of the first-order conditions (see Section 3 below)
that will allow us to devise a penalized estimation strategy that ensures consistency of such two-
step estimators. This approach amounts to a slight twist (via targeting and penalization) of the
two-step estimator θ̂extT , to ensure its consistency, with efficiency then guaranteed by Theorem
2.1. The following examples illustrate why such a penalized two-step approach may be required
to ensure consistency.

2.2 Application to Nonlinear Regression

In this subsection, we consider the example of nonlinear least squares. Note that while we
consider only ordinary least squares, weighted least squares would not introduce any specific
difficulty. Joint estimation of models for conditional mean and variance using Gaussian QMLE
(Bollerslev and Wooldridge, 1992) would also fit in this class of examples. Thus, for sake of
notational simplicity, let us just consider the following objective function

QT [θ, ν(θ)] = − 1

T

T∑
t=1

[yt − g(xt, θ, ν(θ))]2 ,

where g(., ., .) is a known function such that

g(xt, θ
0, ν(θ0)) = E[yt |xt] . (8)

Hence, the maintained identification assumption can be stated as

E[yt − g(xt, θ, ν(θ)) |xt] = 0⇔ θ = θ0. (9)

Noting,

∂QT [θ, ν(θ)]

∂ν
=

2

T

T∑
t=1

∂g(xt, θ, ν(θ))

∂ν
[yt − g(xt, θ, ν(θ)] ,

∂2QT [θ, ν(θ)]

∂ν∂ν ′
= − 2

T

T∑
t=1

∂g(xt, θ, ν(θ))

∂ν
.
∂g(xt, θ, ν(θ))

∂ν ′
+

2

T

T∑
t=1

∂2g(xt, θ, ν(θ))

∂ν∂ν ′
[yt − g(xt, θ, ν(θ)] ,

8



and by applying (8), we can choose the following sample counterpart for the Hessian matrix with
respect to the parameters ν

JT (θ) =
2

T

T∑
t=1

∂g(xt, θ, ν̃T )

∂ν
.
∂g(xt, θ, ν̃T )

∂ν ′
.

With this choice, the modified extremum estimator is obtained as the maximizer of

Q̃T [θ, ν̃T ] = QT [θ, ν̃T ] +
∂QT [θ, ν̃T ]

∂ν ′
. [ν(θ)− ν̃T ]− 1

2
[ν(θ)− ν̃T ]′ JT (θ) [ν(θ)− ν̃T ] (10)

= − 1

T

T∑
t=1

[
yt − g(xt, θ, ν̃T )− ∂g(xt, θ, ν̃T )

∂ν ′
. [ν(θ)− ν̃T ]

]2

.

In other words, while the estimator defined as the solution to

min
θ

T∑
t=1

[yt − g(xt, θ, ν̃T )]2

is not efficient in general, we can restore efficiency by the additional term in (10). The fact
that a nonlinear regression model can be efficiently estimated after linearization of the regression
function around a first-step consistent estimator has been known since Hartley (1961). However,
it is crucial to note that the linearization in (10) is only partial, as it only deals with the nasty
occurrences ν(θ) in g(·), and so efficiency is only warranted only when consistency is satisfied. To
see this, note that the identification assumption (9) does not say that

E[yt |xt] = g(xt, θ, ν(θ0))− ∂g(xt, θ, ν(θ0))

∂ν ′
.
[
ν(θ)− ν(θ0)

]
⇒ θ = θ0.

The role of targeting will be to enforce the equality ν(θ) = ν(θ0) so that the implication
above becomes a consequence of the identification assumption (9). Fortunately, there are cases
where penalization/targeting is not needed because consistency is directly implied. Trognon and
Gourieroux (1990) point out the example of Hatanaka’s (1974) two-step estimator for a dynamic
adjustment model with autoregressive errors. With obvious notations, the model is

yt = α1yt−1 + α2zt + ut

ut = βut−1 + εt

and is generally rewritten as

yt − βyt−1 = α1 (yt−1 − βyt−2) + α2 (zt − βzt−1) + εt.

Thus, we end up with a nonlinear regression model that can be rewritten in the notational
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system of (8)

yt = g (xt, α1, α2, ν(θ)) + εt

xt = (zt, yt−1), θ = (α1, α2, β)′, ν(θ) = β.

However, a key remark is that the regression function, albeit nonlinear, is linear with respect to ν
when the friendly occurrence of θ is fixed. Hence, modifying the objective function as in equation
(6) delivers the correct first-order conditions, since this quadratic approximation amounts to
partial linearization of the first-order conditions w.r.t ν. Therefore, this approximation does not
jeopardize consistency and Theorem 2.1 can be directly applied to confirm that Hatanaka’s (1974)
two-step estimator is efficient.

2.3 Application to GMM

We now contemplate the case of a parameter identified through H moment restrictions with two
kinds of occurrences for the parameters:

E[ϕt(θ, ν(θ))] = 0⇔ θ = θ0. (11)

Moment restrictions of the form (11) and their possible applications are, for instance, described
in the literature on Implied States GMM (see, e.g., Pan, 2002, Pastorello et al., 2003, and Fan
et al., 2015). When working with (11), we typically have in mind estimators defined from the
criterion function

QT [θ, ν(θ)] = −ϕ̄T (θ, ν(θ))′WT ϕ̄T (θ, ν(θ))

where

ϕ̄T (θ, ν(θ)) =
1

T

T∑
t=1

ϕt(θ, ν(θ))

and WT is some positive definite sequence of matrices. Note that, in order to obtain an es-
timator θ̂T , defined by (1), that reaches the semiparametric efficiency bound, the sequence
WT should provide a consistent estimator for the inverse of the long term variance matrix
limT→∞Var[

√
T ϕ̄T (θ0, ν(θ0))].

From the definition of QT [θ, ν(θ)], we have

∂QT [θ, ν(θ)]

∂ν
= −2

∂ϕ̄T (θ, ν(θ))′

∂ν
WT ϕ̄T (θ, ν(θ))

∂2QT [θ, ν(θ)]

∂ν∂ν ′
= −2

∂ϕ̄T (θ, ν(θ))′

∂ν
WT

∂ϕ̄T (θ, ν(θ))

∂ν

−2
H∑
h=1

∂2ϕ̄h;T (θ, ν(θ))

∂ν∂ν ′
.Wh.;T ϕ̄T (θ, ν(θ))

where Wh.;T stands for the hth row of WT . Then, we can choose the following sample counterpart
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for the Hessian matrix with respect to the parameters ν

JT (θ) = 2
∂ϕ̄T (θ, ν(θ))′

∂ν
WT

∂ϕ̄T (θ, ν(θ))

∂ν ′
.

With this choice, the modified extremum estimator is obtained as the minimizer of

Q̃T [θ, ν̃T ] = QT [θ, ν̃T ] +
∂QT [θ, ν̃T ]

∂ν ′
. [ν(θ)− ν̃T ]− 1

2
[ν(θ)− ν̃T ]′ JT (θ) [ν(θ)− ν̃T ] (12)

= −
[
ϕ̄T (θ, ν̃T ) +

∂ϕ̄T (θ, ν̃T )

∂ν ′
. [ν(θ)− ν̃T ]

]′
WT

[
ϕ̄T (θ, ν̃T ) +

∂ϕ̄T (θ, ν̃T )

∂ν ′
. [ν(θ)− ν̃T ]

]
In other words, while the solution of

min
θ

[ϕ̄T (θ, ν̃T )]′WT [ϕ̄T (θ, ν̃T )] (13)

would not be equivalent to θ̂T in general, we can restore equivalence (and efficiency in the sense
of θ̂T ) by using the additional term in (12). However, since (12) constitutes only a partial lin-
earization of the moment conditions, consistency may not be warranted.

Herein, consistency may be an issue since the identification assumption (11) does not ensure

E

[
ϕt(θ, ν(θ0)) +

∂ϕt(θ, ν(θ0))

∂ν ′
.
[
ν(θ)− ν(θ0)

]]
= 0 =⇒ θ = θ0. (14)

The role of targeting in this context is to enforce the equality ν(θ) = ν(θ0) so that the implication
in (14) becomes a consequence of the identification assumption (11).

Fortunately, there are cases where the penalty/targeting is not needed because consistency is
directly implied. Gourieroux et al. (1996) consider the case where the vector of moment conditions
can be split in two parts, with only the second one depending on ν:

ϕt(θ, ν(θ)) = [ϕ1t(θ)
′, ϕ2t(θ, ν(θ))′]

′
. (15)

Then, the implication (14) is obviously warranted when the first set of moment conditions is
sufficient to identify θ0, a condition maintained by Gourieroux et al. (1996), since (14) becomes

E

[
ϕ1t(θ)

ϕ2t(θ, ν(θ))

]
+ E

[
0

∂ϕ2t(θ,ν(θ0))
∂ν′

] [
ν(θ)− ν(θ0)

]
= 0 ⇐⇒ θ = θ0. (16)

In this case, Theorem 2.1. ensures efficiency of the modified two-step estimator.4

4Interestingly, the estimator proposed by Gourieroux et al. (1996) will only numerically coincide with θ̂extT when
the moment conditions ϕ1t(θ) are linear in θ (see Section 2.6 in Gourieroux et al., 1996).
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3 Stochastic Differences for Linearized Estimating Equa-

tions

We first state our general result concerning roots of linearized estimating equations, which extends
Theorem 2 of Robinson (1988). Then, in a second subsection, we provide two more user friendly
versions of our two-step estimator, depending on whether one want to use a first-step consistent
estimator of θ0 or only of ν(θ0).

3.1 The General Estimator and Result

Linear approximations will be considered in some neighborhood ℵ(ε), ε > 0, of the true unknown
value

ℵ(ε) =
{
θ ∈ Rp :

∥∥θ − θ0
∥∥ < ε

}
⊂ Θ.

Note that, the existence of such ε is tantamount to the maintained assumption that the true
unknown value θ0 belongs to the interior of the parameter space.

In order to extend the results of Robinson (1988), we first characterize our benchmark esti-
mator θ̂T as the solution of some just-identified estimating equations. We remind the reader that
for the purpose of efficiency our benchmark estimator is θ̂T . For sake of generality, we maintain
some high level assumptions about these estimating equations

Assumption B1: fT (θ) = qT [θ, ν(θ)] is a p-vector valued random variable such that:

(i) fT has a zero θ̂T = θ0 + oP (1),

(ii) For some ε > 0, the functions of θ: ν(θ), fT (θ) and ∂qT
∂ν′

[θ, ν(θ∗)] are continuously differen-
tiable on ℵ(ε), for any given θ∗ in ℵ(ε).

(iii) FT (θ0) = F + oP (1), where FT (θ) = ∂fT (θ)
∂θ′

and F is non-singular.

Under standard regularity conditions (see appendix), the non-singular matrix F can obviously
be written as

F =
∂q∞[θ0, ν(θ0)]

∂θ′
+
∂q∞
∂ν ′

[θ0, ν(θ0)]
∂ν

∂θ′
(θ0),

for some population estimating equations q∞[θ, ν(θ)] with θ0 the only zero of q∞[θ, ν(θ)].

Assumption B2: q∞[θ, ν(θ)] = 0⇔ θ = θ0.

We are interested in partially linear approximations of the estimating function around some
consistent initial estimator θ̃T . Thus, let us define

h̃T (θ) = qT [θ, ν(θ̃T )] +
∂qT
∂ν ′

[θ, ν(θ̃T )]
∂ν

∂θ′
(θ̃T )(θ − θ̃T ).

Note that h̃T (θ) provides alternative estimating equations that also locally identify θ since, with
obvious notations (and under standard regularity conditions), a solution θ = θ∗T of h̃T (θ) = 0 will
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converge towards a solution θ = θ̄ of the population equations

q∞[θ, ν(θ0)] +
∂q∞
∂ν ′

[θ, ν(θ0)]
∂ν

∂θ′
(θ0)(θ − θ0) = 0.

If h̃T (θ) were a genuine linearization of fT (θ) (not only a partial one), Robinson’s Theorem 2
shows that the zeros of h̃T (θ) and fT (θ) are, in a sense, asymptotically equivalent. With a partial
linearization, we cannot maintain such a claim since we may only have local identification and
not global identification. That is, there may exist some θ̄ 6= θ0 such that, with obvious notations,

q∞[θ̄, ν(θ0)] +
∂q∞
∂ν ′

[θ̄, ν(θ0)]
∂ν

∂θ′
(θ0)(θ̄ − θ0) = 0

even though θ = θ0 is the only solution of

q∞[θ, ν(θ)] = 0.

To avoid such a perverse situation, we have to slightly penalize our (partially) linearized
sequence by defining:

h̃PT (θ) = qT [θ, ν(θ̃T )] +
∂qT
∂ν ′

[θ, ν(θ̃T )]
∂ν

∂θ′
(θ̃T )(θ − θ̃T ) + αT

∥∥∥θ − θ̃T∥∥∥2

ep, (17)

for a real sequence αT going slowly to infinity, where ep stands for a fixed p-dimensional vector
with at least one non-zero component. More precisely, our extension of Robinson’s result can be
stated as follows:

Proposition 3.1: Under the standard regularity conditions detailed in the appendix, and under
Assumption B1, if θ̃T is a consistent estimator of θ0 such that ‖θ̃T−θ0‖ = oP (1/αT ) with αT →∞
as T →∞, then for any zero θ̃PT of h̃PT (θ) in (17), and θ̂T as in (1)

θ̂T − θ̃PT = OP

(
αT

∥∥∥θ̂T − θ̃T∥∥∥2
)
.

Proposition 3.1 is a generalization of Theorem 2 in Robinson (1988). However, unlike Robinson
(1988), our partial linearization requires a penalty term αT‖θ − θ̃T‖2, with αT → ∞ to ensure
consistency. Fortunately, the penalty term will only have a very minor impact for Proposition 3.1:
when the initial estimator θ̃T is

√
T -consistent, θ̂T and θ̃PT are first-order asymptotically equivalent

if αT → ∞ slower than
√
T . However, the choice of the tuning parameter is more constrained if

one wants to use an initially consistent estimator θ̃T converging slower than
√
T . Exactly as in the

case of Robinson (1988), asymptotic equivalence between θ̂T and θ̃PT requires θ̃T to converge faster
than T 1/4.5 However, if the rate of convergence of θ̃T is, say, T (1/4)+ε, ε > 0, (resp T (1/4) log(T )),
the wished asymptotic equivalence will be warranted only for a slowly diverging penalty rate
αT like T ε (resp. log[log(T )] ).6 It is worth noting a tight similarity between the choice of this

5Note that, such an instance can occur even when θ is finite dimensional. Examples include, among many
others, estimation of a tail index, local GMM, nearly weak identification, etc. For discussion, see Antoine and
Renault (2012) and references therein.

6For the examples considered in this paper, αT ∝ T 1/4 is always asymptotically valid. Of course in any partic-
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tuning parameter αT and the choice of the number k(T ) of iterations in iterative procedures like
generalized backfitting in Pastorello et al. (2003) or MBP in Fan et al. (2015).7

3.2 Simplified Two-Step Efficient Estimators

In the following subsections we present two simplified estimators depending on whether one has
an initially consistent estimator of the partial parameters ν or the full vector θ.

3.2.1 Initially Consistent θ̃T

Our general two-step efficient estimator θ̃PT is obtained by a direct extension of Robinson (1988),
replacing the complete linearization by a partial one. The estimating equations h̃PT (θ), in (17),
can be made even more computationally friendly by making the correction term linear in the
unknown parameters θ; that is, rather, by solving the following estimating equations

h
(1)
T (θ) = qT [θ, ν(θ̃T )] +

∂qT
∂ν ′

[θ̃T , ν(θ̃T )]
∂ν

∂θ′
(θ̃T )(θ − θ̃T ) + αT

∥∥∥θ − θ̃T∥∥∥2

ep. (18)

The difference between h̃PT (θ) and h
(1)
T (θ) is the use of the first-step consistent estimator θ̃T to

replace the non-awkward occurrence of the parameters θ in the complete Jacobian matrix. This
simplification does not impair the general equivalence result of Proposition 3.1

Theorem 3.1: Under the standard regularity conditions detailed in appendix, and under as-
sumptions B1 and B2, if θ̃T is a consistent estimator of θ0 such that ‖θ̃T − θ0‖ = oP (1/αT ) with

αT →∞ as T →∞ then for any zero θ
(1)
T of h

(1)
T (θ) in (18), and θ̂T as in (1)

θ̂T − θ(1)
T = OP

(
αT

∥∥∥θ̂T − θ̃T∥∥∥2
)
.

3.2.2 Initially Consistent ν̃T

In applications, it may be the case that only a sub-vector of the parameters of interest θ can
be consistently estimated in a first-step. In this case, an alternative two-step efficient estimator
that only requires knowledge of a first-step consistent estimator ν̃T of ν(θ0) can also be obtained.
Of course, the price to pay for this additional extension of Robinson (1988) will be to give up
the computational simplification brought by the change from the estimating equations h̃PT (θ) to

h
(1)
T (θ) (change from Proposition 3.1 to Theorem 3.1).

The alternative two-step estimator θ
(2)
T is defined as a zero of the estimating equations

h
(2)
T (θ) = qT [θ, ν̃T ] +

∂qT
∂ν ′

[θ, ν̃T ].(ν(θ)− ν̃T ) + αT ‖ν(θ)− ν̃T ‖2 ep, (19)

with the following result as a consequence.

ular implementation, one may use some cross-validation procedure to find a suitable coefficient of proportionality.
However, this is beyond the scope of this paper.

7From page 465 in Pastorello et al. (2003), k(T ) must go to infinity faster than log(T ), with k(T ) inversely
related to the strength of the contraction mapping argument required for convergences.
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Theorem 3.2: Under standard regularity conditions detailed in the appendix, and under as-
sumptions B1 and B2, if ν̃T is a consistent estimator of ν(θ0) such that ‖ν̃T − ν(θ0)‖ = oP (1/αT )

with αT →∞ as T →∞, then for any zero θ
(2)
T of h

(2)
T (θ) in (19), and θ̂T as in (1)

θ̂T − θ(2)
T = OP

(
αT

∥∥∥ν(θ̂T )− ν̃T
∥∥∥2
)
.

Theorem 3.2 implies that the previous asymptotic efficiency of θ̃PT and θ
(1)
T , deduced from

Proposition 3.1 and Theorem 3.1, respectively, applies to θ
(2)
T . The main difference is that the

leading rate of convergence is now the one of the estimator ν̃T . It is also worth noting that the
idea of the proof of Theorem 3.2 can be applied even when plugging in a first-step consistent
estimator θ̃T to replace part of or all components of the first occurrence of θ in the Jacobian term.
In particular, the two simplifying ideas of Theorems 3.1 and 3.2 can be used simultaneously.

3.2.3 Practical Implications

The penalized two-step estimators, in particular the simplified ones, θ
(1)
T defined as the solution

to 0 = h
(1)
T (θ) and θ

(2)
T defined as the solution to 0 = h

(2)
T (θ), require a particular choice for the

penalty term αT .
When the benchmark estimator θ̂T , the solution to qT [θ̂T , ν(θ̂T )] = 0, and the initial estimators

θ̃T or ν̃T , are
√
T -consistent, the two rules to which the penalty term must adhere are as follows:

one, for sake of asymptotic efficiency, αT must go to infinity strictly slower than
√
T ; two, αT →∞

to enforce consistency (see Step 1 in the proof of Proposition 3.1).
As exemplified in Sections 2.2 and 2.3, if consistency is not an issue, Theorem 2.1 demonstrates

the asymptotic efficiency of θ̂extT , the solution to

θ̂extT = arg max
θ

{
QT [θ, ν̃T ] +

∂QT [θ, ν̃T ]

∂ν ′
. [ν(θ)− ν̃T ]− 1

2
[ν(θ)− ν̃T ]′ JT (θ) [ν(θ)− ν̃T ]

}
. (20)

Overlooking the dependence on θ within JT (θ), up to the penalty term, the first-order conditions
for (20) are very similar to (19).8 However, it is important to keep in mind that consistency is
not always warranted, and then the only solution is the introduction of a penalty term in the
first-order conditions as in (19).

4 Additive Decomposition of Extremum Criterion

4.1 Efficient Two-Step Estimation via Margin Targeting

There exist many interesting situations in economics and finance where the extremum criterion
takes the additively separable form

QT [θ, ν(θ)] = Q1T [θ1] +Q2T [θ2, ν(θ)], (21)

8See the proof of Theorem 2.1 as to why overlooking the dependence of θ in JT (θ) will not alter the asymptotic

distribution of θ̂extT .
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where θ = (θ′1, θ
′
2)′, ν(θ) = θ1 ∈ Rp1 , θ2 ∈ Rp2 and p1 + p2 = p. This particular structure for

QT [θ, ν(θ)] includes many nonlinear time series models, such as, the Dynamic Conditional Cor-
relations (DCC-GARCH) model of Engle (2002), the rotated ARCH model of Noureldin et al.
(2014), and many copula models. In these multivariate models θ1 generally represents the pa-
rameters that govern the marginal distributions and θ2 represent the parameters that govern the
dependence between the different components. In this framework, ν(θ) = θ1 represents the addi-
tional occurrences of θ1 that show up in the dependence structure and complicate estimation of
θ.

In this setting, a common way of estimating θ = (θ′1, θ
′
2)′ is the so-called inference from the

margins, where a
√
T -consistent estimator θ̃T is obtained by first maximizing Q1T [θ1] to obtain

θ̃1T , which is equivalent to solving the estimating equations

∂Q1T [θ̃1T ]

∂θ1

= 0, (22)

θ̃1T then replaces the unknown θ1 in Q2T [θ2, θ1] and Q2T [θ2, θ̃1T ] is maximized to obtain θ̃2T , which
is equivalent to solving

∂Q2T [θ̃2T , θ̃1T ]

∂θ2

= 0. (23)

If (22) and (23) are unbiased estimating equations for θ0, in the sense that,

lim
T→∞

∂Q1T [θ1]

∂θ1

= 0⇐⇒ θ1 = θ0
1,

lim
T→∞

∂Q2T [θ2, θ
0
1]

∂θ2

= 0⇐⇒ θ2 = θ0
2,

θ̃T = (θ̃′1T , θ̃
′
2T )′ is generally a

√
T -consistent estimator of θ0.

While computationally simple, the estimator θ̃T is inefficient. Computationally simple and
efficient estimators can be obtained in this setting using the two-step estimators θ

(1)
T and θ

(2)
T

defined in Section 3.2. Obtaining θ
(1)
T and θ

(2)
T with QT [θ, ν(θ)] as in (21) only requires specializing

the definitions of h
(1)
T (θ) and h

(2)
T (θ). To this end, for

h
(1)
T (θ) =

[
h

(1)
1T (θ)

h
(1)
2T (θ)

]
, h

(2)
T (θ) =

[
h

(2)
1T (θ)

h
(2)
2T (θ)

]
,

we have that θ
(1)
T , defined as the solution to 0 = h

(1)
T (θ), solves

0 = h
(1)
1T (θ

(1)
T ) =

∂Q1T [θ
(1)
1T ]

∂θ1

+
∂Q2T [θ

(1)
2T , θ̃1T ]

∂ν
+
∂2Q2T [θ̃2T , θ̃1T ]

∂ν∂ν ′
(θ

(1)
1T − θ̃1T ) + αT

∥∥∥θ(1)
T − θ̃T

∥∥∥2

ep1(24)

0 = h
(1)
2T (θ

(1)
T ) =

∂Q2T [θ
(1)
2T , θ̃1T ]

∂θ2

+
∂2Q2T [θ̃2T , θ̃1T ]

∂θ2∂ν ′
(θ

(1)
1T − θ̃1T ) + αT

∥∥∥θ(1)
T − θ̃T

∥∥∥2

ep2 (25)
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and θ
(2)
T , defined as the solution to 0 = h

(2)
T (θ), solves

0 = h
(2)
1T (θ

(2)
T ) =

∂Q1T [θ
(2)
1T ]

∂θ1

+
∂Q2T [ θ

(2)
2T , θ̃1T ]

∂ν
+
∂2Q2T [θ

(2)
2T , θ̃1T ]

∂ν∂ν ′
(θ

(2)
1T − θ̃1T ) + αT

∥∥∥ θ(2)
1T − θ̃1T

∥∥∥2

ep1(26)

0 = h
(2)
2T (θ

(2)
T ) =

∂Q2T [θ
(2)
2T , θ̃1T ]

∂θ2

+
∂2Q2T [θ

(2)
2T , θ̃1T ]

∂θ2∂ν ′
(θ

(2)
1T − θ̃1T ) + αT

∥∥∥θ(2)
1T − θ̃1T

∥∥∥2

ep2 , (27)

for some sequence αT going to infinity slower than
√
T .

Obviously, solving (24) and (25) (respectively, (26) and (27)) to obtain θ
(1)
T (respectively, θ

(2)
T )

is more computationally involved than the estimator θ̃T . However, both θ
(1)
T and θ

(2)
T share with

θ̃T the convenient feature that the cumbersome occurrence of θ1 in Q2T [θ2, θ1] never shows up as
an unknown parameter in the estimating equations, which makes our two-step efficient estimator
computationally friendly in comparison with brute force efficient estimation.

This simplification of the estimating equations is also shared by the MBP estimator proposed
in SFK. With QT [θ, ν(θ)] as in equation (21), the MBP algorithm takes as its starting value θ̃T
and defines a sequence of iterative estimators θ̂

(k)
T , k > 1, by solving

0 =
∂Q1T [θ̂

(k+1)
1T ]

∂θ1

+
∂Q2T [θ̂

(k)
2T , θ̂

(k)
1T ]

∂θ1

,

0 =
∂Q2T [θ̂

(k+1)
2T , θ̂

(k)
1T ]

∂θ2

.

While each iteration of the MBP procedure is computationally simpler than the second-step of
the penalized two-step estimators, the price to pay for this simplicity is two-fold: one, to achieve
efficiency we require k →∞, possibly according to a tuning parameter k = k(T ); two, convergence
of the MBP iterations requires the existence of a local contraction mapping condition, often called
an information dominance condition.

If the information dominance condition is nearly unsatisfied the MBP iterations converge very
slowly. If this condition is not satisfied θ̂

(k)
T will not converge. To deal with such situations FPR

propose a modification of the MBP estimator in SFK that regains a portion of the informa-
tion associated with the occurrence of θ2 in Q2T [θ2, θ1] neglected by the original MBP scheme.

Consequently, FPR define this alternative MBP estimator θ̃
(k)
T as the solution to the following

estimating equations,

0 =
∂Q1T [θ̃

(k+1)
1T ]

∂θ1

+
∂Q2T [θ̃

(k+1)
2T , θ̃

(k)
1T ]

∂θ1

, (28)

0 =
∂Q2T [θ̃

(k+1)
2T , θ̃

(k)
1T ]

∂θ2

. (29)

Note that this estimator is nothing but the MBP estimator conformable to the general definition
(4).

It is straightforward to compare the computational burden associated with the MBP estimator
in (28), (29) and the two-step penalized estimator θ

(1)
T (dubbed P-TS1), as well as the additional
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two-step estimator θ
(1)
T (P ) (dubbed TS1) that arises from neglecting the penalty terms; i.e., the TS1

estimator θ
(1)
T (P ) solves the estimating equations (24, 25) but with αT = 0.9 Firstly, comparing the

MBP estimator and TS1 (resp., P-TS1), the only difference between the two estimators is that
TS1 (resp., P-TS1) entails some minor computational burden associated with the introducing

of a linear function of θ
(1)
1T (this statement holds up to the penalty term for P-TS1). This tiny

additional complexity is the price to pay to get efficiency in two steps instead of fishing for the
limit of an iterative procedure, which, as stated above, may require many iterations depending
on the strength of the local-contraction mapping.

However, from a computational standpoint, when the local contraction mapping is strong the
MBP procedure of SFK is simplest. As the required contraction mapping condition becomes
weaker, the MBP estimator becomes more computationally burdensome.10 In contrast, the two-
step procedures discussed herein do not require a contraction mapping condition and can therefore
yield consistent and efficient estimators in situations where this condition is violated.

In comparison with MBP, the penalized two-step estimator θ
(2)
T (dubbed P-TS2) and the corre-

sponding non-penalized version θ
(2)
T (P ) (dubbed TS2) incurs additional computational complexity

because θ2 occurs within the partial Hessian term in the estimating equations. However, the
P-TS2 (and TS2) estimator is unique in that it only requires a consistent first-step estimator for
θ0

1 and not for θ0
2. In the framework of estimation from the margins, this advantageous property

of TS2 (and P-TS2) can be interpreted as follows. In many multivariate models θ1 can simply be
estimated from the margins and is numerical stable. In contrast, estimation of the dependence
parameters θ2 is often tricky and numerically unstable. Indeed, this is a primary reason why
(unconditional) variance targeting, as initially proposed by Engle and Mezrich (1996), became
popular in the estimation of multivariate GARCH models. Similar reasoning has even led re-
searchers to contemplated correlation targeting in estimation of GARCH-DCC models. From a
targeting standpoint, the P-TS2 (TS2) estimator first obtains a simple estimate θ̃1T of θ0

1 from
the margins, then uses θ̃1T via a “margin targeting” procedure whereby the second-step of the
estimation procedure is stabilized by targeting the consistent marginal parameter estimates.

In contrast to (unconditional) variance targeting, P-TS2 (and TS2) does not incur an efficiency
loss associated with margin targeting. More importantly, P-TS2 (and TS2) need not maintain
the problematic assumption in unconditional variance targeting on the existence of higher order
unconditional moments, which is required in order for variance targeting to yield an asymptotically
normal estimator of the unconditional variance.

In the following subsection, we illustrate the above discussion between the different estimation
procedures using a Gaussian Copula model; see, e.g., Joe (1997), Song (2000),

4.2 Bivariate Gaussian Copula Models

Our goal is to estimate the parameters governing the distribution of yi = (yi,1, yi,2)′. Denoting
the marginal distribution of yi,j as Fj(·;αj), where αj is a vector of unknown parameters, the joint
distribution can be constructed using a copula function C(u1, u2; ρ), where ρ denotes the copula

9Note that, from Proposition 3.1 and Theorems 3.1 and 3.2, when consistent the two-step estimators that
disregards the penalty term will also be asymptotically efficient.

10This statement also holds for the MBP estimator proposed in FPR.
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dependence parameter. In what follows, we assume yi = (yi,1, yi,2)′ follows a bivariate Gaussian
copula with cumulative distribution function (CDF)

C(F1(yi,1;α1), F2(yi,2;α2); ρ) = Φρ(Φ
−1(F1(yi,1;α1)),Φ−1(F2(yi,2;α2))), (30)

where Φρ(·) is the bivariate Gaussian cumulative distribution function with correlation parameter
ρ and Φ(·) is the standard normal CDF. Denote by c(F1(yi,1;α1), F2(yi,2;α2); ρ) the copula density
derived from equation (30). For (u1, u2)′ ∈ (0, 1)2, Song (2000) demonstrates that the density of
the bivariate Gaussian copula is

c(u1, u2; ρ) =
1√

1− ρ2
exp

(
−ρ(z2

1 + z2
2)− 2ρ(z1 · z2)

2(1− ρ2)

)
,

where zj = Φ−1(uj) for j = 1, 2.
Let fj(yi,j;αj) denote the marginal density of yi,j and define θ1 = (α′1, α

′
2)′, θ2 = ρ, with

θ = (θ′1, θ2)′. Inference for θ in the Bivariate Gaussian copula model can be carried out using
maximum likelihood, with corresponding log-likelihood function

QT [θ, ν(θ)] =
T∑
i=1

2∑
j=1

log(fj(yi,j;αj))−
T

2
log(1− ρ2)− ρ

2(1− ρ2)
(ρA(θ1)− 2B(θ1)). (31)

Herein, A(θ1) =
∑T

i=1[zi,1(α1)2+zi,2(α2)2], B(θ1) =
∑T

i=1 zi,1(α1)zi,2(α2), and zi,j(αj) = Φ−1(Fj(yi,j;αj))
for j = 1, 2. The likelihood in (31) is separable and we denote the two pieces

Q1T [θ1] =
T∑
i=1

2∑
j=1

log(fj(yi,j;αj)), and Q2T [θ2, ν(θ)] = −T
2

log(1−ρ2)− ρ

2(1− ρ2)
(ρA(θ1)−2B(θ1)),

where, again, ν(θ) = θ1.

4.2.1 Estimators of θ

Depending on the specification of the marginals fj(·;αj), maximizing QT [θ, ν(θ)] to obtain the

Maximum Likelihood estimator (MLE) θ̂T can be difficult. In these cases a simple two-step esti-
mation approach, the so-called inference from margins (IFM) approach, is often used to estimate θ
(see, e.g., Shih and Louis (1995), Joe (1997) and Patton (2009) for examples and discussion). The
IFM approach first maximizes Q1T [θ1] =

∑T
i=1

∑2
j=1 log(fj(yi,j;αj)) to obtain θ̃1T = (α̃′1T , α̃

′
2T )′,

defined as the solution to

0 =
∂Q1T [θ1]

∂θ1

=

(∑n
i=1

1
f1(yi,1;α1)

∂f1(yi,1;α1)

∂α1∑n
i=1

1
f2(yi,2;α2)

∂f2(yi,2;α2)

∂α2

)
.
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Next, the unknown θ1 in Q2T [θ2, θ1] is replaced with θ̃1T and Q2T [θ2, θ̃1T ] = −T
2

log(1 − ρ2) −
ρ

2(1−ρ2)
(ρA(θ̃1T )− 2B(θ̃1T )) is maximized to obtain θ̃2T = ρ̃T , defined as the solution to

0 =
∂Q2T [θ̃1T , θ̃2T ]

∂θ2

=
Tρ

1− ρ2
− 1

(1− ρ2)2
(ρA(θ̃1T )− (1 + ρ2)B(θ̃1T )).

It is clear from this decomposition that the IMF estimator disregard the information about θ1

contained in
∂Q2T [θ2, θ1]

∂θ1

= −
n∑
i=1

ρ

1− ρ2

(
ρ∂A(θ1)

∂α1
− 2∂B(θ1)

∂α1

ρ∂A(θ1)
∂α2

− 2∂B(θ1)
∂α2

)
.

From the above definitions, we see that the efficient MBP and penalized two-step estimators
obtain efficiency by adding back, in differing combinations, terms associated with ∂Q2T [θ2, θ1]/∂θ1.
MBP accomplishes this task by adding back ∂Q2T [θ2, θ1]/∂θ1 to the estimating equations for θ1

and iterating over the cumbersome occurrences of θ1 (and θ2, depending on the precise MBP

method). On the other hand, the penalized two-step estimator θ
(1)
T (previously dubbed P-TS1)

linearizes ∂Q2T [θ2, θ1]/∂θ1, with respect to the cumbersome occurrence of θ1, around the consistent
estimator θ̃1T , and targets the second-step estimators using the initially consistent θ̃T . The
penalized two-step estimator θ

(2)
T (previously dubbed P-TS2) is similar to P-TS1 but only penalizes

the estimating equations with respect to the margins estimator θ̃1T . Both two-step approaches
have the same asymptotic distribution but can behave differently in finite samples.

The critical regularity condition needed for the MBP estimator to be efficient is the satisfac-
tion of a local contraction mapping condition, also termed the information dominance condition.
However, in the bivariate Gaussian copula model, simulation evidence in SFK and Liu and Luger
(2009) demonstrate that the MBP approach can behave poorly if there is even moderate correla-
tion. Intuitively, this phenomena is present because as ρ increases the portions of the estimating
equations that MBP iterates over become more informative for estimating the parameters. For
ρ large enough the MBP algorithm neglects too much information and yields an inconsistent
estimator.

4.2.2 Example: Exponential Marginals

We now compare the finite sample properties of the MBP approach of SFK and two different
efficient two-step procedures: the penalized two-step estimator P-TS1 and the partially penalized
two-step estimator P-TS2.11 Data for the exercise is generated from the Gaussian copula in the
situation where the marginal densities are exponential: fj(yi,j;αj) = αj exp(−αjyi,j), αj > 0, j =
1, 2.

In particular, the simulation study compares the effects of the correlation parameter and
sample size on the various estimators. For the simulation study we set α1 = .1, α2 = 1 and
consider three different values for the correlation parameter ρ = {.75, .95, .985}. Across the
three values of ρ we consider three different sample sizes T = 100, 200, 300. For each T and
ρ combination we create 1,000 synthetic samples. Note that for ρ greater than approximately

11Additional non-penalized versions of P-TS1 and P-TS2 were also considered. However, results for these
additional estimators are not reported for brevity but are available from the authors upon request.
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.95 the information dominance condition associated with the proposed MBP procedure is no
longer satisfied and we expect the finite sample properties of the MBP estimator to be poor in
comparison with the two-stage estimators.

The estimators are compared in terms of their means, mean squared error (MSE) and mean
absolute error (MAE) across the different sample sizes. We define convergence for the MBP
algorithm as the maximum absolute difference across the parameters being less than 1.0e−05 for
two or more successive iterations. Table 1 reports the averages over the 1,000 synthetic samples
for the mean, MSE and MAE across the three correlation values ρ = {.75, .95, .985}. For the
penalized two-step estimators the penalty term is taken proportional to T 1/4.

For ρ = .75 the MBP algorithm and the two-step estimators are very similar. However, for
larger ρ the penalized two-step methods give smaller MSEs and MAEs than the MBP estimator.
With high correlation values and larger sample sizes the MBP algorithm encounters difficulty since
the matrix driving the updates does not fulfill the IDC. The same behavior is not in evidence for
the two-stage and penalized two-stage estimates, which perform well even for ρ = .985. 12

5 Efficient Two-Step Estimation with Implied States

In this section we analyze situations where θ0 is determined by the law of motion governing a
latent stochastic process of interest {Y ∗t : t ≥ 1}. The latent state variables Y ∗t are unobservable
to the econometrician but are related to observed data Yt through a function h[·, ν0], known up
to the unknown parameters ν0 = ν(θ0), according to the relationship

Yt = h[Y ∗t , ν
0].

We are only interested in situations where Y ∗ 7→ g[Y ∗, ν] is one-to-one for any ν, which implies
that, if ν0 was known Y ∗t could be directly obtained by inverting h[·, ν0]; i.e.,

Yt = h[Y ∗t , ν
0] ⇐⇒ Y ∗t = g[Yt, ν

0]. (32)

When ν(θ0) is unknown, equation (32) defines the implied state (variable) Y ∗t (θ) = g[Yt, ν(θ)].
As has been noted by several authors, such as, e.g., Renault and Touzi (1996), and Pastorello

et al. (2003), the setup in (32) covers many interesting applications in economics and finance.
However, estimation of θ0 is often complicated by the nature of the function h[·, ν] and the
difficulties encountered when transforming the estimation problem from one based on latent states
Y ∗t , to one based on implied states g[Yt, ν(θ)].

In what follows, we demonstrate that the efficient penalized two-step estimator can often
be used to obtain consistent and efficient estimators for θ0 in models with implied states. In
particular, we focus on likelihood models with latent states. While the approach is equally
relevant to so-called Implied stated GMM, we do not present any formal analysis in the name of
space.

12At lower sample sizes and smaller values of ρ, the computational speed of MBP, P-TS1 and P-TS2 are all
roughly equivalent. However, as T increases and/or as ρ increases, the computational speed of P-TS1 and P-TS2

stays the same but increase for MBP.
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5.1 Implied States in Latent Likelihood

Let us now consider the case where the unobservable stochastic process {Y ∗t : t ≥ 1} is drawn
from a transition density that is known up to the unknown θ0, and let

P = {f(·|·; θ) : θ ∈ Θ}

denote the family of transition densities indexed by θ. Denoting the log-likelihood based on the
unobservable latent state variables Y ∗t by

Q∗T [θ] =
1

T

T∑
t=1

`(Y ∗t |Y ∗t−1; θ), where `(Y ∗t |Y ∗t−1; θ) = log(f(Y ∗t |Y ∗t−1; θ)),

the implied states framework utilizes the relationship Yt = h[Y ∗t , ν
0] to transform the estimation

problem from one based on Y ∗t and Q∗T [θ] to one based on Yt. Using the implied states g[Yt, ν(θ)],
obtained by inverting (32) at the value θ, and the Jacobian formula, the infeasible log-likelihood
Q∗T [θ] is transformed into the feasible log-likelihood

QT [θ, ν(θ)] =
1

T

T∑
t=1

`(g[Yt, ν(θ)]|g[Yt−1, ν(θ)]; θ) +
1

T

T∑
t=1

log |Hyg[Yt, ν(θ)]| .

|Hyg[Yt, ν(θ)]| is the determinant of the Jacobian for Y associated with the map Y 7→ g[Y, ν(θ)].
Estimation of θ0 from QT [θ, ν(θ)] is often encountered in estimation of option pricing models,

see, e.g., Renault and Touzi (1996), as well as structural credit risk models, see, e.g., Duan (1994).
Maximization of QT [θ, ν(θ)] is generally much more difficult than would be maximization of Q∗T [θ],
if such maximization were indeed feasible.

It is clear that directly solving

0 = qT [θ, ν(θ)] =
∂QT [θ, ν(θ)]

∂θ
+
∂ν ′(θ)

∂θ

∂QT [θ, ν(θ)]

∂ν

can be cumbersome, as θ shows up in several places within QT [θ, ν(θ)] and in highly nonlinear
ways. While the two-step procedure discussed herein can be applied in this general setting, it is
perhaps more informative to consider precise implementation in a relatively simple example.

5.2 Example: Merton (1974) Credit Risk Model

Suppose that the firm’s debt consists of a zero coupon bond with face value B and maturity date
δ. Letting Vt denote the firm’s unobservable market value at time-t, the firm’s observable equity
price can be interpreted as an European call option written on the firm’s market value with strike
price B and maturity δ; i.e.,

Sδ ≡ max[Vδ −B, 0]. (33)

From (33) the observed equity prices S0, ..., ST can be interpreted as option prices written on the
firm’s unobservable market values V0, ..., VT .

In the simplest case, the firm’s unobservable market value is described as a Geometric Brow-
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nian Motion:
dVt
Vt

= µdt+ σdWt, (34)

where Wt is a standard Brownian motion. Equation (34) allows us to write the conditional
likelihood of the sample path (V1, V2, ..., VT ) given some initial value V0 and historical parameters
(µ, σ). The conditional log-likelihood function of the unobserved asset values is then given by

Q∗T [µ, σ2] = −1

2
ln(2πσ2)− 1

2T

T∑
t=1

(
ln(Vt/Vt−1)− (µ− 1

2
σ2)
)2

σ2
− 1

T

n∑
t=1

ln Vt,

see, e.g., Duan (1994, 2000). Unfortunately, maximum likelihood estimation of (µ, σ) from
Q∗T [µ, σ2] is not feasible since the sample path (V1, V2, ..., VT ) is unobserved.

However, when the dynamics of the firm’s market value are described by (34), the observable
equity values can be related to the unobservable firm values through the Black and Scholes option
pricing formula:

St = VtΦ(dt)−B exp(−r(δ − t))Φ(dt − σ
√
δ − t), (35)

where dt(σ
2) = ln(Vt/B) + (r + 1

2
σ2)(δ − t)/σ

√
δ − t, Φ(·) is the standard normal CDF and r is

the risk-free interest rate assumed to be deterministic and time-invariant. Letting g[·, σ2] denote
the inverse of the Black and Scholes option pricing formula, the unobserved firm values are related
to the observed equity prices through

Vt = g[St, σ
2],

which can be obtained from equation (35) and a given value of σ2. Technically g[·, σ2] depends on
t through the time-to-maturity (δ− t), however, we eschew this dependence in favor of notational
simplicity.

Therefore, even though Vt is unobserved, if σ2 were known Vt could be imputed from Vt =
g[St, σ

2] for each t = 1, ..., T . Given this fact, using Vt = g[St, σ
2] and the Jacobian formula, we

transform the log-likelihood from one based on Vt to one based on St. Following arguments in
Duan (1994), the conditional log-likelihood based on observable equity values is given by

QT [µ, σ2] = −1

2
ln(2πσ2)− 1

2T

T∑
t=1

(
Rt(σ

2)− (µ− 1
2
σ2)
)2

σ2
− 1

T

n∑
t=1

ln g(St, σ
2)− 1

T

T∑
t=1

ln
(
Φ
(
dt(σ

2)
))
,

where implicit returns
Rt(σ

2) = ln(g[St, σ
2])− ln(g[St−1, σ

2]),

can be obtained using the Black and Scholes formula and a given value of σ2. Estimation of
(µ, σ2) then proceeds by maximizing QT [µ, σ2].

Since estimation of µ is not a priority the first-step is often to concentrate out µ and work
with the concentrated log-likelihood

QT [σ2] = −1

2
log(2πσ2)− 1

2T

T∑
t=1

(
Rt(σ

2)− R̄T (σ2)
)2

σ2
− 1

T

T∑
t=1

log
(
g[St, σ

2]
)
− 1

T

T∑
j=1

log Φ
(
dt(σ

2)
)
.
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QT [σ2] is complicated, in several places, by the structural relationship g[St, σ
2]. We denote these

problematic occurrences of σ2 in QT [σ2] due to g[St, σ
2] by ν(σ2); note, ν(σ2) = σ2 and the

difference between the two occurrences of σ2 is for notational purposes. The concentrated log-
likelihood function then becomes

QT [σ2, ν(σ2)] =− 1

2
ln(2πσ2)− 1

2T

T∑
t=1

(
Rt(ν(σ2))− R̄T (ν(σ2))

)2

σ2
− 1

T

T∑
t=1

ln
(
g[St, ν(σ2)]

)
− 1

T

T∑
t=1

ln Φ
(
dt(ν(σ2))

)
.

Defining

σ̃2
T [ν(σ2)] =

1

T

T∑
j=1

(Rj(ν(σ2))− R̄T (ν(σ2)))2 and AT [ν(σ2)] = 2
∂QT [σ2, ν(σ2)]

∂ν

∂ν(σ2)

∂σ2
,

an estimator of σ2 can be obtained as the solution to the log-likelihood first-order conditions

0 = − 1

σ2
+

1

σ4
σ̃2
T [ν(σ2)] + AT [ν(σ2)].

Solving the above equation is equivalent to solving the estimating equation 0 = qT [σ2, ν(σ2)],
where

qT [σ2, ν(σ2)] = σ4AT [ν(σ2)]− σ2 + σ̃2
T [ν(σ2)].

Directly solving 0 = qT [σ2, ν(σ2)] to estimate σ2 can be cumbersome, and a popular alternative,
due to Kealhofer, Mcquown and Vasicek and dubbed the KMV iterative method, is to base
estimation of σ2 on

σ̃2
T [ν(σ2)] =

1

T

T∑
j=1

(Rj(ν(σ2))− R̄T (ν(σ2)))2.

Given a starting value σ̂2(1), for k > 1, the KMV iterative method updates its estimates of σ2 by
calculating

σ̂2(k) = σ̃2
T [ν(σ̂2(k−1))] =

1

T

T∑
t=1

(Rt(ν(σ̂2(k−1)))− R̄T (ν(σ̂2(k−1))))2,

and iterating till convergence. This iterative procedure is often much simpler than one based on
solving qT [σ2, ν(σ2)] = 0 since it completely neglects the influence of AT [ν(σ2)] on the estimates
of σ2. FPR demonstrate that the iterative KMV approach coincides with the latent backfitting
estimator proposed by Pastorello et al. (2003) (hereafter, PPR).

While much simpler than MLE, the KMV/PPR estimator is inefficient. To this end, FPR
propose a MBP estimator that maintains the computational advantages of KMV/PPR but that is
asymptotically equivalent to the MLE. Given an initial estimator σ̃2, at the k-th iteration (k > 1)
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the MBP estimator solves the following second-order equation in σ2:

σ4AT [ν(σ̂2(k−1))]− σ2 + σ̃2
T [ν(σ̂2(k−1))] = 0. (36)

An alternative to the KMV/PPR and MBP approaches is the general two-step approach dis-
cussed in Section 3.1. The two-step approach linearizes the estimating equations qT [σ2, ν(σ2)],
with respect to the cumbersome occurrences of ν(σ2) = σ2, around an initially consistent estima-
tor. For σ̃2 an initial estimator of σ2 and, for αT a penalty term, the general penalized two-step
approach estimates σ2 by solving13

0 = σ4AT [ν(σ̃2)]− σ2 + σ̃2
T [ν(σ̃2)] + [∂AT [ν(σ̃2)]/∂ν]σ4(σ2 − σ̃2)

+ [∂σ̃2
T [ν(σ̃2)]/∂ν](σ2 − σ̃2) + αT (σ2 − σ̃2)2. (37)

Note that the two-step estimator in equation (37) requires solving a third-order equation
in σ2, whereas the MBP estimator in equation (36) solves a second-order equation. However,
the two-step estimator solves only one third-order equation in σ2, whereas the MBP estimator
requires solving (potentially) many second-order equations in σ2. The computational merits of
both approaches will depend on the quality of the first-step estimator σ̃2 and, in the case of MBP,
the strength of the contraction mapping guiding the iterations. For both estimation procedures
a convenient starting value can be obtained using the KMV/PPR estimation procedure.

5.3 Simulation Example

To illustrate the usefulness of the efficient two-stage method in the context of the Merton credit
risk model we devise a small Monte Carlo experiment comparing the MBP estimator with the
penalized two-step estimator in (37). We construct 1,000 synthetic samples of 250 and 500 time
series observations for daily returns. The firm’s value trajectory is initialized at 10, 000 and the
face value of the firm’s debt is fixed at B = 9, 000. The parameters are set to µ = .01 and
σ2 = .09. We focus on estimation of σ2 only and so we work directly with the concentrated
log-likelihood function for both estimators.

The MBP estimator is obtained using a Newton-Raphson approach to solve equation (36).
The penalized two-step estimator is obtained using a mix of bisection and interpolation and the
penalty term satisfies αT ∝ T 1/4. Both methods use starting values obtained from the KMV/PPR
method. Across the 1,000 synthetic samples we calculate the mean, median, root mean squared
error (RMSE) and mean absolute error (MAE) for the MBP estimator and the two-step estimator.

The results of the Monte Carlo experiments are contained in Table 2. Table 2 demonstrates
that the two-step estimator and the MBP estimator have similar finite sample properties, with
the penalized two-step estimator having significantly smaller RMSE and MAE.

13A non-penalized version of this estimator displays similar performance. The results are available from the
authors upon request.
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Table 2: Results for penalized two-step (P-TS1) and MBP estimators in the Merton credit Risk
model. MAE is the median absolute error across the simulations multiplied by 100, and RMSE
is the root mean squared error across the simulation multiplied by 100.

P-TS

T Parameter Median Mean. MAE RMSE
T=250 σ = 0.09 0.0895 0.0890 5.9292 7.5341
T=500 σ = 0.09 0.0898 0.0895 4.6715 5.6284

MBP

T Parameter Median Mean MAE RMSE
T=250 σ = 0.09 0.0892 0.0888 8.1746 9.8406
T=500 σ = 0.09 0.0894 0.0898 6.7727 6.6129

6 Conclusion

The development of nonlinear dynamic models in financial econometrics has given rise to estima-
tion problems that are often viewed as computationally difficult. This potential computational
burden has led to the development of computationally light estimators whose starting point is
often a simple consistent estimator of some instrumental parameters. This first step estimator
can be used either for targeting the structural parameters (Indirect Inference a la Gourieroux,
Monfort and Renault (1993)) or for simplifying estimating equations for the parameters of inter-
est. More often than not, this simplification comes at the price of some loss in efficiency. Not
only do two-step estimators have an asymptotic distribution that depends (in general) on the
distribution of the first step estimator but even iterations may not be able to restore efficiency.

FPR demonstrate that the aforementioned inefficiency is caused by disregarding the informa-
tion contained in (some of) the awkward occurrences of the parameters in the criterion function.
Popular iterative (or two-step) procedures are often devised precisely to allow us to overlook
these awkward occurrences (possibly) at the cost of efficiency. The goal of FPR was to propose
efficient iterative estimation procedures whose computational cost, at each step of the iteration,
is no higher than those of popular inefficient inference procedures. This goal was made possible
by the fact that their algorithms iterate on the occurrences of the parameters that researchers
would like to overlook. In this way, the informational content of these occurrences is no longer
ignored, at least in the limit of the iterative procedure.

In the present paper, we replace the method of iteration by a partial linearization of the esti-
mating equations around a first step consistent estimator for the parameters that are difficult to
deal with. On the one hand, our approach is not required to compute a sequence of estimators
but only a second step estimator, which generally maintains the computational simplicity asso-
ciated with each step of the FPR iterative estimators. Moreover, while consistency of the FPR
iterations may break down when their so-called Information Dominance condition is not fulfilled,
our approach does not require such a condition.

On the other hand, linearization, when it is only partial, may be a risky exercise because the
solution of the (partly) linearized estimating equation may be inconsistent. To hedge against this
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risk, we develop a strategy of targeting first step consistent estimators, in the spirit of indirect
inference. However, in contrast with indirect inference, targeting is for us only a complementary
tool for enforcing consistency. In particular, we don’t want the asymptotic variance of our second
step estimator to be inefficiently driven by the first step estimator used for targeting. This is the
reason why we must elicit a tuning parameter (the penalty weight) that goes to infinity, in order
to enforce consistency, but not too fast in order to avoid the efficiency loss that would be produced
by contamination of the second step estimator by the inefficiency of the first step estimator.

Finally, it is worth noting that the strategy developed in this paper may be of more general
interest. While indirect inference has demonstrated the usefulness of targeting instrumental
parameters for simple identification of structural parameters of interest, the recent literature on
multivariate GARCH has stressed that targeting some unconditional moments may be a safe way
to hedge against the risk of numerical instability associated with supposedly efficient estimators.
In a companion paper, we demonstrate that for multivariate GARCH models, in contrast to
existing targeting strategies, our penalization/targeting approach can deliver numerically stable
estimates with good finite sample properties without the need to sacrifice efficiency. Moreover, as
pointed out in our copula example, in addition to unconditional moments, the relatively simple
and robust estimators of the marginal distributions can often provide a useful target.
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A Regularity Conditions for Extremum Estimators

In all the applications considered in this paper, the estimating equations fT (θ) = qT [θ, ν(θ)] of
interest are obtained as first-order conditions of some extremum estimation program:

θ̂T = arg max
θ∈Θ

QT [θ, ν(θ)] (38)

so that

qT [θ, ν(θ)] =
∂QT [θ, ν(θ)]

∂θ
+
∂ν ′(θ)

∂θ

∂QT [θ, ν(θ)]

∂ν

It is worth noting that by contrast with the possibly more general framework mentioned in
the introduction, we have introduced a simplification by considering only a fixed known function
ν(θ) instead of a more general sample dependent function νT (θ). This may look restrictive since
the function νT (θ) may typically show up when profiling out some specific occurrences of some
components of θ and thus be computed as data dependent. However, it must be kept in mind
that the difference is more notational than real since a general objective function Q∗T [θ, νT (θ)]
may always be rewritten QT [θ, θ] with a new function defined from Q∗T [., .] and νT (.) by:

QT [θ, θ∗] = Q∗T [θ, νT (θ∗)] (39)

This remark actually shows that we could always choose ν(θ) = θ. We prefer to keep the
notation ν(θ) for the sake of notational transparency. In most cases, ν(θ) will be nothing but
a sub-vector of θ. However, while we will keep in mind that (38) is actually not less general
than (39), we will make explicit how the regularity conditions must be interpreted when νT (θ) is
actually a sample-dependent consistent estimator of some underlying unknown true ν0(θ).

In the simple set up of (38),the maintained regularity conditions are the following.

R1. The following are satisfied:

30



(1) Θ ⊂ Rp and Γ ⊂ Rq are two compact parameters spaces.

(2) ν(.) is a continuous function from Θ to Γ, twice continuously differentiable on the interior
of Θ.

(3) θ0 ∈ Int(Θ), interior set of Θ, and ν0 = ν(θ0) ∈ Int(Γ), interior set of Γ.

R2. QT [θ, ν] converges in probability towards a non-stochastic function Q∞[θ, ν] uniformly on
(θ, ν) ∈ Θ× Γ.

R3. The function θ 7−→ Q∞[θ, ν(θ)] attains a unique global maximum on Θ at θ = θ0, unique
solution of the equations q∞[θ, ν(θ)] = 0, where

q∞[θ, ν(θ)] =
∂Q∞[θ, ν(θ)]

∂θ
+
∂ν ′(θ)

∂θ

∂Q∞[θ, ν(θ)]

∂ν

R4. The function QT [θ, ν] is twice continuously differentiable on Int(Θ)× Int(Γ).

R5. The following are satisfied

(1) With λ′ = (θ′, ν ′), the second derivative ∂2QT (λ)
∂λ∂λ′

converges uniformly on λ ∈ Int(Θ)× Int(Γ)
towards a non stochastic matrix D(λ).

(2) The matrix Dθθ(λ
0) = plim

T→∞

∂2QT (λ0)
∂θ∂θ′

(where λ0′ = (θ0′, ν0′)) is negative definite.

R6.
√
T
[
∂QT (λ0)

∂θ
+ ∂ν′

∂θ
(θ0).∂QT (λ0)

∂ν

]
converges in distribution towards a normal distribution with

zero mean and variance Ω.

It is worth reinterpreting these regularity conditions when the objective function QT is actually
deduced from another function Q∗T as in (39). Note that in this case, ν(.) is just the identity
function (ν(θ) = θ,Θ = Γ), making trivial all maintained assumptions about ν. However, it must
be kept in mind that the role of the data dependent function νT (.) will typically be the consistent
estimation of some true unknown function ν0(.). Then, the above regularity conditions can be
rewritten identical by only replacing the functions QT [θ, ν] and ν(.) by the functions Q∗T [θ, ν]
and ν0(.) . Only the limit arguments involving the function ν0(.) have to be revisited to take into
account its consistent estimation. We will basically rewrite condition R2 and R6 as follows:
R2*. The following are satisfied:

(1) Q∗T [θ, ν] converges in probability towards a non-stochastic function Q∗∞[θ, ν] uniformly on
(θ, ν) ∈ Θ× Γ.

(2) νT (θ) converges in probability towards ν0(θ) uniformly on θ ∈ Θ.

R6*.
√
T
[
∂QT (θ0,θ0)

∂θ
+ ∂QT (θ0,θ0)

∂θ∗

]
, where QT [θ, θ∗] = Q∗T [θ, νT (θ∗)],converges in distribution

towards a normal distribution with zero mean and variance Ω.
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Obviously, a more primitive condition for R6* should be based of an assumption of joint
asymptotic normality, involving not only the score function but also

√
T (νT (θ0)− ν0(θ0)) whose

impact on the asymptotic distribution would be deduced from a Taylor expansion

√
T
∂Q∗T (θ0, νT (θ0))

∂λ
=
√
T
∂Q∗T (θ0, ν0(θ0))

∂λ
+
∂2Q∗T (θ0, ν0(θ0))

∂λ∂ν ′
.
√
T
(
νT (θ0)− ν0(θ0)

)
While this more specific set up would not introduce any theoretical complication, we omit it
throughout for sake of exposition simplicity.

B Proofs

B.1 Proof of Theorem 2.1

First, define the infeasible estimator θ̂∗T = arg maxθ∈Θ Q̃
0
T [θ, ν̃T ], where

Q̃0
T [θ, ν̃T ] = QT [θ, ν̃T ] +

∂QT [θ, ν̃T ]

∂ν ′
. [ν(θ)− ν̃T ]− 1

2
[ν(θ)− ν̃T ]′ JT (θ0) [ν(θ)− ν̃T ] .

The proof proceeds in two parts.
Part (i) Asymptotic equivalence between θ̂T and θ̂∗T :

The first-order conditions that characterize θ̂∗T can be written q∗T [θ̂∗T , ν̃T ] = 0 with

q∗T [θ, ν̃T ] =
∂QT [θ, ν̃T ]

∂θ
+
∂2QT [θ, ν̃T ]

∂θ∂ν ′
. [ν(θ)− ν̃T ] +

∂ν ′(θ)

∂θ
.
∂QT [θ, ν̃T ]

∂ν ′
− ∂ν ′(θ)

∂θ
JT (θ0) [ν(θ)− ν̃T ]

Adding and subtracting
∂ν ′(θ)

∂θ

∂2QT [θ, ν̃T ]

∂ν∂ν ′
[ν(θ)− ν̃T ]

within the definition of q∗T [θ, ν(θ)], using the definition of qT [θ, ν(θ)] in (2), and grouping terms
yields the following equivalent definition

q∗T [θ, ν̃T ] = qT [θ, ν̃T ] +
∂qT [θ, ν̃T ]

∂ν ′
. [ν(θ)− ν̃T ]− ξT (θ)

with

ξT (θ) =

[
∂ν ′(θ)

∂θ

∂2QT [θ, ν̃T ]

∂ν∂ν ′
+
∂ν ′(θ)

∂θ
JT (θ0)

]
[ν(θ)− ν̃T ]

Hence,

0 = qT [θ̂∗T , ν̃T ] +
∂qT [θ̂∗T , ν̃T ]

∂ν ′
.
[
ν(θ̂∗T )− ν̃T

]
− ξT (θ̂∗T )

with
ξT (θ̂∗T ) = oP

(
1/
√
T
)

by virtue of Assumption A3, since θ̂∗T is
√
T -consistent. Whenever consistent, an estimator θ̊T
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solution of
hT (θ̊T ) = 0

with

hT (θ) = qT [θ, ν̃T ] +
∂qT [θ, ν̃T ]

∂ν ′
. [ν(θ)− ν̃T ]

is asymptotically equivalent to θ̂T . Thus, by application of Theorem 3.3 of Pakes and Pollard
(1989), it is also the case for a solution θ̂∗T of

hT (θ̂∗T ) = oP

(
1/
√
T
)
.

Note that we can apply Theorem 3.3 of Pakes and Pollard (1989) in particular because, by
virtue of Assumptions A2 and A3,

√
ThT (θ0) is asymptotically normal.

Part (ii): Asymptotic equivalence between θ̂∗T and θ̂extT

By definition, θ̂extT is solution of first-order conditions:

gT (θ̂extT ) = 0

such that
gT (θ̂∗T ) = oP

(
1/
√
T
)
,

since gT (θ̂∗T ) is a p-dimensional vector whose component j = 1, ..., p is[
ν(θ̂∗T )− ν̃T

]′
JjT (θ̂∗T )

[
ν(θ̂∗T )− ν̃T

]
.

where Jj;T (θ) stands for the matrix of partial derivatives with respect to θj of all the coefficients
of the matrix JT (θ). Then, the announced asymptotic equivalence follows again by application of
Theorem 3.3 of Pakes and Pollard (1989).

B.2 Proof of Proposition 3.1

Step 1: We show that θ̃PT is a consistent estimator of θ0.

By definition:

0 = qT [θ̃PT , ν(θ̃T )] +
∂qT
∂ν ′

[θ̃PT , ν(θ̃T )]
∂ν

∂θ′
(θ̃T )(θ̃PT − θ̃T ) + αT

∥∥∥θ̃PT − θ̃T∥∥∥2

ep (40)

Since the parameter space is compact, we only have to show that for any subsequence of θ̃PT that
converges in probability towards some limit value θ̄, we necessarily have θ̄ = θ0. By the regularity
conditions (continuity and uniform convergence) we deduce from (40) that

0 = q∞[θ̄, ν(θ0)] +
∂q∞
∂ν ′

[θ̄, ν(θ0)]
∂ν

∂θ′
(θ0)(θ̄ − θ0) + plim

T→∞
αT

∥∥∥θ̃PT − θ̃T∥∥∥2

ep. (41)

Since plim
T→∞

{
θ̃T

}
= θ0 and limT=∞ αT =∞, (41) implies that plim

T→∞

{
θ̃PT

}
= θ0.
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Step 2: We show that

θ̂T − θ̃PT = OP

(∥∥∥fT (θ̂T )− h̃PT (θ̂T )
∥∥∥) = OP

(∥∥∥h̃PT (θ̂T )
∥∥∥)

This result is a direct consequence of Robinson (1988) Theorem 1 if we can show that the
function h̃PT (θ) is conformable to Robinson’s Assumption A2. We have

∂h̃PT (θ)

∂θ′
=

∂qT [θ, ν(θ̃T )]

∂θ′
+

∂

∂θ′

[
∂qT
∂ν ′

[θ, ν(θ̃T )]

] [
∂ν

∂θ′
(θ̃T )(θ − θ̃T )⊗ Idp

]
+
∂qT
∂ν ′

[θ, ν(θ̃T )]
∂ν

∂θ′
(θ̃T ) + 2αT

(
θ − θ̃T

)′
where, for a (p×q) matrix A whose coefficients are functions of θ, we define ∂A/∂θ′ as the (p×qp)
matrix [

∂A1

∂θ′
∂A2

∂θ′
... ∂Aq

∂θ′

]
where A1, A2, ..., Aq stands for the q columns of the matrix A. Since , by assumption,

∥∥∥θ̃T − θ0
∥∥∥ =

oP (1/αT ), we deduce that, under regularity conditions

P lim
∂hT (θ0)

∂θ′
=
∂q∞[θ0, ν(θ0)]

∂θ′
+
∂q∞
∂ν ′

[θ0, ν(θ0)]
∂ν

∂θ′
(θ0) = F,

that is by assumption a non-singular matrix. Therefore, we get Assumption A2 of Robinson
(1988) under standard regularity conditions.

Step 3: We show that

θ̂T − θ̃PT = OP

(
αT

∥∥∥θ̂T − θ̃T∥∥∥2
)
.

We have

fT (θ̂T ) = qT [θ̂T , ν(θ̂T )]

= qT [θ̂T , ν(θ̃T )] +
∂qT
∂ν ′

[θ̂T , ν(θ̃T )]
∂ν

∂θ′
(θ̃T )(θ̂T − θ̃T ) +OP

(∥∥∥θ̂T − θ̃T∥∥∥2
)

= h̃PT (θ̂T ) +OP

(∥∥∥θ̂T − θ̃T∥∥∥2
)
− αT

∥∥∥θ̂T − θ̃T∥∥∥2

ep.

Therefore, ∥∥∥fT (θ̂T )− h̃PT (θ̂T )
∥∥∥ = OP

(
αT

∥∥∥θ̂T − θ̃T∥∥∥2
)
,

which gives the announced result by using the result of Step 2.
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B.3 Proof Theorem 3.1

We show that the proof of Proposition 3.1. goes through with minor changes. The proof of
consistency (Step 1) is the same except that equation (41) must now be replaced by

0 = q∞[θ̄, ν(θ0)] +
∂q∞
∂ν ′

[θ0, ν(θ0)]
∂ν

∂θ′
(θ0)(θ̄ − θ0) + plim

T→∞

{
αT

∥∥∥θ∗∗T − θ̃T∥∥∥2

ep

}
(42)

Obviously, the same consistency argument is a fortiori still valid. Since plim
T→∞
{θ̃T} = θ0 and

αT →∞, (42) implies that plim
T→∞
{θ(1)

T } = θ0. With this new way to partially linearize, the Jacobian

of the estimating equation is simplified as follows

∂h
(1)
T (θ)

∂θ′
=
∂qT [θ, ν(θ̃T )]

∂θ′
+
∂qT
∂ν ′

[θ̃T , ν(θ̃T )]
∂ν

∂θ′
(θ̃T ) + 2αT

(
θ − θ̃T

)′
Thus, we still have

lim
∂h

(1)
T (θ0)

∂θ′
=
∂q∞[θ0, ν(θ0)]

∂θ′
+
∂q∞
∂ν ′

[θ0, ν(θ0)]
∂ν

∂θ′
(θ0) = F

and thus we can prove a Step 2 exactly as in Proposition 3.1. This Step 2 will tell us that

θ̂T − θ∗∗T = OP

(∥∥∥fT (θ̂T )− h∗T (θ̂T )
∥∥∥) .

We already know from Proposition 3.1 that∥∥∥fT (θ̂T )− h̃PT (θ̂T )
∥∥∥ = OP

(
αT

∥∥∥θ̂T − θ̃T∥∥∥2
)
.

Thus, the triangle inequality will give the result if we can also show that∥∥∥h̃PT (θ̂T )− h(1)
T (θ̂T )

∥∥∥ = OP

(
αT

∥∥∥θ̂T − θ̃T∥∥∥2
)

We have

h̃PT (θ̂T )− h(1)
T (θ̂T ) =

[
∂qT
∂ν ′

[θ̂T , ν(θ̃T )]− ∂qT
∂ν ′

[θ̃T , ν(θ̃T )]

]
∂ν

∂θ′
(θ̃T )(θ̂T − θ̃T )

Assuming that the initial estimating equations qT [θ, ν] are twice continuously differentiable
on the interior of the compact set Θ× Γ (see regularity conditions in appendix), we know that:∥∥∥∥∂qT∂ν ′ [θ̂T , ν(θ̃T )]− ∂qT

∂ν ′
[θ̃T , ν(θ̃T )]

∥∥∥∥ = OP

(∥∥∥θ̂T − θ̃T∥∥∥)
Therefore ∥∥∥h̃PT (θ̂T )− h(1)

T (θ̂T )
∥∥∥ = OP

(∥∥∥θ̂T − θ̃T∥∥∥2
)

= OP

(
αT

∥∥∥θ̂T − θ̃T∥∥∥2
)
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since αT goes to infinity.

B.4 Proof of Theorem 3.2

We show that the proof of Proposition 3.1. goes through with suitable changes. The proof of
consistency (Step 1) is the same except that equation (41) must now be replaced by:

0 = q∞[θ̄, ν(θ0)] +
∂q∞
∂ν ′

[θ̄, ν(θ0)](ν(θ̄)− ν(θ0) + plim
T→∞

{
αT

∥∥∥ν(θ
(2)
T )− ν̃T

∥∥∥2

ep

}
(43)

Obviously, the same kind of consistency argument is still valid. Since plim
T→∞
{ν̃T} = ν(θ0) and

limT→∞ αT =∞, (43) implies that plim
T→∞

{
ν(θ

(2)
T )
}

= ν(θ̄) = ν(θ0). Therefore we must have

0 = q∞[θ̄, ν(θ0)] = q∞[θ̄, ν(θ̄)]

from which we deduce θ̄ = θ0 by virtue of Assumption B2.
To get Step 2, we now compute the Jacobian of the estimating equations

∂h
(2)
T (θ)

∂θ′
=

∂qT [θ, ν̃T ]

∂θ′
+

∂

∂θ′

[
∂qT
∂ν ′

[θ, ν̃T ]

]
[(ν(θ)− ν̃T )⊗ Idp]

+
∂qT
∂ν ′

[θ, ν̃T ]
∂ν

∂θ′
(θ) + 2αT

[
[ν(θ)− ν̃T ]′

∂ν

∂θ′
(θ)ep

]
ep

Thus, we still have

lim
T→∞

∂h
(2)
T (θ0)

∂θ′
=
∂q∞[θ0, ν(θ0)]

∂θ′
+
∂q∞
∂ν ′

[θ0, ν(θ0)]
∂ν

∂θ′
(θ0) = F

and thus we can prove a Step 2 exactly as in Proposition 3.1. This Step 2 will tell us that

θ̂T − θ(2)
T = OP

(∥∥∥fT (θ̂T )− h(2)
T (θ̂T )

∥∥∥)
To get the announced result, we now (Step 3) need to show that∥∥∥fT (θ̂T )− h(2)

T (θ̂T )
∥∥∥ = OP

(
αT

∥∥∥ν(θ̂T )− ν̃T
∥∥∥2
)

We then have the following, which gives the announced result,

fT (θ̂T ) = qT [θ̂T , ν(θ̂T )]

= qT [θ̂T , ν̃T ] +
∂qT
∂ν ′

[θ̂T , ν̃T ].(ν(θ̂T )− ν̃T ) +OP

(∥∥∥ν(θ̂T )− ν̃T
∥∥∥2
)

= h
(2)
T (θ̂T ) +OP

(∥∥∥ν(θ̂T )− ν̃T
∥∥∥2
)
− αT

∥∥∥ν(θ̂T )− ν̃T
∥∥∥2

ep.
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