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Bootstrap prediction intervals for factor models

Silvia Gongalves’, Benoit Perron’, Antoine Djogbenou®

Résumé/abstract

We propose bootstrap prediction intervals for an observation h periods into the future and its
conditional mean. We assume that these forecasts are made using a set of factors extracted from a
large panel of variables. Because we treat these factors as latent, our forecasts depend both on
estimated factors and estimated regression coefficients. Under regularity conditions, Bai and Ng
(2006) proposed the construction of asymptotic intervals under Gaussianity of the innovations. The
bootstrap allows us to relax this assumption and to construct valid prediction intervals under more
general conditions. Moreover, even under Gaussianity, the bootstrap leads to more accurate intervals
in cases where the cross-sectional dimension is relatively small as it reduces the bias of the OLS
estimator as shown in a recent paper by Gongalves and Perron (2014).

Mots clés/keywords : factor model, bootstrap, forecast, conditional mean
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1 Introduction

Forecasting using factor-augmented regression models has become increasingly popular since
the seminal paper of Stock and Watson (2002). The main idea underlying the so-called diffusion
index forecasts is that when forecasting a given variable of interest, a large number of predictors
can be summarized by a small number of indexes when the data follows an approximate factor
model. The indexes are the latent factors driving the panel factor model and can be estimated
by principal components. Point forecasts can be obtained by running a standard OLS regression
augmented with the estimated factors.

In this paper, we consider the construction of prediction intervals in factor-augmented regres-
sion models using the bootstrap. In particular, our main contribution is to show the consistency
of bootstrap intervals for a future target variable and its conditional mean. Our results allow
for the construction of bootstrap prediction intervals without assuming Gaussianity and with
better finite-sample properties than those based on asymptotic theory.

To be more specific, suppose that y;, denotes the variable to be forecast (where h is the
forecast horizon) and let X; be a N-dimensional vector of candidate predictors. We assume

that v, follows a factor-augmented regression model,

yt+h:a1Ft+/8/Wt+8t+h7 tzl,...,T—h, (1)



where W; is a vector of observed regressors (including for instance lags of y;) which jointly with
F; help forecast y;.5. The r-dimensional vector F; describes the common latent factors in the
panel factor model,

Xit:)\;Ft+eit7 izl,...,N,tzl,...,T, (2)

where the r x 1 vector \; contains the factor loadings and e;; is an idiosyncratic error term.

The goal is to forecast yry, or its conditional mean yrinr = o' Fr + B'Wr using
{(ye, Xe, Wy) st =1,...,T}, the available data at time T'. Since factors are not observed, the
diffusion index forecast approach typically involves a two-step procedure: in the first step we
estimate F; by principal components (yielding ﬁ’t) and in the second step we regress ;.5 on
W, and Ft to obtain the regression coefficients. The point forecast is then constructed as
Ur+hT = & Fr + 3/WT. Because we treat factors as latent, point forecasts depend both on
estimated factors and regression coefficients. These two sources of parameter uncertainty must
be accounted for when constructing prediction intervals and confidence intervals, as shown by
Bai and Ng (2006).

Under regularity conditions, Bai and Ng (2006) derived the asymptotic distribution of re-
gression estimates and the corresponding forecast errors and proposed the construction of as-
ymptotic intervals. Our motivation for using the bootstrap as an alternative method of inference
is twofold. First, the finite sample properties of the asymptotic approach of Bai and Ng (2006)
can be poor, especially if IV is not sufficiently large relative to 7. This was recently shown by
Gongalves and Perron (2014) in the context of confidence intervals for the regression coefficients,
and as we will show below, the same is true in the context of prediction intervals. In particular,
estimation of factors leads to an asymptotic bias term in the OLS estimator if /T /N — ¢ and

¢ # 0. Gongalves and Perron (2014) proposed a bootstrap method that removes this bias and



outperforms the asymptotic approach of Bai and Ng (2006). Second, the bootstrap allows for
the construction of prediction intervals for y7., that are consistent under more general assump-
tions than the asymptotic approach of Bai and Ng (2006). In particular, the bootstrap does
not require the Gaussianity assumption on the regression errors that justifies the asymptotic
prediction intervals of Bai and Ng (2006). As our simulations show, prediction intervals based
on the Gaussianity assumption perform poorly when the regression error is asymmetrically
distributed whereas the bootstrap prediction intervals do not suffer significant size distortions.

We apply our procedure to forecasting inflation changes using quarterly observations on
the US GDP deflator for the period 1973-2014. The resulting bootstrap intervals differ in
interesting ways from the asymptotic ones in specific periods. In particular, the 95% equal-
tailed percentile-t bootstrap intervals are shifted downwards and lie entirely below 0 following
the financial crisis of 2008 and during the last quarter of 2011. These periods were marked by
a significant concern of deflation. Our intervals are more consistent with such concerns than
the asymptotic ones which include some probability of increasing inflation.

The remainder of the paper is organized as follows. Section 2 introduces our forecasting
model and considers asymptotic prediction intervals. Section 3 describes two bootstrap predic-
tion algorithms. Section 4 presents a set of high level assumptions on the bootstrap idiosyncratic
errors under which the bootstrap distribution of the estimated factors at a given time period is
consistent for the distribution of the sample estimated factors. These results together with the
results of Gongalves and Perron (2014) and Djogbenou, Gongalves, and Perron (2014) regard-
ing inference on the coefficients are used in Section 5 to show the asymptotic validity of wild
bootstrap prediction intervals. Section 6 presents our simulation experiments, while Section 7

presents an empirical illustration of our methods. Finally, Section 8 concludes. Mathematical



proofs appear in the Appendix.

2 Prediction intervals based on asymptotic theory

This section introduces our assumptions and reviews the asymptotic theory-based prediction

intervals proposed by Bai and Ng (2006).

2.1 Assumptions

/
Let 2z, = ( F W] ) , where z; is p x 1, with p = r + ¢. Following Bai and Ng (2006), we

make the following assumptions.
Assumption 1
(a) E|F|* <M and %Zle FyF} =" ¥ > 0, where X is a non-random 7 X r matrix.

(b) The loadings A; are either deterministic such that ||\;|| < M, or stochastic such that

E||A]|* < M. In either case, A/N —F %, > 0, where ¥ is a non-random matrix.
(c) The eigenvalues of the r x r matrix (XX ) are distinct.
Assumption 2
(a) E(ey) =0, E|ey|" < M.

(b) E(eirejs) = 0Oijus, |oijus| < iy for all (t,s), |oij1s] < 745 for all (¢,7). Furthermore,
Zle Tis < M, for each t, and w7 Dt Tiges| < M.

4
(c) For every (t,s), E|N~'/2 Zf\il (eireis — E (eyeis))| < M.

(d) ﬁ Zts,l,u Zig‘ |OOU (eiteisa €jl€ju)| <M < oo

5



(e) For each t, \/LN Zfil Nieiw —¢ N (0,T;), where T'y = limy .o, Var (\/LN Zf\il )\ieit> > 0.

Assumption 3 The variables {\;}, {F;} and {e;} are three mutually independent groups.

Dependence within each group is allowed.
Assumption 4
(a) E(en) =0 and E |eg4n]* < M.

(b) E (ersnlvt, 2, Y11, 2t-1,...) = 0 for any h > 0, and (2}, &;) are independent of the idiosyn-

cratic errors e; for all (i, s,t).
(¢) Ellz|' < Mand 237 22 =7 2., > 0.

2
(d) As T — oo, \/LT ST ziern =4 N (0,Q), where E ‘ \/LT Sl zt&tHhH < M, and

Q = limy_o Var (\/%f Zz:lh zt5t+h) > 0.

Assumptions 1 and 2 are standard in the approximate factors literature, allowing in par-
ticular for weak cross sectional and serial dependence in e; of unknown form. Assumption 3
assumes independence among the factors, the factor loadings and the idiosyncratic error terms.
We could allow for weak dependence among these three groups of variables at the cost of intro-
ducing restrictions on this dependence. Assumption 4 imposes moment conditions on {&;,},
on {z} and on the score vector {z;..p}. Part c) requires {z;2;} to satisfy a law of large num-
bers. Part d) requires the score to satisfy a central limit theorem, where € denotes the limiting
variance of the scaled average of the scores. We generalize the form of the covariance matrix
assumed in Bai and Ng (2006) to allow for serial correlation as this will generally be the case

when the forecast horizon is greater than 1.



2.2 Normal-theory intervals

As described in Section 1, the diffusion index forecasts are based on a two step estimation
procedure. The first step consists of extracting the common factors F, from the N-dimensional
panel X;. In particular, given X, we estimate I and A with the method of principal components.
F is estimated with the T x r matrix F = ( F, ... Fr )/ composed of /T times the

eigenvectors corresponding to the r largest eigenvalues of X X'/T'N (arranged in decreasing

order), where the normalization %F = I, is used. The matrix containing the estimated loadings

~ ~ ~ \/ ~w /~ ~\—1 ~
mtha1A::(Ah.”,AN) :;XQP(Fqﬁ — X'FT.

/
In the second step, we run an OLS regression of y;,, on 2; = ( E W/ > , i.e. we compute

[N

S
Il

t=1

T—h “lp_p
= <Z 31522) Z ZeYt4h, (3)
t=1

Rey)

Wheregispx 1 withp=1r+44q.
Suppose the object of interest is Y747, the conditional mean of yr,, = o/ Fr+ B'Wr+erin

at time 7T". The point forecast is 7 pr = & Fr + B/WT and the forecast error is given by

~ 1 o iy 1 rrr— n
Y1r+hT — yT+h|T = ﬁZTﬁ <(5 - (5) + \/—NOé H 1\/N (FT - HFT> 3 (4)

/
where § = < oHL B > is the probability limit of 6. The matrix H is defined as

- F'FAA
H=V"1
v T N

(5)

where V is the r x r diagonal matrix containing on the main diagonal the r largest eigenvalues



of XX'/NT, in decreasing order (cf. Bai (2003)). It arises because factor models are only
identified up to rotation, implying that the principal component estimator F, converges to
HF,, and the OLS estimator & converges to H Va. It must be noted that forecasts do not
depend on this rotation since the product is uniquely identified.

The above decomposition shows that the asymptotic distribution of the forecast error de-
pends on two sources of uncertainty: the first is the usual parameter estimation uncertainty
associated with estimation of a and 3, and the second is the factors estimation uncertainty.
Under Assumptions 1-4, and assuming that /7' /N — 0 and VN /T — 0 as N,T — oo, Bai

and Ng (2006) show that the studentized forecast error

Y1+hT _AyT—l-th . N(0,1), (6)

Br
where By is a consistent estimator of the asymptotic variance of g7 given by

1

A —_ N ~ il ~ 1
BT =Var (yT+h|T) = f %Z(sZT +

N@’i 0. (7)

Here, Ss consistently estimates X5 = Var <\/T <5 —5)) and iFT consistently estimates

Y, =Var (\/N <Z*:’T —H FT>> In particular, under Assumptions 1-4,

T—h -1 T—h -1
S5 = (T—l 3 zg) Or (T—1 > ét%) : (8)
t=1 t=1

where r is a heteroskedasticity and autocorrelation consistent (HAC) estimator of



Q =limr_ . Var (\/LT ZZ;_lh Zt5t+h> , and

Sp =V VT (9)

T

where f’T is an estimator of I'r = limy_,o Var (\;—N Zfil )\ieiT) which depends on the cross
sectional dependence and heterogeneity properties of e;r. Bai and Ng (2006) provide three
different estimators of I'r. Section 5 below considers such an estimator.

The central limit theorem result in (6) justifies the construction of an asymptotic 100(1 — )%

level confidence interval for yr, i given by

(QT+h|T — Z1-a/2\/ BT, gT+h|T + 21-qa/2 \V BT) ) (10)

where z1_q/2 is the 1 — a/2 quantile of a standard normal distribution.

When the object of interest is a prediction interval for yr. 5, Bai and Ng (2006) propose

(QT+h|T — 2102\ Cry Grenpr + Z1-a/2\/ éT) : (11)

where

A ® ~2
CT = BT—l-O'€7

with By as above and 6% = %Z;‘ll £2. The validity of (11) depends on the additional assump-
tion that g, is i.i.d. N (0,02).
An important condition that justifies (10) and (11) is that v/T/N — 0. This condition

ensures that the term reflecting the parameter estimation uncertainty in the forecast error



decomposition (4), VT (5 — 5) , is asymptotically normal with a mean of zero and a variance-
covariance matrix that does not depend on the factors estimation uncertainty. As was recently

shown by Gongalves and Perron (2014), when v/T /N — ¢ # 0,
ﬁ <8 - (5) —>d N (—CA(;, 25) s

where As is a bias term that reflects the contribution of the factors estimation error to the
asymptotic distribution of the regression estimates 6. In this case, the two terms in (4) will
depend on the factors estimation uncertainty and a natural question is whether this will have
an effect on the prediction intervals (10) and (11) derived by Bai and Ng (2006) under the
assumption that ¢ = 0. As we argue next, these intervals remain valid even when ¢ # 0. The
main reason is that when v/T' /N — ¢ # 0, the ratio N/T — 0, which implies that the parameter
estimation uncertainty associated with ¢ is dominated asymptotically by the uncertainty from
having to estimate Fr.

More formally, when /T /N — c#0, N/T — 0 and the convergence rate of §p. 1 is VN,

implying that

VN (Jr4nir — Yranr) = V N/TVT (5 — 5) v+ o’ H'WN (FT — HFT>

- JHWN (FT - HFT> +op(1).

Thus, the forecast error is asymptotically N (0, o’ H'Sz H~Va). Since NBy = (N/T) 3535+
é/iFTéz = o H 'S H Va + op (1), the studentized forecast error given in (6) is still N (0,1)
as N, T — oo. For the studentized forecast error associated with forecasting yr.;, the variance

of §r.p, is asymptotically (as N,T — oo) dominated by the variance of the error term o2, im-

10



plying that neither the parameter estimation uncertainty nor the factors estimation uncertainty

contribute to the asymptotic variance.

3 Description of bootstrap intervals

Following Gongalves and Perron (2014), we consider the following bootstrap data-generating

process:

X; = AF, +e¢, (12)

N ~! *
Yo = AR 4+[W,+ Eith (13)

where {e;‘ = (efp - - ,ej‘w)/} denotes a bootstrap sample from {ét = X; — [Xﬁ’t} and {52‘+h} is
a resampled version of {éHh = Ypih — (S/Ft — B,Wt}.

Our goal in this section is to describe two general bootstrap algorithms that can be used to
compute intervals for yrr and yrip, for any choice of {e;} and {EI +h} . The specific method
of generating {e;} and {e},,} will depend on the assumptions we make on {e;} and {1},
respectively. In Section 5 we describe several methods. For example, we rely on the wild
bootstrap to generate both {e;} and {sjf +1} when constructing confidence intervals for yr, 7.
The wild bootstrap is justified in this setting since we assume away cross sectional dependence
in e;; and we assume that ;,; is a m.d.s. when h = 1. For one-step ahead prediction intervals
we strengthen the m.d.s. assumption to an i.i.d. assumption on ¢;,1, and therefore we generate
€;,1 using the i.i.d. bootstrap. For multi-step prediction intervals, we generate €}, , with either
the block wild bootstrap or the dependent wild bootstrap of Djogbenou et al. (2014) to account

for possible serial correlation.

11



We estimate the factors by the method of principal components using the bootstrap panel
dataset {X;:t=1,...,T}. Welet F* = (Fl*, ce F;)l denote the 7" x r matrix of bootstrap
estimated factors which equal the r eigenvectors of X*X* /NT (multiplied by v/T') correspond-
ing to the r largest eigenvalues. The N X r matrix of estimated bootstrap loadings is given
by A* = (S\I, ceey XL)l — X*¥F*/T. We then run a regression of Yii, on E¥ and W, using

observations t = 1,...,T — h. We let 6" denote the corresponding OLS estimator

T—h “L1rn
N _ 2k A/ 2% *
6 = § Rt Ry § 2t Ytiho

t=1

_ /
where 57 = (F;',W,;) .

The steps for obtaining a bootstrap confidence interval for yr,r are as follows.
Algorithm 1 (Bootstrap confidence interval for yr. 1)

1. Fort=1,...,T, generate

X; = AF, + ¢,
. . ~ ~, =
where {ef,} is a resampled version of {eit = Xy — )\iFt}.
2. Estimate the bootstrap factors {Ft* t=1,... ,T} using X*.

3. Fort=1,...,T — h, generate
* NE g *
Y = @ F + BWy + iy,

where the error term €;,, is a resampled version of £;,.

12



4. Regress y;,;, generated in step 3 on the bootstrap estimated factors Ft* obtained in step

2 and on the fixed regressors W, and obtain the OLS estimator 5.

5. Obtain bootstrap forecasts
o ol s ~ k] ST
Yrynr = & /FT +B8 Wr=90 27,

and bootstrap variance

* ]'A*A*A* ]'A*A* ~ %
BT = TZTIE(SZT + NO[ IEFTOé , (14)

where the choice of 3% and i}T depends on the properties of €7, and ej;.

6. Let y. hT = & Fpr+ B,WT and compute bootstrap prediction errors:

(a) For equal-tailed percentile-t bootstrap intervals, compute studentized bootstrap pre-

diction errors as

Nk *
Yronr — Y14nr

* —_
ST+h =

A

Br
(b) For symmetric percentile-t bootstrap intervals, compute }s} Jrh‘ .
7. Repeat this process B times, resulting in statistics {3}%71, PN s*T+h?B} and {‘s}+h’1| ey |si}+h’B|} .

8. Compute the corresponding empirical quantiles:

a) For equal-tailed percentile-t bootstrap intervals, ¢_, is the empirical 1 — o quantile
-«
of {S*T s ST h7B} .

(b) For symmetric percentile-t bootstrap intervals, qﬁ,ka is the empirical 1 — o quantile

of{

* *
5T+h,1| R ST+h,B|} :

13



A 100(1 — )% equal-tailed percentile-t bootstrap interval for yp .4 is given by

EQ;;fh‘T = (@T+h|T = Qoo BT, Urnr — Gap2 BT) , (15)

whereas a 100(1 — «)% symmetric percentile-t bootstrap interval for yr 1 is given by

SY;TT:L‘T = (ZQT+hT — 4 1—a\V By Ursnr + 4 120 BT) ; (16)

When prediction intervals for a new observation yr. are the object of interest, the algorithm

reads as follows.
Algorithm 2 (Bootstrap prediction interval for yr.;)

1. Identical to Algorithm 1.

2. Identical to Algorithm 1.

3. Generate {yi‘Jrh, Y YT ,yrfmrh} using
* AT oY *
Y = @ Fy + BWy +€fp,

where {5’1‘%, e ETyE s ,5}%} is a bootstrap sample obtained from {&1,...,ér}.
4. Not making use of the stretch {y} A YT +h}, compute 5 asin Algorithm 1.

5. Obtain the bootstrap point forecast 7. h|T 38 in Algorithm 1 but compute its variance as

vk % A %2
CT - BT+O-E 5

14



where 672 is a consistent estimator of 02 = Var (er,;) and B% is as in Algorithm 1.

6. Let y1 ., = &' Fr + B/WT + €7, and compute bootstrap prediction errors:

(a) For equal-tailed percentile-t bootstrap intervals, compute studentized bootstrap pre-

diction errors as

%k *
« _ Yrnr — Yrin
Spyn = — — -
*
\V Cr

(b) For symmetric percentile-t bootstrap intervals, compute }S*T Jrh‘ .

7. Identical to Algorithm 1.

8. Identical to Algorithm 1.

A 100(1 — «) % equal-tailed percentile-t bootstrap interval for y, is given by

EQ,. % = <QT+h|T — Gi_ap2\ Oy Irnr — G2\ OT) : (17)

whereas a 100(1 — o) % symmetric percentile-t bootstrap interval for yr., is given by

SYlef"I = (@THLIT - qff|,1fa \V CT7 YrnT + Q|*.\,1,a C'T) . (18)

The main differences between the two algorithms is that in step 3 of Algorithm 2 we generate
observations for y;,, for ¢ = 1,...,T instead of stopping at ¢ = T' — h. This allows us to
obtain a bootstrap observation for y7._,, the bootstrap analogue of yz;, which we will use
in constructing the studentized statistic s%.,, in step 6 of Algorithm 2. The point forecast is

identical to Algorithm 1 and relies only on observations for t = 1,...,T — h, but the bootstrap

15



variance C%j- contains an extra term 6*% that reflects the uncertainty associated with the error
of the new observation e y.

Note that Algorithm 2 generates bootstrap point forecasts ;. L+ and bootstrap future
observations y7., that are conditional on Wy. This is important because the point forecast
Yr+n7 depends on Wr. When W contains lagged dependent variables (e.g. Wy =y,and h = 1),
steps 5 and 6 of Algorithm 2 set W7 = y7 when computing 3. T and y7.,. This is effectively
equivalent to setting y}. = yp for the purposes of computing these quantities. However, Step 3 of
Algorithm 2 generates observations on {y;f qot=1,...,T } that do not necessarily satisfy the
requirement that y5 = yr. As recently discussed by Pan and Politis (2014), we can account for
parameter estimation uncertainty in predictions generated by autoregressive models by relying
on a forward bootstrap method that contains two steps: one step generates the bootstrap
data by relying on the forward representation of the model. This step accounts for parameter
estimation uncertainty even if y;. # yr. In a second step, we evaluate the bootstrap prediction
and future observation conditional on the last value(s) of the observed variable. Our Algorithm
2 can be viewed as a version of the forward bootstrap method of Pan and Politis (2014) when

some of the regressors are latent factors that need to be estimated.

4 Bootstrap distribution of estimated factors

The asymptotic validity of the bootstrap intervals for yr,j, and y7,r described in the previous
section depends on the ability of the bootstrap to capture two sources of estimation error:

the parameter estimation error and the factors estimation error. In particular, the bootstrap

16



estimation error for the conditional mean is given by

~ % * 1 ok N * 1 ~ *— 1% *
Y74n1 — Y140T = ﬁZT/ﬁ (6 -0 ) + \/—NO/H WN <FT - H FT> ,

where §* = ®*~1§ and ®* = diag (H*,1,) . Here, H* is the bootstrap analogue of the rotation
matrix H defined in (5), i.e.

- _FYFNA
H* — V*—l
T N’

where V* is the 7 x r diagonal matrix containing on the main diagonal the r largest eigenvalues
of X*X*/NT, in decreasing order. Note that contrary to H, which depends on unknown pop-
ulation parameters, H* is fully observed. Using the results in Bai and Ng (2013), H* converges
asymptotically to a diagonal matrix with +1 or —1 on the main diagonal, see Gongalves and
Perron (2014) for more details.

Adding and subtracting appropriately, we can write

e = Vi = =5 VT (87 =3) + Za/ VN (B = Fr) +ope (1. (19)
As usual in the bootstrap literature, we use P* to denote the bootstrap probability measure,
conditional on a given sample; E* and Var* denote the corresponding bootstrap expected
value and variance operators. For any bootstrap statistic T3, we write Txp = op« (1), in
probability, or T%, —" 0, in probability, when for any 6 > 0, P* (|T%| > 6) = op (1). We
write T3, = Op« (1), in probability, when for all 6 > 0 there exists Ms < oo such that
limy 7o P [P* (|T%r| > M;) > 6] = 0. Finally, we write T, —% D, in probability, if con-

ditional on a sample with probability that converges to one, T3, weakly converges to the

17



distribution D under P*, i.e. E* (f (Txr)) —F E(f (D)) for all bounded and uniformly con-
tinuous functions f. See Chang and Park (2003) for similar notation and for several useful
bootstrap asymptotic properties.

The stochastic expansion (19) shows that the bootstrap estimation error captures the two
forms of estimation uncertainty in (4) provided: (1) the bootstrap distribution of v/T' (CID*’ 5 — 5)
is a consistent estimator of the distribution of /T’ (5 - 5), and (2) the bootstrap distribu-
tion of VN <H*_1F$ — FT> is a consistent estimator of the distribution of v N (FT — HFT>.
Gongalves and Perron (2014) discussed conditions for the consistency of the bootstrap distrib-
ution of VT (5 — 5). Here we propose a set of conditions that justifies using the bootstrap to
consistently estimate the distribution of the estimated factors v/ N (ﬁ’t —H Ft> at each point ¢.
Condition A.

A.1. For each t, 0 |v%° = Op (1), where v*, = E* (% SV e;‘te;;).

2

A.2. For each t, % 25:1 E* =0p(1).

N
\/Lﬁ Zi:l (ejef, — B (eftefs))

~ 2
A3. For each t, B || Ao ST SN B (ehet, — B (e;;e;;))H — Op(1).

2
Ad B | A S S Ber|| = 0p(1).
A5 15 gl oy el = 0n )
U T 4at=1 VN Lwi=1 "M%t — VP :
A.6. For each t, F:fl/zx/% SV Ner, =4 N (0, 1), in probability, where I = Var* (\}_ﬁ SV

is uniformly positive definite.

Condition A is the bootstrap analogue of Bai’s (2003) assumptions used to derive the limiting

distribution of v/ N (Ft - H Ft) . Gongalves and Perron (2014) also relied on similar high level
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assumptions to study the bootstrap distribution of v/T' (5* — 5*) . In particular, Conditions 4.4
and A.5 correspond to their Conditions B*(c) and B*(d), respectively. Since our goal here is to
characterize the limiting distribution of the bootstrap estimated factors at each point ¢, we need
to complement some of their other conditions by requiring boundedness in probability of some
bootstrap moments at each point in time ¢ (in addition to boundedness in probability of the time
average of these bootstrap moments; e.g. Conditions A.1 and A.2 expand Conditions A*(b)
and A*(c) in Gongalves and Perron (2014) in this manner). We also require that a central limit
theorem applies to the scaled cross sectional average of \;ef;, at each time ¢ (Condition A.6).
This high level condition ensures asymptotic normality for the bootstrap estimated factors. It
was not required by Gongalves and Perron (2014) because their goal was only to consistently

estimate the distribution of the regression estimates, not of the estimated factors.

Theorem 4.1 Suppose Assumptions 1 and 2 hold. Under Condition A, as N, T — oo such

that VN /T3/* — 0, we have that for each t,

N
VN (B -\ ) = v Z e+ ope (1),

wn probability, which tmplies that
VN (B, = F) =" N(0.1,).

in probability, where 1T = VTV L.

Theorem 1.(i) of Bai (2003) shows that under regularity conditions weaker than Assumptions

1 and 2 and provided vN /T — 0, VN (Ft . HFt) —d N (0,11,), where II, = V-1QI,Q'V L,
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@ = plim (LTF> . Theorem 4.1 is its bootstrap analogue. A stronger rate condition (\/N / T3/4 —
0 instead of /N /T — 0) is used to show that the remainder terms in the stochastic expansion
of VN (Ft* —H *Ft> are asymptotically negligible. This rate condition is a function of the
number of finite moments for F; we assume. In particular, if we replace Assumption 1(a) with
E||Fy||Y < M for all ¢, then the required rate restriction is v/ N/T7~/9 — 0. See Remarks 1
and 3 below.

To prove the consistency of II; for II; we impose the following additional condition.
Condition B. For each ¢, plimI'} = QT',Q)’.

Condition B requires that I'}, the bootstrap variance of the scaled cross sectional average

of the scores S\ieit, be consistent for QI';Q)". This in turn requires that we resample é; in a way

that preserves the cross sectional dependence and heterogeneity properties of e;;.

Corollary 4.1 Under Assumptions 1 and 2 and Conditions A and B, we have that for each
t, as N,T — oo such that vV N/T%* — 0, VN (H*_lﬁt* — ﬁt) —4" N (0,11;), in probability,

where II, = V1QT,Q'V ™! is the asymptotic covariance matriz of VN (Ft — HFt> )

Corollary 4.1 justifies using the bootstrap to construct confidence intervals for the rotated
factors H F; provided Conditions A and B hold. These conditions are high level conditions that
can be checked for any particular bootstrap scheme used to generate e},. We verify them for a
wild bootstrap in Section 5 when proving the consistency of bootstrap confidence intervals for
the conditional mean.

The fact that factors and factor loadings are not separately identified implies the need to
rotate the bootstrap estimated factors in order to consistently estimate the distribution of

the sample factor estimates, i.e. we use v N <H *_1E* — Ft) to approximate the distribution
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of VN (Ft - H Ft> . A similar rotation was discussed in Gongalves and Perron (2014) in the

context of bootstrapping the regression coefficients 5.

5 Validity of bootstrap intervals

5.1 Confidence intervals for yr

We begin by considering intervals for next period’s conditional mean. For this purpose, we use
a two-step wild bootstrap scheme, as in Gongalves and Perron (2014). Specifically, we rely on
Algorithm 1 and we let

Ery1 = &1 " Ve, t=1,...,T =1, (20)

with vy 1.i.d.(0, 1), and
e, =€y, t=1,...,T,i=1...,N, (21)

where 7;, is 1.i.d.(0, 1) across (i,t), independently of v;.
To prove the asymptotic validity of this method we strengthen Assumptions 1-4 as follows.

Assumption 5. ); are either deterministic such that ||[\;|| < M < oo, or stochastic such that
E|N|"P <M < oo for all i; E||F||” < M < oo; Elegy|” < M < oo, for all (i,t); and

for some ¢ > 1, E |e; 41" < M < oo, for all ¢.
Assumption 6. E (ejejs) =0if i # j.

With h = 1, our Assumption 4(b) on &;, becomes a martingale difference sequence assump-
tion, and the wild bootstrap in (20) is natural. This assumption rules out serial correlation in
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g¢4+1 but allows for conditional heteroskedasticity. Below, we consider the case where h > 1.

Assumption 6 assumes the absence of cross sectional correlation in the idiosyncratic errors
and motivates the use of the wild bootstrap in (21). As the results in the previous sections
show, prediction intervals for yr, or Y7457 are a function of the factors estimation uncertainty
even when this source of uncertainty is asymptotically negligible for the estimation of the
distribution of the regression coefficients (i.e. even when vT/N — ¢ = 0). Since factors
estimation uncertainty depends on the cross sectional correlation of the idiosyncratic errors e;;
(via T'p = limy o Var (1 / VN ZZ]\LI )\ieiT) ), bootstrap prediction intervals need to mimic this
form of correlation to be asymptotically valid. Contrary to the pure time series context, a
natural ordering does not exist in the cross sectional dimension, which implies that proposing
a nonparametric bootstrap method (e.g. a block bootstrap) that replicates the cross sectional
dependence is challenging if a parametric model is not assumed. Therefore, we follow Gongalves
and Perron (2014) and use a wild bootstrap to generate e}, under Assumption 6.

The bootstrap percentile-t method, as described in Algorithm 1 and equations (15) and
(16), requires the choice of two variances, Br and its bootstrap analogue B} To compute Br

~

we use (7), where 3 is given in (8). & 7. 18 given in (9), where

1 N
~ o ~ ~/ -9

is estimator 5(a) in Bai and Ng (2006), and it is a consistent estimator of (a rotated version
of) Ty = limy o, Var <\/LN Zi\il )\Z-eiT> under Assumption 6. We compute Bj using (14) and

relying on the heteroskedasticity-robust bootstrap analogues of S5 and O P
Theorem 5.1 Suppose Assumptions 1-6 hold and we use Algorithm 1 with € = &;11 - Vi1
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and e, = €y - Ny, where viq ~ 1.1.d.(0,1) for allt =1,...,T — 1 and n; ~ 1.1.d.(0,1) for all
1=1,...,N;t=1,...,T, and vi41 and n; are mutually independent. Moreover, assume that
E* ny|* < C for all (i,t) and E*|vyq|* < C for all t. If VT/N — ¢, where 0 < ¢ < oo, and

VN /TH/'2 0, then conditional on {y;, Xo, Wy :t =1,...,T},

A~k *
yT+1|T - yT+1\T

oy
BT

-4 N (0,1),

in probability.

Remark 1 The rate restriction /N /T2 — 0 is slightly stronger than the rate used by Bai
(2003) (cf. VNJT — 0). It is weaker than the restriction /N /T** — 0 used in Theorem 4.1
and Corollary 4.1 because we have strengthened the number of factor moments that exist from

4 to 12 (compare Assumption 5 with Assumption 1(a)). See Remark 3 in the Appendix.

Remark 2 Since QT“'T% —4 N (0,1), as shown by Bai and Ng (2006), Theorem 5.1
T
implies that bootstrap confidence intervals for yr 1 obtained with Algorithm 1 have the correct

coverage probability asymptotically.

5.2 Prediction intervals for yr 4

In this section we provide a theoretical justification for bootstrap prediction intervals for y;, 4
as described in Algorithm 2. In particular, our goal is to prove that a bootstrap prediction
interval contains the future observation yr,; with unconditional probability that converges to
the nominal level as N, T — oo.

We add the following assumption.

Assumption 7. &, isi.i.d.(0, 0?) with a continuous distribution function F. () = P (g,41 < ).
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Assumption 7 strengthens the m.d.s. Assumption 4.(b) by requiring the regression errors
to be i.i.d. However, and contrary to Bai and Ng (2006), F. does not need to be Gaussian.
The continuity assumption on F; is used below to prove that the Kolmogorov distance between
the bootstrap distribution of the studentized forecast error and the distribution of its sample
analogue converges in probability to zero.

Let the studentized forecast error be defined as

_ Yr+yr — Y+

ST = ——F/—,
~ .9
\/BT+O-5

A2 . . . ) A 7 (A 1ar S 2
where 67 is a consistent estimate of 02 = Var (ery1) and By = Var (yTH‘T) = F2rusir +

%d’Z 7.0 Given Assumption 7, we can use
T
= = -1
A2 ) & A2 A Al
Ge = E &/, and X5 =07 T2 A . (22)

Our goal is to show that the bootstrap can be used to estimate consistently Fr(z) =

P (s7r41 < x), the distribution function of sy, ;. Note that we can write

Jryr —yro = (Grvyr — yroar) + (Yror — yra)

= —erp1+O0p(1/0NT),

given that 9717 — yr41r = Op (ﬁ) , where 0 7 = min (\/N, \/T) (this follows under the

assumptions of Theorem 5.1). Since 62 —" 02 and By = Op (1/6%7) = op (1), it follows that

ET+1

+ op (1) . (23)

ST4+1 = — o
€
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Thus, as N, T — oo, sy converges in distribution to the random variable —6:;“

, 1.e.

g

Frs(x)=P(sry1 <z)— P (—ETH < x) =1—-F.(—x0.) = Fs (),

O¢

for all z € R. If we assume that &4, is i.i.d. N (0,02), as in Bai and Ng (2006), then
F.(—x0.) = ®(—x) = 1 — ®(x), implying that Fr(z) — ®(z), i.e. sp1 —¢ N(0,1).
Nevertheless, this is not generally true unless we make the Gaussianity assumption. We note
that although asymptotically the variance of the prediction error g7 17 — yr41 does not depend
on any parameter nor factors estimation uncertainty (as it is dominated by o2 for large N and
T), we still suggest using Cr=Br+ (7? to studentize §r 17 — yr41 since 6? will underestimate
the true forecast variance for finite 7" and N. Politis (2013) and Pan and Politis (2014) discuss
notions of asymptotic validity that require taking into account the estimation of the condition
mean. More specifically, in addition to requiring that the interval contains the true observation
with the desired nominal coverage probability asymptotically, they require the bootstrap to
capture parameter estimation uncertainty. To the extent that their definitions can be extended
to the case of generated regressors, we expect our bootstrap intervals to satisfy these stricter
notions of validity.

Next we show that the bootstrap yields a consistent estimate of the distribution of sp
without assuming that ;1 is Gaussian. Our proposal is based on a two-step residual based
bootstrap scheme, as described in Algorithm 2 and equations (17) and (18), where in step
3 we generate {63, e ETLED +1} as a random sample obtained from the centered residuals
{32 —&,...  Ep— g}. Resampling in an i.i.d. fashion is justified under Assumption 7. We

recenter the residuals because £ is not necessarily zero unless IW; contains a constant regressor.
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Nevertheless, since & = op (1), resampling the uncentered residuals is also asymptotically valid
in our context. We compute B:*p and 6*? using the bootstrap analogues of 5.5 and 62 introduced
in (22). Note that 6*% is a consistent estimator of o2 and B = op- (1), in probability.

As above, we can write

33:*F+1|T — Y = (g;-&-l\T - ?J%+1|T) + (y;“-i-l\T - y:*F+1)

= —er1 +O0p- (1/dn7),

in probability, which in turn implies

. Yrir — Y €741
ST+1 = = = — 0_+ + O px (1) . (24)
Bi 4 6% €

Thus, F}, (z) = P* (s}, < x), the bootstrap distribution of s7, (conditional on the sample)
is asymptotically the same as the bootstrap distribution of —az—“

Let F7. denote the bootstrap distribution function of €;. It is clear from the stochastic
expansions (23) and (24) that the crucial step is to show that 7.,, converges weakly in prob-
ability to epyq, ie. d (Fj*wvg, Fs) —P 0 for any metric that metrizes weak convergence. In the
following we use Mallows metric which is defined as d» (Fx, Fy) = (inf (E |X — Y|2))1/2 over

all joint distributions for the random variables X and Y having marginal distributions Fy and

Fy, respectively.

Lemma 5.1 Under Assumptions 1-7, and as T, N — oo such that \/T/N —c, 0 < c< oo,

dy (Fy., F.) =" 0.

Corollary 5.1 Under the same assumptions as Theorem 5.1 strengthened by Assumption 7,
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we have that

sup }F}S () — Foos (3:)‘ — 0,
z€R

wn probability.

Corollary 5.1 implies the asymptotic validity of the bootstrap prediction intervals given in
(17) and (18), where asymptotic validity means that the interval contains yr,; with uncon-
ditional probability converging to the nominal level asymptotically. Specifically, we can show

Yr+1 Yr+1

that P (yT+1 € EQPO‘) — 1—«a and P <yT+1 € SY1*0‘> — 1—aas N, T — oco. See e.g.

Beran (1987) and Wolf and Wunderli (2015, Proposition 1). For instance,

P (yTJrl S EQ;;i) = P (ST+1 < QLQ/Q) - P (5T+1 < QZ/Q)

= P (Fr,(sr+1) £1-a/2) = P (F7, (s71) < @/2).

Given Corollary 5.1, we have that FJ (s741) = Faos (S741) + 0op (1), and we can show that

Foos(s741) =2 U [0,1]. Indeed, for any =,

)

P (Fos (s741) S @) = P (s741 < Fo_o,ls (2)) = Fr, (Fo_o,ls (7)) = Fios (Fo;,ls (2)) = =.

11—«
YT+1

A stronger result than that implied by Corollary 5.1 would be to prove that P <yT+1 e EQ
1 — o, where zp = (., W), Nevertheless, to claim asymptotic validity of the bootstrap pre-
diction intervals conditional on the regressors would require stronger assumptions, namely the
assumption that er,; is independent of zp. Such a strong exogeneity assumption is unlikely to

be satisfied in economics.
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5.3 Multi-horizon forecasting, h > 1

Finally, we consider the case where the forecasting horizon, h, is larger than 1. The main
complication in this case is the fact that the regression errors ;) in the factor-augmented
regression will generally be serially correlated to order h — 1. This serial correlation affects
the distribution of /T (5 — 5> since the form of €2 is different in this case, as it includes
autocovariances of the score process.

We modify our two algorithms above by drawing €}, , using the block wild bootstrap (BWB)
algorithm proposed in Djogbenou et al. (2014). The idea is to separate the sample residuals
€¢1p into non-overlapping blocks of b consecutive observations. For simplicity, we assume that
T—h

-, the number of such blocks, is an integer. Then, we generate our bootstrap errors by

multiplying each residual within a block by the same draw of an external variable, i.e.

* N
Cit(j—1p = Eir(G-107;

forj=1,..., TT_h, i=1+h,...,h+b,and n; ~i.i.d. (0,1) . The fact that each residual within
a block is multiplied by the same external draw preserves the time series dependence. We let
b = h because we use the fact that e, ~ M A (h — 1) under Assumption 4(b). For h = 1, this
algorithm is the same as the wild bootstrap. Djogbenou et al. (2014) show that this algorithm
allows for valid bootstrap inference in a regression model with estimated factors and general
mixing conditions on the error term. The moving average structure obtained in a forecasting
context (assuming correct specification) obviously satisfies these mixing conditions, and this

ensures that this block wild bootstrap algorithm replicates the distribution of v/T (5 — 5) after

rotating the estimated parameter in the bootstrap world. Thus, the result of Theorem 5.1 holds
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in this more general context since h > 1 does not affect factor estimation.

For the forecast of the new observation, y7.,, the crucial condition for asymptotic validity of
the bootstrap prediction intervals is to capture the marginal distribution of e, . This means
that the ii.d. bootstrap can still be used in step 2 of algorithm 2 to generate €} , despite
the serial correlation in ;,,. Alternatively, we can also amend the block wild bootstrap by
generating &;,, as above for ¢t = 1,...,T — h and generating 7., , as a draw from the empirical
distribution function of &, ¢t = 1,...,T — h. We will compare these two approaches in the

simulation experiment below.

6 Simulations

In this section, we report results from a simulation experiment to analyze the properties of
the normal asymptotic intervals as well as their bootstrap counterparts analyzed above. The
data-generating process is similar to the one used in Gongalves and Perron (2014). We consider
the single factor model:

Yt+rh = 5Ft + Etth (25)

where F} is an autoregressive process:

Fy= 8F_1+w

with u; drawn from a normal distribution independently over time with a variance of (1 — .8%).
We use the backward representation of this autoregressive process to make sure that all sample

paths have Fr = 1. We will consider two forecasting horizons, h = 1 and h = 4.
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The regression error ;. will be homoskedastic with expectation 0, variance 1 and will have

a moving average structure to accommodate multi-horizon forecasting;:

h—1
Et+h = E -8]Ut+hfj7
7=0

and to analyze the effects of deviations from normality, we report results for two distributions

for v :

1
orma. (o (} ;L 382]> (0, )
MiXture Ve ~ 1 1 [Z)N (—1 1) + (1 - P) N (9 1)]
: / [ ) ) )

where p is distributed as Bernoulli (.9). The particular mixture distribution we are using is
similar to the one proposed by Pascual, Romo and Ruiz (2004). Most of the data is drawn from
a N (—1,1) but about 10% will come from a second normal with a much larger mean of 9. The
scaling term in parentheses ensures that the variance of ¢, is 1 regardless of h. We have also
considered other distributions such as the uniform, exponential, and x? but do not report these
results for brevity.

The (T x N) matrix of panel variables is generated as:

Xit = NiFy + e

where )\; is drawn from a U [0, 1] distribution (independent across i) and e;; is heteroskedastic
but independent over i and t. The variance of e;; is drawn from U [.5, 1.5] for each .

We consider asymptotic and bootstrap confidence intervals at a nominal level of 95%. As-
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ymptotic inference is conducted by using a HAC estimator (quadratic spectral kernel with
bandwidth set to h) to account for possible serial correlation.

We use Algorithms 1 and 2 described above to generate the bootstrap data with B = 999
bootstrap replications. The idiosyncratic errors are always drawn using the wild bootstrap in
step 1. In step 3, three bootstrap schemes are analyzed to draw ¢;: the first one draws the
residuals with replacement in an i.i.d. fashion, the second one uses the wild bootstrap, while
the last one redraws the residuals using the block wild bootstrap with a block size equal to h.
The first two methods are only valid when A = 1, while the last one is valid for both values of
h. In all applications of the wild bootstrap and block wild bootstrap, the external variable has
a standard normal distribution. With the wild bootstrap, we use the heteroskedasticity-robust
variance estimator, while we use the HAC one with block size equal to h for the block wild
bootstrap.

We consider two types of bootstrap intervals: symmetric percentile-t and equal-tailed percentile-
t. We report experiments based on 5,000 replications and with three values for 7' (50, 100, and
200) and 4 values for N (50, 100, 150, and 200).

We report results graphically for the conditional mean y74r and for the new observation
yrin. We report the frequency of times the 95% confidence interval is to the left or right of
the true parameter. Each figure has three rows corresponding to 7" = 50, T" = 100, and
T = 200 with N on the horizontal axis, and in the last column, we show the average length of
the corresponding confidence intervals relative to the length of the "ideal"confidence intervals
obtained with the 2.5% and 97.5% quantiles from the empirical distribution simulated for each
N and T 1,000,000 times as endpoints. To keep the figures readable, we report results for two

bootstrap methods in each figure. For the conditional mean, we report results for the wild
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bootstrap and block wild bootstrap (with differences thus only coming from the block size since
the two methods are the same for a block size equal to 1). For the observation, we report results
using the iid and block wild bootstrap since we require an i.i.d. assumption for the construction
of intervals for this quantity.

It turns out that the distribution of 7., noticeably affects the results for yr,j only. As a
consequence, we only report results with Gaussian ¢, for the conditional mean. On the other
hand, the results of yr.; are dominated by the behavior of ;.. Thus, the contribution of the

conditional mean from the contribution of 7 in the forecasts of yr,, are clearly separated.

6.1 Forecasting horizon h =1

We start by presenting results when we are interested in making a prediction for next period’s
value. For this horizon, because €;,; does not have serial correlation, the wild bootstrap and

block wild bootstrap methods are identical with reported differences due to simulation error.

Conditional mean, y7,7 The results for the conditional mean are presented in Figure 1.
Asymptotic theory (blue line) shows large distortions that decrease with an increasing N. For
example, for N = T = 50, the 95% confidence interval does not include the true mean in 11% of
the replications instead of the nominal 5%. This number is reduced to 7.8% when N = 200 and
T = 50. Moreover, we see that most of these instances are in one direction, when the confidence
interval is to the left of the true value. This can be explained by a bias in the estimation of the
parameter § as documented by Gongalves and Perron (2014) due to the estimation uncertainty
in the factors. This bias is negative, thus shifting the distribution of the conditional mean to

the left, leading to more rejections on the left side and fewer on the right side than predicted
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by the asymptotic normal distribution.

Figure 1. Probability of interval to the left or right of y T
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Note: The figures in the first two columns report the fraction of confidence intervals that lie to the left
or to the right of the conditional mean for each method as a function of the cross-sectional dimension
N. Each row corresponds to a different time series dimension. The last column reports the length of
the confidence intervals relative to the length of the "ideal" intervals obtained as the 2.5% and 97.5%

quantiles of the empirical distribution.

The presence of bias is reflected in the bootstrap distribution of 7. T which is also shifted
to the left. This is illustrated by a large difference between the bootstrap symmetric and equal-
tailed intervals. The symmetric intervals reproduce the pattern of more coverage to the left than
to the right, while equal-tailed intervals distribute coverage more or less equally in both tails.
In both cases, the total rejection rates are closer to their nominal level than with asymptotic
theory, for example with N = T = 50, the wild bootstrap does not include the true value in

6.7% of the replications with the symmetric intervals and 6.1% for the equal-tailed intervals.
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This phenomenon is also reflected in the length of intervals. The asymptotic intervals are
shortest (and least accurate). The equal-tailed intervals are typically slightly shorter than the

corresponding symmetric intervals.

Forecast of y;,; We next consider the prediction of y7,; in Figures 2 and 3. As mentioned
before, given our parameter configuration, the uncertainty is dominated by the underlying
error term ery; and not estimation uncertainty. This is the reason asymptotic intervals rely
on the normality assumption. This provides a motivation for the bootstrap, and the effect of
non-normality is highlighted in our figures.

Figure 2 shows that under normality, inference for yr,; is quite accurate for all methods,
and it is essentially unaffected by the values of N and T as predicted since it is dominated by the
behavior of ;5. All methods perform similarly, though we see that the asymptotic intervals
that make the correct Gaussianity assumption are shorter than those based on the bootstrap.

The iid bootstrap also produces slightly narrower intervals than the block wild bootstrap.

Figure 2. Probability of interval to the left and right of y € is normal
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Note: The figures in the first two columns report the fraction of confidence intervals that lie to the
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left or to the right of the observation for each method as a function of the cross-sectional dimension
N. Each row corresponds to a different time series dimension. The last column reports the length of
the confidence intervals relative to the length of the "ideal" intervals obtained as the 2.5% and 97.5%

quantiles of the empirical distribution.

Figure 3 provides the same information when the errors are drawn from a mixture of normals.
We see problems with asymptotic theory, and these come almost exclusively in the form a
confidence interval to the left of the true value. This is due to the fact that we have falsely
imposed that errors are Gaussian, whereas the true distribution is bimodal. On the other hand,
the bootstrap corrects these difficulties. The symmetric intervals do so by reducing coverage on
the left side to between 5 and 6% and having almost no coverage to the right. The equal-tailed
intervals distribute coverage more evenly by reducing undercoverage on the right side and pretty
much eliminating the over-coverage on the left side. Because they allow for asymmetry, the
equal-tailed intervals are shorter than the symmetric ones. Similarly, the i.i.d. bootstrap that
makes the correct assumption that ey, is i.i.d. produces slightly more accurate coverage and

shorter intervals.
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Figure 3. Probability of interval to the left or right of y e € is mixture
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Note: see Figure 2.

6.2 Multi-horizon forecasting

In Figures 4-6, we report the same results as before but for h = 4 instead of h = 1. Because the
error term is now a moving average of order 3, the wild bootstrap and block wild bootstrap (a
block size equal to 4 is used) are no longer identical.

Figure 4 reports the results for the conditional mean, y7.47. The main difference with Figure
1 is that there is a gap between the accuracy of the intervals based on the wild bootstrap and on
the block wild bootstrap. As before, the equal-tailed intervals provide more accurate intervals

and smaller length because they capture the bias in the distribution.
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Figure 4. Probability of interval to the left or right of y T
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Note: see Figure 1.

While there is a difference in coverage between the wild bootstrap and the block wild boot-
strap, it is not very large. This feature can be explained by the fact that factors are estimated.
The forecast error variance has two parts, one due to the estimation of the parameters and one
due to the estimation of the factors (see equation (4)). Serial correlation only affects the first
term in that expression, and thus its effect is dampened by the presence of the second term
which is usually not present in a typical forecasting context where predictors are observed.

Figures 5 and 6 give the results for the new observation, yr 4. Overall, we see that serial
correlation does not seem to affect inference on yr,, much. There are some effects when
T = 50, but this seems related to difficulties in estimating the distribution of 7,4 with serial
correlation. Otherwise, the figures and conclusions are similar to those in Figures 2 and 3 with
the exception of the fact that the block wild bootstrap leads to much wider intervals than the

i.i.d. bootstrap with some improvement in coverage for 7" = 50.
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Probability to the left

Figure 5. Probability of interval to the left and right of y € is normal

12
10
8
3
1 6
it
4
2
0
50 100 150 200
N
12
10
o 8
3
= 6
1
L)
| — £ - OO
2
o
50 100 150 200
N
12
10
o 8
3
N 6
1
T —)
5 .
0
50 100 150 200
N

Note: see Figure 2.

Probability to the left

50

50 100 150 200

T=100
IS

T=200
IS

Note: see Figure 2.

Figure 6.
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7 Empirical illustration

In this section, we use the dataset of Stock and Watson (2003) and Rossi and Sekhposyan
(2014), updated to the first quarter of 2014, to illustrate the properties of asymptotic and
bootstrap intervals.!

We consider forecast intervals for changes in the inflation rate measured by the quarterly
growth rate of the GDP deflator (PG DP) at annual rate:

- PDGPt PDGPtfl
A7Tt = |:1Il (PGTPtl) —1In (mTth)} x 400.

There is a total of N = 29 series on asset prices, measures of economic activity, wages and
prices, and money used to construct forecasts, see Rossi and Sekhposyan (2014) for details.
The inflation rate is not included in the data used for extracting the factors. In order to have
a balanced panel, our sample covers the period 1973q1-2014q1.

We construct forecasts from the factor-augmented autoregressive model:
p T
Aﬁ't_;,_h = BO + Z ¢jA7Tt—j+l + Z @]F]’t
=1 j=1

We compute forecast intervals for h = 1 for the last 50 observations in the sample. This
means that the forecasts are made each period from the third quarter of 2001 until the end
of 2013. We use a rolling window of 40 observations to estimate factors and parameters as in
Rossi and Sekhposyan. We also follow Rossi and Sekhposyan and first choose the AR order p

for each time period using BIC and then augment with the estimated factors. In each period,

'We thank Tatevik Sekhposyan for providing us with the data.
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we select the number of factors such that the factors explain a minimum of 60% of the total
variance of the panel after centering and rescaling. Three factors are selected by this approach
in 40 out of the 50 periods, and 4 for the remaining 10 periods.

The factor-based forecasts reduce the root mean squared error of the forecasts by about
13% relative to autoregressive forecasts. In Figure 7, we report prediction intervals for the
factor-augmented forecasts. The dashed red lines represent the bounds of the (pointwise) 95%
prediction interval based on the asymptotic theory of Bai and Ng (2006) for each date. This
interval is symmetric around the point forecast by construction since it is based on the normal
distribution. We also report bootstrap intervals based on the block wild bootstrap (BWB)
for e}, , with block size equal to the bandwidth selected by the Andrews (1991) rule and the
wild bootstrap for e;. Other methods for drawing ¢}, lead to very similar intervals, and we
do not report them to ease exposition (they are available from the authors upon request).
The reported intervals were constructed as equal-tailed percentile-t intervals and are based on

B =9999 bootstrap replications.

Figure 7. Prediction interval for me - Factor-augmented forecast intervals

5
2002 2004 2006 2008 2010 2012
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Note: The dashed red lines represent the bounds of the (pointwise) 95% prediction interval based on
the asymptotic theory of Bai and Ng (2006) for each date. The solid blue line are bounds of the 95%
equal-tailed percentile-t bootstrap intervals based on the block wild bootstrap (BWB) with block size

equal to the bandwidth selected by the Andrews (1991) based on B=9999 bootstrap replications.

While both sets of intervals in Figure 7 are similar, there are noticeable differences that
can be attributed either to bias in the estimation of the parameters or to non-normality in
the distribution of the error term. Rossi and Sekhposyan (2014) find fairly strong evidence of
non-normality of the forecast errors for this series, and this is likely an important source of the
differences between the asymptotic and equal-tailed intervals.

The behavior of the bootstrap intervals during specific periods is quite interesting. For
example, early in the sample, the bootstrap intervals are consistently shifted down relative
to the asymptotic intervals. Figure 8 highlights two periods where the bootstrap interval lies
completely below 0. The left panel presents the same intervals as Figure 7 around the fourth
quarter of 2008. We see that the bootstrap intervals are shifted down for most of the reported
period, and the upper limit of the bootstrap interval drops just below 0 (it is -.07%) in the
fourth quarter of 2008. On the other hand, the asymptotic interval contains 0 with an upper
limit of about 1%. This means that policy makers concerned about a sudden reduction in
inflation following the collapse of Lehman Brothers would have underestimated the probability

of a reduction in inflation had they based their decision on the asymptotic intervals.

41



Figure 8. Prediction interval for Aﬂ'T+1 -2008 and 2011
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Note: see Figure 7.

Similarly, the right panel of Figure 8 focuses on the intervals around the fourth quarter of
2011. As in 2008, the bootstrap interval for the fourth quarter of 2011 is shifted down and
includes only negative values, whereas the corresponding asymptotic interval includes positive
inflation changes. At that time, many central banks were concerned about deflation risk, and
relying on asymptotic intervals would have given them the impression that large reductions in
inflation were much less likely than suggested by the bootstrap interval (the change in inflation

turned out to be —2 percentage points).

8 Conclusion

In this paper, we have proposed the bootstrap to construct valid prediction intervals for models
involving estimated factors. We considered two objects of interest: the conditional mean yr 7
and the realization y;,, . The bootstrap improves considerably on asymptotic theory for the

conditional mean when the factors are relevant because of the bias in the estimation of the
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regression coefficients. However, our simulation results suggest that allowing for serial corre-
lation, as is relevant when the forecasting horizon is greater than 1, is not very important in
practice. For the observation, the bootstrap allows the construction of valid intervals without
having to make strong distributional assumptions such as normality as was done in previous
work by Bai and Ng (2006) .

One key assumption that we had to make to establish our results is that the idiosyncratic
errors in the factor models are cross-sectionally independent. This is certainly restrictive,
but it allows for the use of the wild bootstrap on the idiosyncratic errors. Non-parametric
bootstrapping under more general conditions remains a challenge. The results in this paper
could be used to prove the validity of a scheme in that context by showing the conditions .4

and B are satisfied.
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A Appendix

The proof of Theorem 4.1 requires the following auxiliary result, which is the bootstrap analogue

of Lemma A.2 of Bai (2003). It is based on the following identity that holds for each ¢:

T T
[ * T 7k — 1 * % * %k 1 [% &%
Ft_HFt:V ' TZFS’ySt_‘_ ZFCst+ ZFS st_‘_szsfst )
=1 s=1
_‘A’M EA;t Ej%t ETXL

where

1 < 1 &
Vo = E° (N Zefseft) =y D (ehen — BT (ehel),
=1 3

1 1 ZN
* 3 * n * Wz H
Net = N E )\z sCit = Fs/ N and ést = N )\1 t€is = Ts-

Lemma A.1 Assume Assumptions 1 and 2 hold. Under Condition A, we have that for each

t, in probability, as N, T — oo,

(a) T 123 1 SIYSt_OP*

(c) T ZST:1 Fs*nit = Op+

(

(b) T 0, Fi¢h = O (75 )
(
(

(d) 7713, Fi&l = Op

Remark 3 The term Op- (1 /T3 4) that appears in (a) is of a larger order of magnitude than
the corresponding term in Bai (2003, Lemma A.2(i)), which is Op (1/T). The reason why we

obtain this larger term is that we rely on Bonferroni’s inequality and Chebyshev’s inequality
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to bound maxi<,<r || Fs|| = Op (T"*) using the fourth order moment assumption on Fy (cf.
Assumption 1(a)). In general, if E||Fy||* < M for all s, then maxi<,<r | Fs| = Op (T"9) and

we will obtain a term of order Op« (1/T*7/4).

Proof of Lemma A.1. The proof follows closely that of Lemma A.2 of Bai (2003). The

only exception is (a), where an additional O (T?}/‘*) term appears. In particular, we write

T T T
TN =Ty (ﬁ; - H*Fs) Y+ H T Foyly =a; +1}.
s=1 =

s=1 s=1

We use Cauchy-Schwartz and Condition .A.1 to bound a; as follows

T N T 1/2
il < (e l) - (r )
s=1 s=1
1 1 1
= Op+ | — |Op|—=) =Op- ,
() (77) =0 (7o)
. 2
where T-' S0 ||[F* — H*F,|| = Op- (65%) by Lemma 3.1 of Gongalves and Perron (2014)

(note that this lemma only requires Conditions A*(b), A*(c), and B*(d), which correspond to

our Condition A.1, A.2 and A.5). For b}, we have that (ignoring H*, which is Op~ (1)),

T T T
b= TS B =T Y (= HE) v+ HT U Farly = b, + b,
s=1

s=1 s=1

g Op (6x%) under

where 07, = Op (1/5NT\/T> using the fact that 7137, ‘ F,— HF,

Assumptions 1 and 2 and the fact that 7-'3."_ |v*|> = Op (1/T) for each t by Condition
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A.1. For b3,, note that (ignoring H = Op (1)),

T
. 1
I3 < (s [T 3 sl = Or (757
" —_————

s=1

or(})

Op(TV/4)

where we have used the fact that E||F,||* < M for all s (Assumption 1) to bound max, ||Fy|.

Indeed, by Bonferroni’s inequality and Chebyshev’s inequality, we have that

oy - 14 - IR 1L
P(T msax||F8||>M> <3 P(|E] > TV M) Z <m0
s=1 s=1

for M sufficiently large. For (b), we follow exactly the proof of Bai (2003) and use Condition
A2 to bound T-* 31 ¢2 = Op. (%) for each ¢; similarly, we use Condition A.3 to bound
LS F(, foreach t. For (c), we bound 7= ST Fupf, = NTUH* O Net, = Op <1/\/N)
by using Condition .A.6. This same condition is used to bound T-'S7_ 72 = Op. (1/N) for
cach t. Finally, for part (d), we use Condition .A.4 to bound T-' 37| F,£%, = Op. (ﬁ) for
each t and we use Condition A.5 to bound T 3.7 &2 = Op. (1/N) for each t.

Proof of Theorem 4.1.By Lemma A.1, it follows that the third term in v N (E* —H *E)
is the dominant one (it is Op« (1)); the first term is Op- < VN > +Op (T3/4) Op-~ <1§/3;> =

VTén
op- (1) if v/N/T?* — 0 whereas the second and the fourth terms are Op- (1/0x7) = op- (1) as
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N,T — oo. Thus, we have that

N
N N N _ 1 .
VN (Ft* - H*Ft> = VD Fs*\/_N > NE.el, + op- (1)

s=1 =1
vt (FF> (A/[\) (M>_1 1 iAe +op+ (1)
= 1>t P*
T N N | UN&
1 N
*Y7r—11*1/2 x—1/2 Y %
= H'V'T / I / \/—N;/\z% +op (1), (26)

—d4* N(0,I) by Condition A.6

given the definition of H* and the fact that V = A’TA Since det (I'y) > € > 0 for all N and some e,
! exists and we can define I'} /% = (F;dﬂ) - where T7V/2T0Y2 = T Let ;2 = 07127
and note that II; /2 is symmetric and it is such that (H:_1/2> (HI_1/2> = VIV =1L
The result follows by multiplying (26) by II; "/ H*~! and using Condition .A.6.

Proof of Corollary 4.1. Condition B and the fact that V —% V under our assumptions
imply that II; —7 IT, = V'QT,Q"V . This suffices to show the result.

Proof of Theorem 5.1. Using the decomposition (19) and the fact that

Fx — H*Fyp

ZA/; - ®*2T + I
0

where ®* = diag (H*, 1,), it follows that

1 o* iy ~ *—1 Tox I *
Yravr — Yror = ﬁi}ﬁ (@*'6 — (5) + —a&'VN (H o Qs FT) + 7k

EH
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where the remainder is

First, we argue that

Ak *
Yr+yr =~ Yreuyr g
H

vV Br

* : : : ~ % * : * * [ ~x % _
where B} is the asymptotic variance of Yrsvr — Yo 1€ B} =aVar (yTH‘T yT+1|T> =

N(0,1), (27)

+20 852y + +&Tlpé. To show (27), we follow the arguments of Bai and Ng (2006, proof of
their Theorem 3) and show that (1) Zf, = \/T(@*’S* —3) = N (—cAs, 3s); (2) Z3p =
VN (H sl FT> —4 N (0,I7); (3) Zi and Z3, are asymptotically independent (condi-
tional on the original sample). Condition (1) follows from Gongalves and Perron (2014) under
Assumptions 1-6; (2) follows from Corollary 4.1 provided /N /T™/*? — (0 and conditions A
and B hold for the wild bootstrap (which we verify next); (3) holds because we generate e}
independently of 7 ;.

Proof of Condition A for the wild bootstrap. We verify for t = T. We have that
S i = <% SV é§T>2. Thus, it suffices to show that + SN &% = Op (1). This follows

by using the decomposition

~ ~ [
Gu = ey — NH™! (Ft - HE) - ()\Z- - H*1’>\i) 7,
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which implies that

1L 1 &
T2 lel < NZW +3—Z||A|| | (|~ |
=1

_ s

The first term is Op (1) given that E |e;|* = O (1); the second term is Op (1) since E | \;||* =

+31
Ni:

. 2

O (1) and given that HFT — HFTH = Op(1/N) = op (1); and the third term is Op (1) given
_ 2

Lemma C.1.(ii) of Gongalves and Perron (2014) and the fact that HFTH = Op(1). Next, we

verify A.2. For t = T, following the proof of Theorem 4.1 in Gongalves and Perron (2014)

(condition A*(c)), we have that

<n

(28)

A
33!
VR
2|~
Mz
é‘ﬁ;
N—
S
VR
3 —
N——
S
I
Q
]
=

where the first factor in (28) can be bounded by an argument similar to that used above to
bound + ZZ €%, and the second factor can be bounded by Lemma C.1 (iii) of Gongalves

and Perron (2014). A.3 follows by an argument similar to that used by Gongalves and Perron
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(2014) to verify Condition B*(b). In particular,

IN
]I
—
2|~
TS

N

under our assumptions. Conditions A.4 and A.5 correspond to Gongalves and Perron’s (2014)
Conditions B*(c) and B*(d), respectively. Finally, we prove Condition .A.6 for ¢ = T". Using the

fact that e, = é;rn;r, where 1, ~ i.i.d. (0,1) across i, note that

N N
. . 1 . 1 TRl
FT = Var <\/_N E )\ieiT> = N E /\,)\IefT —>P QFTQ/,

by Theorem 6 of Bai (2003), where I'r = limy_,o, Var (\/LN SV /\Z-ez-T> > 0 by assumption.

Thus, I'}. is uniformly positive definite. We now need to verify that

N N
1 w—1/2% 1 w—1/27 ~ .
\/_N E KIFT 1/2)\2'62} = \/_N E ger 1/2/\i6iT77ﬂ: —>d N (0, 1),
i=1 i=1 e

*

:sz

in probability, for any ¢ such that ¢’/ = 1. Since w}, is an heterogeneous array of independent

random variables (given that 7,, is i.i.d.), we apply a CLT for heterogeneous independent arrays.
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Note that E* (w};) = 0 and

. . , . . 1 N * % |27 P
Thus, it suffices to verify Lyapunov’s condition, i.e. for some r > 1, 7 > ., E* |wjy[" —" 0.

We have that

~ 112
Ai

1 N
B3

(T3~

el B Inirl”
——

<M<oo

1/2 L& 1/2 .
TR (Ft) o5
=1 =1

N
1 * * |27 2r
H OB < ol
i=1

1

Nr—1 <PT e

IN

Proof of Condition B for the wild bootstrap. 'y = + 37 Ne2 =P Q@ by
Theorem 6 of Bai (2003).

The result for the studentized statistic (where we replace Bi with an estimate B%) then
follows by showing that 2353525 — 245550 —F" 0, and @*'E}Td* —&'y 7,0 =" 0, in probability.
This can be shown using the arguments in Bai and Ng (2006, Theorems 3.1) and Bai (2003,
Theorem 6).

Proof of Lemma 5.1. Recall that F. () = P (¢; < z) and define the following empirical

distribution functions,

1 T-1

A = 1
E—F (I‘) = m 1 {€t+1 — & S I} and FT75 (I') = ﬁ ; 1 {gt-‘rl S Z‘},

t=1

Er,

51




where & = L th:ll Ei11- Note that Fr.- (z) = Fr: z(z). It follows that

d2 (FTé_gv Fe) < d2 (FT,é_Ea FT,e) + d2 (FT,ay Fe) )

where dy (Fr., F.) = 045 (1) by Lemma 8.4 of Bickel and Freedman (1981). Thus, it suffices
to show that dy (Fp.._z, Fre) = op (1). Let I be distributed uniformly on {1,...,7 — 1} and

define X; = &;.1 — & and Y7 = £741. We have that

_ 1 = _
(d (FrezFre)” < BXG-Y) =B (G —E—erm) = o= 3 (B —E— i)’
t=1
1 T—1 1 T—-1 )
= — (ét+1 — 5t+1)2 —2— (ét+1 — €t+1) g + (g) = Al + AQ + Ag.
T—14 T-1 ;

We can write

Bt — Er = — (Ft - HFt>I & — (@2 (Es - 5) ,

where ® = diag (H, I,). This implies that

T > = LIl ) 1 1
Ay < 25— > ‘ F,— HE| ||&| HH; @z ||0 — 5” = Op (%) +0p <T) = op(1).
Similarly,
= = = 1
z e — £ = — & — _— — O _ 1
€ T_1;5t+1 T_1;(5t+1 5t+1)+T_1;€t+1 P((SNT)+0P()>

where the first term is bounded by an argument similar to that used to bound A; (via the

Cauchy-Schwartz inequality). This implies that Ay and Az are also op (1).
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Proof of Corollary 5.1. Lemma 5.1 implies that s, —% 1 — F. (—zo.), in probability.

Since spp1 —? 1 — F.(—x0.) and F. is everywhere continuous under Assumption 7, Polya’s
Jr

Theorem implies the result.
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