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We propose bootstrap prediction intervals for an observation h periods into the future and its 

conditional mean. We assume that these forecasts are made using a set of factors extracted from a 
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1 Introduction

Forecasting using factor-augmented regression models has become increasingly popular since

the seminal paper of Stock and Watson (2002). The main idea underlying the so-called diffusion

index forecasts is that when forecasting a given variable of interest, a large number of predictors

can be summarized by a small number of indexes when the data follows an approximate factor

model. The indexes are the latent factors driving the panel factor model and can be estimated

by principal components. Point forecasts can be obtained by running a standard OLS regression

augmented with the estimated factors.

In this paper, we consider the construction of prediction intervals in factor-augmented regres-

sion models using the bootstrap. In particular, our main contribution is to show the consistency

of bootstrap intervals for a future target variable and its conditional mean. Our results allow

for the construction of bootstrap prediction intervals without assuming Gaussianity and with

better finite-sample properties than those based on asymptotic theory.

To be more specific, suppose that yt+h denotes the variable to be forecast (where h is the

forecast horizon) and let Xt be a N -dimensional vector of candidate predictors. We assume

that yt+h follows a factor-augmented regression model,

yt+h = α′Ft + β′Wt + εt+h, t = 1, . . . , T − h, (1)

2



whereWt is a vector of observed regressors (including for instance lags of yt) which jointly with

Ft help forecast yt+h. The r-dimensional vector Ft describes the common latent factors in the

panel factor model,

Xit = λ′iFt + eit, i = 1, . . . , N, t = 1, . . . , T, (2)

where the r × 1 vector λi contains the factor loadings and eit is an idiosyncratic error term.

The goal is to forecast yT+h or its conditional mean yT+h|T = α′FT + β′WT using

{(yt, Xt,Wt) : t = 1, . . . , T}, the available data at time T . Since factors are not observed, the

diffusion index forecast approach typically involves a two-step procedure: in the first step we

estimate Ft by principal components (yielding F̃t) and in the second step we regress yt+h on

Wt and F̃t to obtain the regression coeffi cients. The point forecast is then constructed as

ŷT+h|T = α̂′F̃T + β̂
′
WT . Because we treat factors as latent, point forecasts depend both on

estimated factors and regression coeffi cients. These two sources of parameter uncertainty must

be accounted for when constructing prediction intervals and confidence intervals, as shown by

Bai and Ng (2006).

Under regularity conditions, Bai and Ng (2006) derived the asymptotic distribution of re-

gression estimates and the corresponding forecast errors and proposed the construction of as-

ymptotic intervals. Our motivation for using the bootstrap as an alternative method of inference

is twofold. First, the finite sample properties of the asymptotic approach of Bai and Ng (2006)

can be poor, especially if N is not suffi ciently large relative to T . This was recently shown by

Gonçalves and Perron (2014) in the context of confidence intervals for the regression coeffi cients,

and as we will show below, the same is true in the context of prediction intervals. In particular,

estimation of factors leads to an asymptotic bias term in the OLS estimator if
√
T/N → c and

c 6= 0. Gonçalves and Perron (2014) proposed a bootstrap method that removes this bias and
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outperforms the asymptotic approach of Bai and Ng (2006). Second, the bootstrap allows for

the construction of prediction intervals for yT+h that are consistent under more general assump-

tions than the asymptotic approach of Bai and Ng (2006). In particular, the bootstrap does

not require the Gaussianity assumption on the regression errors that justifies the asymptotic

prediction intervals of Bai and Ng (2006). As our simulations show, prediction intervals based

on the Gaussianity assumption perform poorly when the regression error is asymmetrically

distributed whereas the bootstrap prediction intervals do not suffer significant size distortions.

We apply our procedure to forecasting inflation changes using quarterly observations on

the US GDP deflator for the period 1973-2014. The resulting bootstrap intervals differ in

interesting ways from the asymptotic ones in specific periods. In particular, the 95% equal-

tailed percentile-t bootstrap intervals are shifted downwards and lie entirely below 0 following

the financial crisis of 2008 and during the last quarter of 2011. These periods were marked by

a significant concern of deflation. Our intervals are more consistent with such concerns than

the asymptotic ones which include some probability of increasing inflation.

The remainder of the paper is organized as follows. Section 2 introduces our forecasting

model and considers asymptotic prediction intervals. Section 3 describes two bootstrap predic-

tion algorithms. Section 4 presents a set of high level assumptions on the bootstrap idiosyncratic

errors under which the bootstrap distribution of the estimated factors at a given time period is

consistent for the distribution of the sample estimated factors. These results together with the

results of Gonçalves and Perron (2014) and Djogbenou, Gonçalves, and Perron (2014) regard-

ing inference on the coeffi cients are used in Section 5 to show the asymptotic validity of wild

bootstrap prediction intervals. Section 6 presents our simulation experiments, while Section 7

presents an empirical illustration of our methods. Finally, Section 8 concludes. Mathematical
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proofs appear in the Appendix.

2 Prediction intervals based on asymptotic theory

This section introduces our assumptions and reviews the asymptotic theory-based prediction

intervals proposed by Bai and Ng (2006).

2.1 Assumptions

Let zt =

(
F ′t W ′

t

)′
, where zt is p × 1, with p = r + q. Following Bai and Ng (2006), we

make the following assumptions.

Assumption 1

(a) E ‖Ft‖4 ≤M and 1
T

∑T
t=1 FtF

′
t →P ΣF > 0, where ΣF is a non-random r × r matrix.

(b) The loadings λi are either deterministic such that ‖λi‖ ≤ M , or stochastic such that

E ‖λi‖4 ≤M. In either case, Λ′Λ/N →P ΣΛ > 0, where ΣΛ is a non-random matrix.

(c) The eigenvalues of the r × r matrix (ΣΛΣF ) are distinct.

Assumption 2

(a) E (eit) = 0, E |eit|4 ≤M.

(b) E (eitejs) = σij,ts, |σij,ts| ≤ σ̄ij for all (t, s), |σij,ts| ≤ τ ts for all (i, j) . Furthermore,∑T
s=1 τ ts ≤M, for each t, and 1

NT

∑
t,s,i,j |σij,ts| ≤M.

(c) For every (t, s), E
∣∣∣N−1/2

∑N
i=1 (eiteis − E (eiteis))

∣∣∣4 ≤M.

(d) 1
NT 2

∑
t,s,l,u

∑
i,j |Cov (eiteis, ejleju)| < M <∞.
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(e) For each t, 1√
N

∑N
i=1 λieit →d N (0,Γt), where Γt ≡ limN→∞ V ar

(
1√
N

∑N
i=1 λieit

)
> 0.

Assumption 3 The variables {λi} , {Ft} and {eit} are three mutually independent groups.

Dependence within each group is allowed.

Assumption 4

(a) E (εt+h) = 0 and E |εt+h|4 < M.

(b) E (εt+h|yt, zt, yt−1, zt−1, . . .) = 0 for any h > 0, and (z′t, εt) are independent of the idiosyn-

cratic errors eis for all (i, s, t).

(c) E ‖zt‖4 ≤M and 1
T

∑T
t=1 ztz

′
t →P Σzz > 0.

(d) As T →∞, 1√
T

∑T−h
t=1 ztεt+h →d N (0,Ω) , where E

∥∥∥ 1√
T

∑T−h
t=1 ztεt+h

∥∥∥2

< M , and

Ω ≡ limT→∞ V ar
(

1√
T

∑T−h
t=1 ztεt+h

)
> 0.

Assumptions 1 and 2 are standard in the approximate factors literature, allowing in par-

ticular for weak cross sectional and serial dependence in eit of unknown form. Assumption 3

assumes independence among the factors, the factor loadings and the idiosyncratic error terms.

We could allow for weak dependence among these three groups of variables at the cost of intro-

ducing restrictions on this dependence. Assumption 4 imposes moment conditions on {εt+h},

on {zt} and on the score vector {ztεt+h}. Part c) requires {ztz′t} to satisfy a law of large num-

bers. Part d) requires the score to satisfy a central limit theorem, where Ω denotes the limiting

variance of the scaled average of the scores. We generalize the form of the covariance matrix

assumed in Bai and Ng (2006) to allow for serial correlation as this will generally be the case

when the forecast horizon is greater than 1.

6



2.2 Normal-theory intervals

As described in Section 1, the diffusion index forecasts are based on a two step estimation

procedure. The first step consists of extracting the common factors F̃t from the N -dimensional

panelXt. In particular, givenX, we estimate F and Λ with the method of principal components.

F is estimated with the T × r matrix F̃ =

(
F̃1 . . . F̃T

)′
composed of

√
T times the

eigenvectors corresponding to the r largest eigenvalues of XX ′/TN (arranged in decreasing

order), where the normalization F̃ ′F̃
T

= Ir is used. The matrix containing the estimated loadings

is then Λ̃ =
(
λ̃1, . . . , λ̃N

)′
= X ′F̃

(
F̃ ′F̃

)−1

= X ′F̃ /T.

In the second step, we run an OLS regression of yt+h on ẑt =

(
F̃ ′t W ′

t

)′
, i.e. we compute

δ̂ ≡

 α̂

β̂

 =

(
T−h∑
t=1

ẑtẑ
′
t

)−1 T−h∑
t=1

ẑtyt+h, (3)

where δ̂ is p× 1 with p = r + q.

Suppose the object of interest is yT+h|T , the conditional mean of yT+h = α′FT +β′WT +εT+h

at time T . The point forecast is ŷT+h|T = α̂′F̃T + β̂
′
WT and the forecast error is given by

ŷT+h|T − yT+h|T =
1√
T
ẑ′T
√
T
(
δ̂ − δ

)
+

1√
N
α′H−1

√
N
(
F̃T −HFT

)
, (4)

where δ ≡
(
α′H−1 β′

)′
is the probability limit of δ̂. The matrix H is defined as

H = Ṽ −1 F̃
′F

T

Λ′Λ

N
, (5)

where Ṽ is the r× r diagonal matrix containing on the main diagonal the r largest eigenvalues
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of XX ′/NT , in decreasing order (cf. Bai (2003)). It arises because factor models are only

identified up to rotation, implying that the principal component estimator F̃t converges to

HFt, and the OLS estimator α̂ converges to H−1′α. It must be noted that forecasts do not

depend on this rotation since the product is uniquely identified.

The above decomposition shows that the asymptotic distribution of the forecast error de-

pends on two sources of uncertainty: the first is the usual parameter estimation uncertainty

associated with estimation of α and β, and the second is the factors estimation uncertainty.

Under Assumptions 1-4, and assuming that
√
T/N → 0 and

√
N/T → 0 as N, T → ∞, Bai

and Ng (2006) show that the studentized forecast error

ŷT+h|T − yT+h|T√
B̂T

→d N (0, 1) , (6)

where B̂T is a consistent estimator of the asymptotic variance of ŷT+h|T given by

B̂T = V̂ ar
(
ŷT+h|T

)
=

1

T
ẑ′T Σ̂δẑT +

1

N
α̂′Σ̂F̃T

α̂. (7)

Here, Σ̂δ consistently estimates Σδ = V ar
(√

T
(
δ̂ − δ

))
and Σ̂F̃T

consistently estimates

ΣF̃T
= V ar

(√
N
(
F̃T −HFT

))
. In particular, under Assumptions 1-4,

Σ̂δ =

(
T−1

T−h∑
t=1

ẑtẑ
′
t

)−1

Ω̂T

(
T−1

T−h∑
t=1

ẑtẑ
′
t

)−1

, (8)

where Ω̂T is a heteroskedasticity and autocorrelation consistent (HAC) estimator of
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Ω = limT→∞ V ar
(

1√
T

∑T−h
t=1 ztεt+h

)
, and

Σ̂F̃T
= Ṽ −1Γ̃T Ṽ

−1, (9)

where Γ̃T is an estimator of ΓT = limN→∞ V ar
(

1√
N

∑N
i=1 λieiT

)
which depends on the cross

sectional dependence and heterogeneity properties of eiT . Bai and Ng (2006) provide three

different estimators of ΓT . Section 5 below considers such an estimator.

The central limit theorem result in (6) justifies the construction of an asymptotic 100(1− α)%

level confidence interval for yT+h|T given by

(
ŷT+h|T − z1−α/2

√
B̂T , ŷT+h|T + z1−α/2

√
B̂T

)
, (10)

where z1−α/2 is the 1− α/2 quantile of a standard normal distribution.

When the object of interest is a prediction interval for yT+h, Bai and Ng (2006) propose

(
ŷT+h|T − z1−α/2

√
ĈT , ŷT+h|T + z1−α/2

√
ĈT

)
, (11)

where

ĈT = B̂T + σ̂2
ε,

with B̂T as above and σ̂
2
ε = 1

T

∑T
t=1 ε̂

2
t . The validity of (11) depends on the additional assump-

tion that εt is i.i.d. N (0, σ2
ε).

An important condition that justifies (10) and (11) is that
√
T/N → 0. This condition

ensures that the term reflecting the parameter estimation uncertainty in the forecast error

9



decomposition (4),
√
T
(
δ̂ − δ

)
, is asymptotically normal with a mean of zero and a variance-

covariance matrix that does not depend on the factors estimation uncertainty. As was recently

shown by Gonçalves and Perron (2014), when
√
T/N → c 6= 0,

√
T
(
δ̂ − δ

)
→d N (−c∆δ,Σδ) ,

where ∆δ is a bias term that reflects the contribution of the factors estimation error to the

asymptotic distribution of the regression estimates δ̂. In this case, the two terms in (4) will

depend on the factors estimation uncertainty and a natural question is whether this will have

an effect on the prediction intervals (10) and (11) derived by Bai and Ng (2006) under the

assumption that c = 0. As we argue next, these intervals remain valid even when c 6= 0. The

main reason is that when
√
T/N → c 6= 0, the ratio N/T → 0, which implies that the parameter

estimation uncertainty associated with δ is dominated asymptotically by the uncertainty from

having to estimate FT .

More formally, when
√
T/N → c 6= 0, N/T → 0 and the convergence rate of ŷT+h|T is

√
N ,

implying that

√
N
(
ŷT+h|T − yT+h|T

)
=

√
N/T

√
T
(
δ̂ − δ

)′
ẑT + α′H−1

√
N
(
F̃T −HFT

)
= α′H−1

√
N
(
F̃T −HFT

)
+ oP (1) .

Thus, the forecast error is asymptoticallyN
(
0, α′H−1ΣF̃T

H−1′α
)
. SinceNB̂T = (N/T ) ẑ′T Σ̂δẑT+

α̂′Σ̂F̃T
α̂ = α′H−1ΣF̃T

H−1′α + oP (1), the studentized forecast error given in (6) is still N (0, 1)

as N, T →∞. For the studentized forecast error associated with forecasting yT+h, the variance

of ŷT+h is asymptotically (as N, T → ∞) dominated by the variance of the error term σ2
ε, im-
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plying that neither the parameter estimation uncertainty nor the factors estimation uncertainty

contribute to the asymptotic variance.

3 Description of bootstrap intervals

Following Gonçalves and Perron (2014), we consider the following bootstrap data-generating

process:

X∗t = Λ̃F̃t + e∗t , (12)

y∗t+h = α̂′F̃t + β̂
′
Wt + ε∗t+h, (13)

where
{
e∗t = (e∗1t, . . . , e

∗
Nt)
′} denotes a bootstrap sample from {ẽt = Xt − Λ̃F̃t

}
and

{
ε∗t+h

}
is

a resampled version of
{
ε̂t+h = yt+h − α̂′F̃t − β̂

′
Wt

}
.

Our goal in this section is to describe two general bootstrap algorithms that can be used to

compute intervals for yT+h|T and yT+h for any choice of {e∗t} and
{
ε∗t+h

}
. The specific method

of generating {e∗t} and
{
ε∗t+h

}
will depend on the assumptions we make on {eit} and {εt+h},

respectively. In Section 5 we describe several methods. For example, we rely on the wild

bootstrap to generate both {e∗t} and
{
ε∗t+1

}
when constructing confidence intervals for yT+1|T .

The wild bootstrap is justified in this setting since we assume away cross sectional dependence

in eit and we assume that εt+1 is a m.d.s. when h = 1. For one-step ahead prediction intervals

we strengthen the m.d.s. assumption to an i.i.d. assumption on εt+1, and therefore we generate

ε∗t+1 using the i.i.d. bootstrap. For multi-step prediction intervals, we generate ε
∗
t+h with either

the block wild bootstrap or the dependent wild bootstrap of Djogbenou et al. (2014) to account

for possible serial correlation.
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We estimate the factors by the method of principal components using the bootstrap panel

data set {X∗t : t = 1, . . . , T}. We let F̃ ∗ =
(
F̃ ∗1 , . . . , F̃

∗
T

)′
denote the T × r matrix of bootstrap

estimated factors which equal the r eigenvectors of X∗X∗′/NT (multiplied by
√
T ) correspond-

ing to the r largest eigenvalues. The N × r matrix of estimated bootstrap loadings is given

by Λ̃∗ =
(
λ̃
∗
1, . . . , λ̃

∗
N

)′
= X∗′F̃ ∗/T . We then run a regression of y∗t+h on F̃

∗
t and Wt using

observations t = 1, . . . , T − h. We let δ̂∗ denote the corresponding OLS estimator

δ̂
∗

=

(
T−h∑
t=1

ẑ∗t ẑ
∗′
t

)−1 T−h∑
t=1

ẑ∗t y
∗
t+h,

where ẑ∗t =
(
F̃ ∗′t ,W

′
t

)′
.

The steps for obtaining a bootstrap confidence interval for yT+h|T are as follows.

Algorithm 1 (Bootstrap confidence interval for yT+h|T )

1. For t = 1, . . . , T , generate

X∗t = Λ̃F̃t + e∗t ,

where {e∗it} is a resampled version of
{
ẽit = Xit − λ̃

′
iF̃t

}
.

2. Estimate the bootstrap factors
{
F̃ ∗t : t = 1, . . . , T

}
using X∗.

3. For t = 1, . . . , T − h, generate

y∗t+h = α̂′F̃t + β̂
′
Wt + ε∗t+h,

where the error term ε∗t+h is a resampled version of ε̂t+h.
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4. Regress y∗t+h generated in step 3 on the bootstrap estimated factors F̃
∗
t obtained in step

2 and on the fixed regressors Wt and obtain the OLS estimator δ̂
∗
.

5. Obtain bootstrap forecasts

ŷ∗T+h|T = α̂∗′F̃ ∗T + β̂
∗′
WT ≡ δ̂

∗′
ẑ∗T ,

and bootstrap variance

B̂∗T =
1

T
ẑ∗′T Σ̂∗δ ẑ

∗
T +

1

N
α̂∗′Σ̂∗

F̃T
α̂∗, (14)

where the choice of Σ̂∗δ and Σ̂∗
F̃T
depends on the properties of ε∗t+h and e

∗
it.

6. Let y∗T+h|T = α̂′F̃T + β̂
′
WT and compute bootstrap prediction errors:

(a) For equal-tailed percentile-t bootstrap intervals, compute studentized bootstrap pre-

diction errors as

s∗T+h =
ŷ∗T+h|T − y∗T+h|T√

B̂∗T

.

(b) For symmetric percentile-t bootstrap intervals, compute
∣∣s∗T+h

∣∣ .
7. Repeat this processB times, resulting in statistics

{
s∗T+h,1, . . . , s

∗
T+h,B

}
and

{∣∣s∗T+h,1

∣∣ , . . . , ∣∣s∗T+h,B

∣∣} .
8. Compute the corresponding empirical quantiles:

(a) For equal-tailed percentile-t bootstrap intervals, q∗1−α is the empirical 1−α quantile

of
{
s∗T+h,1, . . . , s

∗
T+h,B

}
.

(b) For symmetric percentile-t bootstrap intervals, q∗|·|,1−α is the empirical 1−α quantile

of
{∣∣s∗T+h,1

∣∣ , . . . , ∣∣s∗T+h,B

∣∣} .
13



A 100(1− α)% equal-tailed percentile-t bootstrap interval for yT+h|T is given by

EQ1−α
yT+h|T

≡
(
ŷT+h|T − q∗1−α/2

√
B̂T , ŷT+h|T − q∗α/2

√
B̂T

)
, (15)

whereas a 100(1− α)% symmetric percentile-t bootstrap interval for yT+h|T is given by

SY 1−α
yT+h|T

≡
(
ŷT+h|T − q∗|·|,1−α

√
B̂T , ŷT+h|T + q∗|·|,1−α

√
B̂T

)
, (16)

When prediction intervals for a new observation yT+h are the object of interest, the algorithm

reads as follows.

Algorithm 2 (Bootstrap prediction interval for yT+h)

1. Identical to Algorithm 1.

2. Identical to Algorithm 1.

3. Generate
{
y∗1+h, . . . , y

∗
T , y

∗
T+1, . . . , y

∗
T+h

}
using

y∗t+h = α̂′F̃t + β̂
′
Wt + ε∗t+h,

where
{
ε∗1+h, . . . , ε

∗
T , ε

∗
T+1, . . . , ε

∗
T+h

}
is a bootstrap sample obtained from {ε̂1+h, . . . , ε̂T} .

4. Not making use of the stretch
{
y∗T+1, . . . , y

∗
T+h

}
, compute δ̂

∗
as in Algorithm 1.

5. Obtain the bootstrap point forecast ŷ∗T+h|T as in Algorithm 1 but compute its variance as

Ĉ∗T = B̂∗T + σ̂∗2ε ,

14



where σ̂∗2ε is a consistent estimator of σ2
ε = V ar (εT+h) and B̂∗T is as in Algorithm 1.

6. Let y∗T+h = α̂′F̃T + β̂
′
WT + ε∗T+h and compute bootstrap prediction errors:

(a) For equal-tailed percentile-t bootstrap intervals, compute studentized bootstrap pre-

diction errors as

s∗T+h =
ŷ∗T+h|T − y∗T+h√

Ĉ∗T

.

(b) For symmetric percentile-t bootstrap intervals, compute
∣∣s∗T+h

∣∣ .
7. Identical to Algorithm 1.

8. Identical to Algorithm 1.

A 100(1− α) % equal-tailed percentile-t bootstrap interval for yT+h is given by

EQ1−α
yT+h
≡
(
ŷT+h|T − q∗1−α/2

√
ĈT , ŷT+h|T − q∗α/2

√
ĈT

)
, (17)

whereas a 100(1− α) % symmetric percentile-t bootstrap interval for yT+h is given by

SY 1−α
yT+h
≡
(
ŷT+h|T − q∗|·|,1−α

√
ĈT , ŷT+h|T + q∗|·|,1−α

√
ĈT

)
. (18)

The main differences between the two algorithms is that in step 3 of Algorithm 2 we generate

observations for y∗t+h for t = 1, . . . , T instead of stopping at t = T − h. This allows us to

obtain a bootstrap observation for y∗T+h, the bootstrap analogue of yT+h, which we will use

in constructing the studentized statistic s∗T+h in step 6 of Algorithm 2. The point forecast is

identical to Algorithm 1 and relies only on observations for t = 1, . . . , T − h, but the bootstrap

15



variance Ĉ∗T contains an extra term σ̂∗2ε that reflects the uncertainty associated with the error

of the new observation εT+h.

Note that Algorithm 2 generates bootstrap point forecasts ŷ∗T+h|T and bootstrap future

observations y∗T+h that are conditional on WT . This is important because the point forecast

ŷT+h|T depends onWT . WhenWt contains lagged dependent variables (e.g. Wt = yt and h = 1),

steps 5 and 6 of Algorithm 2 set WT = yT when computing ŷ∗T+1|T and y
∗
T+1. This is effectively

equivalent to setting y∗T = yT for the purposes of computing these quantities. However, Step 3 of

Algorithm 2 generates observations on
{
y∗t+1 : t = 1, . . . , T

}
that do not necessarily satisfy the

requirement that y∗T = yT . As recently discussed by Pan and Politis (2014), we can account for

parameter estimation uncertainty in predictions generated by autoregressive models by relying

on a forward bootstrap method that contains two steps: one step generates the bootstrap

data by relying on the forward representation of the model. This step accounts for parameter

estimation uncertainty even if y∗T 6= yT . In a second step, we evaluate the bootstrap prediction

and future observation conditional on the last value(s) of the observed variable. Our Algorithm

2 can be viewed as a version of the forward bootstrap method of Pan and Politis (2014) when

some of the regressors are latent factors that need to be estimated.

4 Bootstrap distribution of estimated factors

The asymptotic validity of the bootstrap intervals for yT+h and yT+h|T described in the previous

section depends on the ability of the bootstrap to capture two sources of estimation error:

the parameter estimation error and the factors estimation error. In particular, the bootstrap
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estimation error for the conditional mean is given by

ŷ∗T+h|T − y∗T+h|T =
1√
T
ẑ∗′T
√
T
(
δ̂
∗ − δ∗

)
+

1√
N
α̂′H∗−1

√
N
(
F̃ ∗T −H∗FT

)
,

where δ∗ = Φ∗′−1δ̂ and Φ∗ = diag (H∗, Iq) . Here, H∗ is the bootstrap analogue of the rotation

matrix H defined in (5), i.e.

H∗ = Ṽ ∗−1 F̃
∗′F̃

T

Λ̃′Λ̃

N
,

where Ṽ ∗ is the r× r diagonal matrix containing on the main diagonal the r largest eigenvalues

of X∗X∗′/NT , in decreasing order. Note that contrary to H, which depends on unknown pop-

ulation parameters, H∗ is fully observed. Using the results in Bai and Ng (2013) , H∗ converges

asymptotically to a diagonal matrix with +1 or −1 on the main diagonal, see Gonçalves and

Perron (2014) for more details.

Adding and subtracting appropriately, we can write

ŷ∗T+h|T − y∗T+h|T =
1√
T
ẑ′T
√
T
(

Φ∗′δ̂
∗ − δ̂

)
+

1√
N
α̂′
√
N
(
H∗−1F̃ ∗T − F̃T

)
+ oP ∗ (1) . (19)

As usual in the bootstrap literature, we use P ∗ to denote the bootstrap probability measure,

conditional on a given sample; E∗ and V ar∗ denote the corresponding bootstrap expected

value and variance operators. For any bootstrap statistic T ∗NT , we write T
∗
NT = oP ∗ (1), in

probability, or T ∗NT →P ∗ 0, in probability, when for any δ > 0, P ∗ (|T ∗NT | > δ) = oP (1). We

write T ∗NT = OP ∗ (1), in probability, when for all δ > 0 there exists Mδ < ∞ such that

limN,T→∞ P [P ∗ (|T ∗NT | > Mδ) > δ] = 0. Finally, we write T ∗NT →d∗ D, in probability, if con-

ditional on a sample with probability that converges to one, T ∗NT weakly converges to the
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distribution D under P ∗, i.e. E∗ (f (T ∗NT )) →P E (f (D)) for all bounded and uniformly con-

tinuous functions f . See Chang and Park (2003) for similar notation and for several useful

bootstrap asymptotic properties.

The stochastic expansion (19) shows that the bootstrap estimation error captures the two

forms of estimation uncertainty in (4) provided: (1) the bootstrap distribution of
√
T
(

Φ∗′δ̂
∗ − δ̂

)
is a consistent estimator of the distribution of

√
T
(
δ̂ − δ

)
, and (2) the bootstrap distribu-

tion of
√
N
(
H∗−1F̃ ∗T − F̃T

)
is a consistent estimator of the distribution of

√
N
(
F̃T −HFT

)
.

Gonçalves and Perron (2014) discussed conditions for the consistency of the bootstrap distrib-

ution of
√
T
(
δ̂ − δ

)
. Here we propose a set of conditions that justifies using the bootstrap to

consistently estimate the distribution of the estimated factors
√
N
(
F̃t −HFt

)
at each point t.

Condition A.

A.1. For each t,
∑T

s=1 |γ∗st|
2 = OP (1), where γ∗st = E∗

(
1
N

∑N
i=1 e

∗
ite
∗
is

)
.

A.2. For each t, 1
T

∑T
s=1 E

∗
∣∣∣ 1√

N

∑N
i=1 (e∗ite

∗
is − E∗ (e∗ite

∗
is))
∣∣∣2 = OP (1) .

A.3. For each t, E∗
∥∥∥ 1√

TN

∑T
s=1

∑N
i=1 F̃s (e∗ite

∗
is − E∗ (e∗ite

∗
is))
∥∥∥2

= OP (1).

A.4. E∗
∥∥∥ 1√

TN

∑T
t=1

∑N
i=1 F̃tλ̃

′
ie
∗
it

∥∥∥2

= OP (1) .

A.5. 1
T

∑T
t=1E

∗
∥∥∥ 1√

N

∑N
i=1 λ̃ie

∗
it

∥∥∥2

= OP (1) .

A.6. For each t, Γ∗−1/2
t

1√
N

∑N
i=1 λ̃ie

∗
it →d∗ N (0, Ir), in probability, where Γ∗t = V ar∗

(
1√
N

∑N
i=1 λ̃ie

∗
it

)
is uniformly positive definite.

ConditionA is the bootstrap analogue of Bai’s (2003) assumptions used to derive the limiting

distribution of
√
N
(
F̃t −HFt

)
. Gonçalves and Perron (2014) also relied on similar high level
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assumptions to study the bootstrap distribution of
√
T
(
δ̂
∗ − δ∗

)
. In particular, ConditionsA.4

and A.5 correspond to their Conditions B*(c) and B*(d), respectively. Since our goal here is to

characterize the limiting distribution of the bootstrap estimated factors at each point t, we need

to complement some of their other conditions by requiring boundedness in probability of some

bootstrap moments at each point in time t (in addition to boundedness in probability of the time

average of these bootstrap moments; e.g. Conditions A.1 and A.2 expand Conditions A*(b)

and A*(c) in Gonçalves and Perron (2014) in this manner). We also require that a central limit

theorem applies to the scaled cross sectional average of λ̃ie∗it, at each time t (Condition A.6).

This high level condition ensures asymptotic normality for the bootstrap estimated factors. It

was not required by Gonçalves and Perron (2014) because their goal was only to consistently

estimate the distribution of the regression estimates, not of the estimated factors.

Theorem 4.1 Suppose Assumptions 1 and 2 hold. Under Condition A, as N, T → ∞ such

that
√
N/T 3/4 → 0, we have that for each t,

√
N
(
F̃ ∗t −H∗F̃t

)
= H∗Ṽ −1 1√

N

N∑
i=1

λ̃ie
∗
it + oP ∗ (1) ,

in probability, which implies that

Π
∗−1/2
t

√
N
(
H∗−1F̃ ∗t − F̃t

)
→d∗ N (0, Ir) ,

in probability, where Π∗t = Ṽ −1Γ∗t Ṽ
−1.

Theorem 1.(i) of Bai (2003) shows that under regularity conditions weaker than Assumptions

1 and 2 and provided
√
N/T → 0,

√
N
(
F̃t −HFt

)
→d N (0,Πt), where Πt = V −1QΓtQ

′V −1,
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Q = p lim
(
F̃ ′F
T

)
. Theorem 4.1 is its bootstrap analogue. A stronger rate condition (

√
N/T 3/4 →

0 instead of
√
N/T → 0) is used to show that the remainder terms in the stochastic expansion

of
√
N
(
F̃ ∗t −H∗F̃t

)
are asymptotically negligible. This rate condition is a function of the

number of finite moments for Fs we assume. In particular, if we replace Assumption 1(a) with

E ‖Ft‖q ≤ M for all t, then the required rate restriction is
√
N/T 1−1/q → 0. See Remarks 1

and 3 below.

To prove the consistency of Π∗t for Πt we impose the following additional condition.

Condition B. For each t, p lim Γ∗t = QΓtQ
′.

Condition B requires that Γ∗t , the bootstrap variance of the scaled cross sectional average

of the scores λ̃ie∗it, be consistent for QΓtQ
′. This in turn requires that we resample ẽit in a way

that preserves the cross sectional dependence and heterogeneity properties of eit.

Corollary 4.1 Under Assumptions 1 and 2 and Conditions A and B, we have that for each

t, as N, T → ∞ such that
√
N/T 3/4 → 0,

√
N
(
H∗−1F̃ ∗t − F̃t

)
→d∗ N (0,Πt), in probability,

where Πt = V −1QΓtQ
′V −1 is the asymptotic covariance matrix of

√
N
(
F̃t −HFt

)
.

Corollary 4.1 justifies using the bootstrap to construct confidence intervals for the rotated

factors HFt provided Conditions A and B hold. These conditions are high level conditions that

can be checked for any particular bootstrap scheme used to generate e∗it. We verify them for a

wild bootstrap in Section 5 when proving the consistency of bootstrap confidence intervals for

the conditional mean.

The fact that factors and factor loadings are not separately identified implies the need to

rotate the bootstrap estimated factors in order to consistently estimate the distribution of

the sample factor estimates, i.e. we use
√
N
(
H∗−1F̃ ∗t − F̃t

)
to approximate the distribution
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of
√
N
(
F̃t −HFt

)
. A similar rotation was discussed in Gonçalves and Perron (2014) in the

context of bootstrapping the regression coeffi cients δ̂.

5 Validity of bootstrap intervals

5.1 Confidence intervals for yT+1|T

We begin by considering intervals for next period’s conditional mean. For this purpose, we use

a two-step wild bootstrap scheme, as in Gonçalves and Perron (2014). Specifically, we rely on

Algorithm 1 and we let

ε∗t+1 = ε̂t+1 · vt+1, t = 1, . . . , T − 1, (20)

with vt+1 i.i.d.(0, 1), and

e∗it = ẽit · ηit, t = 1, . . . , T, i = 1, . . . , N, (21)

where ηit is i.i.d.(0, 1) across (i, t), independently of vt+1.

To prove the asymptotic validity of this method we strengthen Assumptions 1-4 as follows.

Assumption 5. λi are either deterministic such that ‖λi‖ ≤ M <∞, or stochastic such that

E ‖λi‖12 ≤ M < ∞ for all i; E ‖Ft‖12 ≤ M < ∞; E |eit|12 ≤ M < ∞, for all (i, t) ; and

for some q > 1, E |εt+1|4q ≤M <∞, for all t.

Assumption 6. E (eitejs) = 0 if i 6= j.

With h = 1, our Assumption 4(b) on εt+h becomes a martingale difference sequence assump-

tion, and the wild bootstrap in (20) is natural. This assumption rules out serial correlation in
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εt+1 but allows for conditional heteroskedasticity. Below, we consider the case where h > 1.

Assumption 6 assumes the absence of cross sectional correlation in the idiosyncratic errors

and motivates the use of the wild bootstrap in (21). As the results in the previous sections

show, prediction intervals for yT+h or yT+h|T are a function of the factors estimation uncertainty

even when this source of uncertainty is asymptotically negligible for the estimation of the

distribution of the regression coeffi cients (i.e. even when
√
T/N → c = 0). Since factors

estimation uncertainty depends on the cross sectional correlation of the idiosyncratic errors eit

(via ΓT = limN→∞ V ar
(

1/
√
N
∑N

i=1 λieiT

)
), bootstrap prediction intervals need to mimic this

form of correlation to be asymptotically valid. Contrary to the pure time series context, a

natural ordering does not exist in the cross sectional dimension, which implies that proposing

a nonparametric bootstrap method (e.g. a block bootstrap) that replicates the cross sectional

dependence is challenging if a parametric model is not assumed. Therefore, we follow Gonçalves

and Perron (2014) and use a wild bootstrap to generate e∗it under Assumption 6.

The bootstrap percentile-t method, as described in Algorithm 1 and equations (15) and

(16), requires the choice of two variances, B̂T and its bootstrap analogue B̂∗T . To compute B̂T

we use (7), where Σ̂δ is given in (8). Σ̂F̃T
is given in (9), where

Γ̃T =
1

N

N∑
i=1

λ̃iλ̃
′
iẽ

2
iT

is estimator 5(a) in Bai and Ng (2006) , and it is a consistent estimator of (a rotated version

of) ΓT = limN→∞ V ar
(

1√
N

∑N
i=1 λieiT

)
under Assumption 6. We compute B̂∗T using (14) and

relying on the heteroskedasticity-robust bootstrap analogues of Σ̂δ and Σ̂F̃T
.

Theorem 5.1 Suppose Assumptions 1-6 hold and we use Algorithm 1 with ε∗t+1 = ε̂t+1 · vt+1
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and e∗it = ẽit · ηit, where vt+1 ∼ i.i.d.(0, 1) for all t = 1, . . . , T − 1 and ηit ∼ i.i.d.(0, 1) for all

i = 1, . . . , N ; t = 1, . . . , T , and vt+1 and ηit are mutually independent. Moreover, assume that

E∗ |ηit|
4 < C for all (i, t) and E∗ |vt+1|4 < C for all t. If

√
T/N → c, where 0 ≤ c < ∞, and

√
N/T 11/12 → 0, then conditional on {yt, Xt,Wt : t = 1, . . . , T},

ŷ∗T+1|T − y∗T+1|T√
B̂∗T

→d∗ N (0, 1) ,

in probability.

Remark 1 The rate restriction
√
N/T 11/12 → 0 is slightly stronger than the rate used by Bai

(2003) (cf.
√
N/T → 0). It is weaker than the restriction

√
N/T 3/4 → 0 used in Theorem 4.1

and Corollary 4.1 because we have strengthened the number of factor moments that exist from

4 to 12 (compare Assumption 5 with Assumption 1(a)). See Remark 3 in the Appendix.

Remark 2 Since ŷT+1|T−yT+1|T√
B̂T

→d N (0, 1) , as shown by Bai and Ng (2006), Theorem 5.1

implies that bootstrap confidence intervals for yT+1|T obtained with Algorithm 1 have the correct

coverage probability asymptotically.

5.2 Prediction intervals for yT+1

In this section we provide a theoretical justification for bootstrap prediction intervals for yT+1

as described in Algorithm 2. In particular, our goal is to prove that a bootstrap prediction

interval contains the future observation yT+1 with unconditional probability that converges to

the nominal level as N, T →∞.

We add the following assumption.

Assumption 7. εt+1 is i.i.d.(0, σ2
ε) with a continuous distribution function Fε (x) = P (εt+1 ≤ x) .
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Assumption 7 strengthens the m.d.s. Assumption 4.(b) by requiring the regression errors

to be i.i.d. However, and contrary to Bai and Ng (2006), Fε does not need to be Gaussian.

The continuity assumption on Fε is used below to prove that the Kolmogorov distance between

the bootstrap distribution of the studentized forecast error and the distribution of its sample

analogue converges in probability to zero.

Let the studentized forecast error be defined as

sT+1 ≡
ŷT+1|T − yT+1√

B̂T + σ̂2
ε

,

where σ̂2
ε is a consistent estimate of σ

2
ε = V ar (εT+1) and B̂T = V̂ ar

(
ŷT+1|T

)
= 1

T
ẑ′T Σ̂δẑT +

1
N
α̂′Σ̂F̃T

α̂. Given Assumption 7, we can use

σ̂2
ε =

1

T

T−1∑
t=1

ε̂2
t+1 and Σ̂δ = σ̂2

ε

(
1

T

T−1∑
t=1

ẑtẑ
′
t

)−1

. (22)

Our goal is to show that the bootstrap can be used to estimate consistently FT,s (x) =

P (sT+1 ≤ x), the distribution function of sT+1. Note that we can write

ŷT+1|T − yT+1 =
(
ŷT+1|T − yT+1|T

)
+
(
yT+1|T − yT+1

)
= −εT+1 +OP (1/δNT ) ,

given that ŷT+1|T − yT+1|T = OP

(
1

δNT

)
, where δNT = min

(√
N,
√
T
)
(this follows under the

assumptions of Theorem 5.1). Since σ̂2
ε →P σ2

ε and B̂T = OP

(
1/δ2

NT

)
= oP (1), it follows that

sT+1 = −εT+1

σε
+ oP (1) . (23)
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Thus, as N, T →∞, sT+1 converges in distribution to the random variable − εT+1
σε
, i.e.

FT,s (x) ≡ P (sT+1 ≤ x)→ P

(
−εT+1

σε
≤ x

)
= 1− Fε (−xσε) ≡ F∞,s (x) ,

for all x ∈ R. If we assume that εt+1 is i.i.d. N (0, σ2
ε), as in Bai and Ng (2006), then

Fε (−xσε) = Φ (−x) = 1 − Φ (x) , implying that FT,s (x) → Φ (x), i.e. sT+1 →d N (0, 1).

Nevertheless, this is not generally true unless we make the Gaussianity assumption. We note

that although asymptotically the variance of the prediction error ŷT+1|T −yT+1 does not depend

on any parameter nor factors estimation uncertainty (as it is dominated by σ2
ε for large N and

T ), we still suggest using ĈT = B̂T + σ̂2
ε to studentize ŷT+1|T − yT+1 since σ̂

2
ε will underestimate

the true forecast variance for finite T and N . Politis (2013) and Pan and Politis (2014) discuss

notions of asymptotic validity that require taking into account the estimation of the condition

mean. More specifically, in addition to requiring that the interval contains the true observation

with the desired nominal coverage probability asymptotically, they require the bootstrap to

capture parameter estimation uncertainty. To the extent that their definitions can be extended

to the case of generated regressors, we expect our bootstrap intervals to satisfy these stricter

notions of validity.

Next we show that the bootstrap yields a consistent estimate of the distribution of sT+1

without assuming that εt+1 is Gaussian. Our proposal is based on a two-step residual based

bootstrap scheme, as described in Algorithm 2 and equations (17) and (18), where in step

3 we generate
{
ε∗2, . . . , ε

∗
T , ε

∗
T+1

}
as a random sample obtained from the centered residuals{

ε̂2 − ε̂, . . . , ε̂T − ε̂
}
. Resampling in an i.i.d. fashion is justified under Assumption 7. We

recenter the residuals because ε̂ is not necessarily zero unless Wt contains a constant regressor.
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Nevertheless, since ε̂ = oP (1), resampling the uncentered residuals is also asymptotically valid

in our context. We compute B̂∗T and σ̂
∗2
ε using the bootstrap analogues of Σ̂δ and σ̂

2
ε introduced

in (22). Note that σ̂∗2ε is a consistent estimator of σ2
ε and B̂

∗
T = oP ∗ (1), in probability.

As above, we can write

ŷ∗T+1|T − y∗T+1 =
(
ŷ∗T+1|T − y∗T+1|T

)
+
(
y∗T+1|T − y∗T+1

)
= −ε∗T+1 +OP ∗ (1/δNT ) ,

in probability, which in turn implies

s∗T+1 ≡
ŷ∗T+1|T − y∗T+1√

B̂∗T + σ̂∗2ε

= −
ε∗T+1

σε
+ oP ∗ (1) . (24)

Thus, F ∗T,s (x) = P ∗
(
s∗T+1 ≤ x

)
, the bootstrap distribution of s∗T+1 (conditional on the sample)

is asymptotically the same as the bootstrap distribution of − ε∗T+1
σε

.

Let F ∗T,ε denote the bootstrap distribution function of ε
∗
t . It is clear from the stochastic

expansions (23) and (24) that the crucial step is to show that ε∗T+1 converges weakly in prob-

ability to εT+1, i.e. d
(
F ∗T,ε, Fε

)
→P 0 for any metric that metrizes weak convergence. In the

following we use Mallows metric which is defined as d2 (FX , FY ) =
(
inf
(
E |X − Y |2

))1/2
over

all joint distributions for the random variables X and Y having marginal distributions FX and

FY , respectively.

Lemma 5.1 Under Assumptions 1-7, and as T,N → ∞ such that
√
T/N → c, 0 ≤ c < ∞,

d2

(
F ∗T,ε, Fε

)
→P 0.

Corollary 5.1 Under the same assumptions as Theorem 5.1 strengthened by Assumption 7,
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we have that

sup
x∈R

∣∣F ∗T,s (x)− F∞,s (x)
∣∣→ 0,

in probability.

Corollary 5.1 implies the asymptotic validity of the bootstrap prediction intervals given in

(17) and (18), where asymptotic validity means that the interval contains yT+1 with uncon-

ditional probability converging to the nominal level asymptotically. Specifically, we can show

that P
(
yT+1 ∈ EQ1−α

yT+1

)
→ 1 − α and P

(
yT+1 ∈ SY 1−α

yT+1

)
→ 1 − α as N, T → ∞. See e.g.

Beran (1987) and Wolf and Wunderli (2015, Proposition 1). For instance,

P
(
yT+1 ∈ EQ1−α

yT+1

)
= P

(
sT+1 ≤ q∗1−α/2

)
− P

(
sT+1 ≤ q∗α/2

)
= P

(
F ∗T,s (sT+1) ≤ 1− α/2

)
− P

(
F ∗T,s (sT+1) ≤ α/2

)
.

Given Corollary 5.1, we have that F ∗T,s (sT+1) = F∞,s (sT+1) + oP (1) , and we can show that

F∞,s (sT+1)→d U [0, 1] . Indeed, for any x,

P (F∞,s (sT+1) ≤ x) = P
(
sT+1 ≤ F−1

∞,s (x)
)
≡ FT,s

(
F−1
∞,s (x)

)
→ F∞,s

(
F−1
∞,s (x)

)
= x.

A stronger result than that implied by Corollary 5.1 would be to prove that P
(
yT+1 ∈ EQ1−α

yT+1
|zT
)
→

1− α, where zT = (F ′T ,W
′
T )′. Nevertheless, to claim asymptotic validity of the bootstrap pre-

diction intervals conditional on the regressors would require stronger assumptions, namely the

assumption that εT+1 is independent of zT . Such a strong exogeneity assumption is unlikely to

be satisfied in economics.
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5.3 Multi-horizon forecasting, h > 1

Finally, we consider the case where the forecasting horizon, h, is larger than 1. The main

complication in this case is the fact that the regression errors εt+h in the factor-augmented

regression will generally be serially correlated to order h − 1. This serial correlation affects

the distribution of
√
T
(
δ̂ − δ

)
since the form of Ω is different in this case, as it includes

autocovariances of the score process.

We modify our two algorithms above by drawing ε∗t+h using the block wild bootstrap (BWB)

algorithm proposed in Djogbenou et al. (2014). The idea is to separate the sample residuals

ε̂t+h into non-overlapping blocks of b consecutive observations. For simplicity, we assume that

T−h
b
, the number of such blocks, is an integer. Then, we generate our bootstrap errors by

multiplying each residual within a block by the same draw of an external variable, i.e.

ε∗i+(j−1)b = ε̂i+(j−1)bηj

for j = 1, . . . , T−h
b
, i = 1 +h, . . . , h+ b, and ηj ∼ i.i.d. (0, 1) . The fact that each residual within

a block is multiplied by the same external draw preserves the time series dependence. We let

b = h because we use the fact that εt+h ∼MA (h− 1) under Assumption 4(b). For h = 1, this

algorithm is the same as the wild bootstrap. Djogbenou et al. (2014) show that this algorithm

allows for valid bootstrap inference in a regression model with estimated factors and general

mixing conditions on the error term. The moving average structure obtained in a forecasting

context (assuming correct specification) obviously satisfies these mixing conditions, and this

ensures that this block wild bootstrap algorithm replicates the distribution of
√
T
(
δ̂ − δ

)
after

rotating the estimated parameter in the bootstrap world. Thus, the result of Theorem 5.1 holds

28



in this more general context since h > 1 does not affect factor estimation.

For the forecast of the new observation, yT+h, the crucial condition for asymptotic validity of

the bootstrap prediction intervals is to capture the marginal distribution of εT+h.. This means

that the i.i.d. bootstrap can still be used in step 2 of algorithm 2 to generate ε∗t+h despite

the serial correlation in εt+h. Alternatively, we can also amend the block wild bootstrap by

generating ε̂∗t+h as above for t = 1, . . . , T − h and generating ε∗T+h as a draw from the empirical

distribution function of ε̂t, t = 1, . . . , T − h. We will compare these two approaches in the

simulation experiment below.

6 Simulations

In this section, we report results from a simulation experiment to analyze the properties of

the normal asymptotic intervals as well as their bootstrap counterparts analyzed above. The

data-generating process is similar to the one used in Gonçalves and Perron (2014).We consider

the single factor model:

yt+h = .5Ft + εt+h (25)

where Ft is an autoregressive process:

Ft = .8Ft−1 + ut

with ut drawn from a normal distribution independently over time with a variance of (1− .82).

We use the backward representation of this autoregressive process to make sure that all sample

paths have FT = 1. We will consider two forecasting horizons, h = 1 and h = 4.
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The regression error εt+h will be homoskedastic with expectation 0, variance 1 and will have

a moving average structure to accommodate multi-horizon forecasting:

εt+h =
h−1∑
j=0

.8jvt+h−j,

and to analyze the effects of deviations from normality, we report results for two distributions

for vt :

Normal: vt ∼

(
1∑h−1

j=0 .8
2j

)
N (0, 1)

Mixture : vt ∼

(
1∑h−1

j=0 .8
2j

)
1√
10

[pN (−1, 1) + (1− p)N (9, 1)] ,

where p is distributed as Bernoulli (.9) . The particular mixture distribution we are using is

similar to the one proposed by Pascual, Romo and Ruiz (2004). Most of the data is drawn from

a N (−1, 1) but about 10% will come from a second normal with a much larger mean of 9. The

scaling term in parentheses ensures that the variance of εt+h is 1 regardless of h. We have also

considered other distributions such as the uniform, exponential, and χ2 but do not report these

results for brevity.

The (T ×N) matrix of panel variables is generated as:

Xit = λiFt + eit

where λi is drawn from a U [0, 1] distribution (independent across i) and eit is heteroskedastic

but independent over i and t. The variance of eit is drawn from U [.5, 1.5] for each i.

We consider asymptotic and bootstrap confidence intervals at a nominal level of 95%. As-
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ymptotic inference is conducted by using a HAC estimator (quadratic spectral kernel with

bandwidth set to h) to account for possible serial correlation.

We use Algorithms 1 and 2 described above to generate the bootstrap data with B = 999

bootstrap replications. The idiosyncratic errors are always drawn using the wild bootstrap in

step 1. In step 3, three bootstrap schemes are analyzed to draw ε∗t : the first one draws the

residuals with replacement in an i.i.d. fashion, the second one uses the wild bootstrap, while

the last one redraws the residuals using the block wild bootstrap with a block size equal to h.

The first two methods are only valid when h = 1, while the last one is valid for both values of

h. In all applications of the wild bootstrap and block wild bootstrap, the external variable has

a standard normal distribution. With the wild bootstrap, we use the heteroskedasticity-robust

variance estimator, while we use the HAC one with block size equal to h for the block wild

bootstrap.

We consider two types of bootstrap intervals: symmetric percentile-t and equal-tailed percentile-

t. We report experiments based on 5,000 replications and with three values for T (50, 100, and

200) and 4 values for N (50, 100, 150, and 200).

We report results graphically for the conditional mean yT+h|T and for the new observation

yT+h. We report the frequency of times the 95% confidence interval is to the left or right of

the true parameter. Each figure has three rows corresponding to T = 50, T = 100, and

T = 200 with N on the horizontal axis, and in the last column, we show the average length of

the corresponding confidence intervals relative to the length of the "ideal"confidence intervals

obtained with the 2.5% and 97.5% quantiles from the empirical distribution simulated for each

N and T 1,000,000 times as endpoints. To keep the figures readable, we report results for two

bootstrap methods in each figure. For the conditional mean, we report results for the wild
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bootstrap and block wild bootstrap (with differences thus only coming from the block size since

the two methods are the same for a block size equal to 1). For the observation, we report results

using the iid and block wild bootstrap since we require an i.i.d. assumption for the construction

of intervals for this quantity.

It turns out that the distribution of εT+h noticeably affects the results for yT+h only. As a

consequence, we only report results with Gaussian εt+h for the conditional mean. On the other

hand, the results of yT+h are dominated by the behavior of εt+h. Thus, the contribution of the

conditional mean from the contribution of εT+h in the forecasts of yT+h are clearly separated.

6.1 Forecasting horizon h = 1

We start by presenting results when we are interested in making a prediction for next period’s

value. For this horizon, because εt+1 does not have serial correlation, the wild bootstrap and

block wild bootstrap methods are identical with reported differences due to simulation error.

Conditional mean, yT+1|T The results for the conditional mean are presented in Figure 1.

Asymptotic theory (blue line) shows large distortions that decrease with an increasing N. For

example, for N = T = 50, the 95% confidence interval does not include the true mean in 11% of

the replications instead of the nominal 5%. This number is reduced to 7.8% when N = 200 and

T = 50.Moreover, we see that most of these instances are in one direction, when the confidence

interval is to the left of the true value. This can be explained by a bias in the estimation of the

parameter δ as documented by Gonçalves and Perron (2014) due to the estimation uncertainty

in the factors. This bias is negative, thus shifting the distribution of the conditional mean to

the left, leading to more rejections on the left side and fewer on the right side than predicted
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by the asymptotic normal distribution.
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Figure 1. Probability of interval to the left or right of y
T+1|T
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Note: The figures in the first two columns report the fraction of confidence intervals that lie to the left

or to the right of the conditional mean for each method as a function of the cross-sectional dimension

N. Each row corresponds to a different time series dimension. The last column reports the length of

the confidence intervals relative to the length of the "ideal" intervals obtained as the 2.5% and 97.5%

quantiles of the empirical distribution.

The presence of bias is reflected in the bootstrap distribution of ŷ∗T+1|T which is also shifted

to the left. This is illustrated by a large difference between the bootstrap symmetric and equal-

tailed intervals. The symmetric intervals reproduce the pattern of more coverage to the left than

to the right, while equal-tailed intervals distribute coverage more or less equally in both tails.

In both cases, the total rejection rates are closer to their nominal level than with asymptotic

theory, for example with N = T = 50, the wild bootstrap does not include the true value in

6.7% of the replications with the symmetric intervals and 6.1% for the equal-tailed intervals.
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This phenomenon is also reflected in the length of intervals. The asymptotic intervals are

shortest (and least accurate). The equal-tailed intervals are typically slightly shorter than the

corresponding symmetric intervals.

Forecast of yT+1 We next consider the prediction of yT+1 in Figures 2 and 3. As mentioned

before, given our parameter configuration, the uncertainty is dominated by the underlying

error term εT+1 and not estimation uncertainty. This is the reason asymptotic intervals rely

on the normality assumption. This provides a motivation for the bootstrap, and the effect of

non-normality is highlighted in our figures.

Figure 2 shows that under normality, inference for yT+1 is quite accurate for all methods,

and it is essentially unaffected by the values of N and T as predicted since it is dominated by the

behavior of εt+h. All methods perform similarly, though we see that the asymptotic intervals

that make the correct Gaussianity assumption are shorter than those based on the bootstrap.

The iid bootstrap also produces slightly narrower intervals than the block wild bootstrap.
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Note: The figures in the first two columns report the fraction of confidence intervals that lie to the
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left or to the right of the observation for each method as a function of the cross-sectional dimension

N. Each row corresponds to a different time series dimension. The last column reports the length of

the confidence intervals relative to the length of the "ideal" intervals obtained as the 2.5% and 97.5%

quantiles of the empirical distribution.

Figure 3 provides the same information when the errors are drawn from a mixture of normals.

We see problems with asymptotic theory, and these come almost exclusively in the form a

confidence interval to the left of the true value. This is due to the fact that we have falsely

imposed that errors are Gaussian, whereas the true distribution is bimodal. On the other hand,

the bootstrap corrects these diffi culties. The symmetric intervals do so by reducing coverage on

the left side to between 5 and 6% and having almost no coverage to the right. The equal-tailed

intervals distribute coverage more evenly by reducing undercoverage on the right side and pretty

much eliminating the over-coverage on the left side. Because they allow for asymmetry, the

equal-tailed intervals are shorter than the symmetric ones. Similarly, the i.i.d. bootstrap that

makes the correct assumption that εT+1 is i.i.d. produces slightly more accurate coverage and

shorter intervals.
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Note: see Figure 2.

6.2 Multi-horizon forecasting

In Figures 4-6, we report the same results as before but for h = 4 instead of h = 1. Because the

error term is now a moving average of order 3, the wild bootstrap and block wild bootstrap (a

block size equal to 4 is used) are no longer identical.

Figure 4 reports the results for the conditional mean, yT+4|T . The main difference with Figure

1 is that there is a gap between the accuracy of the intervals based on the wild bootstrap and on

the block wild bootstrap. As before, the equal-tailed intervals provide more accurate intervals

and smaller length because they capture the bias in the distribution.
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Figure 4. Probability of interval to the left or right of y
T+4|T
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Note: see Figure 1.

While there is a difference in coverage between the wild bootstrap and the block wild boot-

strap, it is not very large. This feature can be explained by the fact that factors are estimated.

The forecast error variance has two parts, one due to the estimation of the parameters and one

due to the estimation of the factors (see equation (4)). Serial correlation only affects the first

term in that expression, and thus its effect is dampened by the presence of the second term

which is usually not present in a typical forecasting context where predictors are observed.

Figures 5 and 6 give the results for the new observation, yT+4. Overall, we see that serial

correlation does not seem to affect inference on yT+h much. There are some effects when

T = 50, but this seems related to diffi culties in estimating the distribution of εT+4 with serial

correlation. Otherwise, the figures and conclusions are similar to those in Figures 2 and 3 with

the exception of the fact that the block wild bootstrap leads to much wider intervals than the

i.i.d. bootstrap with some improvement in coverage for T = 50.
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Note: see Figure 2.
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Figure 6. Probability of interval to the left or right of y
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7 Empirical illustration

In this section, we use the dataset of Stock and Watson (2003) and Rossi and Sekhposyan

(2014), updated to the first quarter of 2014, to illustrate the properties of asymptotic and

bootstrap intervals.1

We consider forecast intervals for changes in the inflation rate measured by the quarterly

growth rate of the GDP deflator (PGDP ) at annual rate:

∆πt =

[
ln

(
PDGPt
PGDPt−1

)
− ln

(
PDGPt−1

PGDPt−2

)]
× 400.

There is a total of N = 29 series on asset prices, measures of economic activity, wages and

prices, and money used to construct forecasts, see Rossi and Sekhposyan (2014) for details.

The inflation rate is not included in the data used for extracting the factors. In order to have

a balanced panel, our sample covers the period 1973q1-2014q1.

We construct forecasts from the factor-augmented autoregressive model:

∆π̂t+h = β̂0 +

p∑
j=1

φ̂j∆πt−j+1 +
r∑
j=1

α̂jF̃j,t.

We compute forecast intervals for h = 1 for the last 50 observations in the sample. This

means that the forecasts are made each period from the third quarter of 2001 until the end

of 2013. We use a rolling window of 40 observations to estimate factors and parameters as in

Rossi and Sekhposyan. We also follow Rossi and Sekhposyan and first choose the AR order p

for each time period using BIC and then augment with the estimated factors. In each period,

1We thank Tatevik Sekhposyan for providing us with the data.
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we select the number of factors such that the factors explain a minimum of 60% of the total

variance of the panel after centering and rescaling. Three factors are selected by this approach

in 40 out of the 50 periods, and 4 for the remaining 10 periods.

The factor-based forecasts reduce the root mean squared error of the forecasts by about

13% relative to autoregressive forecasts. In Figure 7, we report prediction intervals for the

factor-augmented forecasts. The dashed red lines represent the bounds of the (pointwise) 95%

prediction interval based on the asymptotic theory of Bai and Ng (2006) for each date. This

interval is symmetric around the point forecast by construction since it is based on the normal

distribution. We also report bootstrap intervals based on the block wild bootstrap (BWB)

for ε∗t+h with block size equal to the bandwidth selected by the Andrews (1991) rule and the

wild bootstrap for e∗t . Other methods for drawing ε
∗
t+h lead to very similar intervals, and we

do not report them to ease exposition (they are available from the authors upon request).

The reported intervals were constructed as equal-tailed percentile-t intervals and are based on

B = 9999 bootstrap replications.
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Figure 7. Prediction interval for ∆π
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Note: The dashed red lines represent the bounds of the (pointwise) 95% prediction interval based on

the asymptotic theory of Bai and Ng (2006) for each date. The solid blue line are bounds of the 95%

equal-tailed percentile-t bootstrap intervals based on the block wild bootstrap (BWB) with block size

equal to the bandwidth selected by the Andrews (1991) based on B=9999 bootstrap replications.

While both sets of intervals in Figure 7 are similar, there are noticeable differences that

can be attributed either to bias in the estimation of the parameters or to non-normality in

the distribution of the error term. Rossi and Sekhposyan (2014) find fairly strong evidence of

non-normality of the forecast errors for this series, and this is likely an important source of the

differences between the asymptotic and equal-tailed intervals.

The behavior of the bootstrap intervals during specific periods is quite interesting. For

example, early in the sample, the bootstrap intervals are consistently shifted down relative

to the asymptotic intervals. Figure 8 highlights two periods where the bootstrap interval lies

completely below 0. The left panel presents the same intervals as Figure 7 around the fourth

quarter of 2008. We see that the bootstrap intervals are shifted down for most of the reported

period, and the upper limit of the bootstrap interval drops just below 0 (it is -.07%) in the

fourth quarter of 2008. On the other hand, the asymptotic interval contains 0 with an upper

limit of about 1%. This means that policy makers concerned about a sudden reduction in

inflation following the collapse of Lehman Brothers would have underestimated the probability

of a reduction in inflation had they based their decision on the asymptotic intervals.
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Similarly, the right panel of Figure 8 focuses on the intervals around the fourth quarter of

2011. As in 2008, the bootstrap interval for the fourth quarter of 2011 is shifted down and

includes only negative values, whereas the corresponding asymptotic interval includes positive

inflation changes. At that time, many central banks were concerned about deflation risk, and

relying on asymptotic intervals would have given them the impression that large reductions in

inflation were much less likely than suggested by the bootstrap interval (the change in inflation

turned out to be −2 percentage points).

8 Conclusion

In this paper, we have proposed the bootstrap to construct valid prediction intervals for models

involving estimated factors. We considered two objects of interest: the conditional mean yT+h|T

and the realization yT+h.. The bootstrap improves considerably on asymptotic theory for the

conditional mean when the factors are relevant because of the bias in the estimation of the
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regression coeffi cients. However, our simulation results suggest that allowing for serial corre-

lation, as is relevant when the forecasting horizon is greater than 1, is not very important in

practice. For the observation, the bootstrap allows the construction of valid intervals without

having to make strong distributional assumptions such as normality as was done in previous

work by Bai and Ng (2006) .

One key assumption that we had to make to establish our results is that the idiosyncratic

errors in the factor models are cross-sectionally independent. This is certainly restrictive,

but it allows for the use of the wild bootstrap on the idiosyncratic errors. Non-parametric

bootstrapping under more general conditions remains a challenge. The results in this paper

could be used to prove the validity of a scheme in that context by showing the conditions A

and B are satisfied.
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A Appendix

The proof of Theorem 4.1 requires the following auxiliary result, which is the bootstrap analogue

of Lemma A.2 of Bai (2003). It is based on the following identity that holds for each t:

F̃ ∗t −H∗F̃t = Ṽ ∗−1

 1

T

T∑
s=1

F̃ ∗s γ
∗
st︸ ︷︷ ︸

≡A∗1t

+
1

T

T∑
s=1

F̃ ∗s ζ
∗
st︸ ︷︷ ︸

≡A∗2t

+
1

T

T∑
s=1

F̃ ∗s η
∗
st︸ ︷︷ ︸

≡A∗3t

+
1

T

T∑
s=1

F̃ ∗s ξ
∗
st︸ ︷︷ ︸

≡A∗4t

 ,

where

γ∗st = E∗

(
1

N

N∑
i=1

e∗ise
∗
it

)
, ζ∗st =

1

N

N∑
i=1

(e∗ise
∗
it − E∗ (e∗ise

∗
it)) ,

η∗st =
1

N

N∑
i=1

λ̃
′
iF̃se

∗
it = F̃ ′s

Λ̃′e∗t
N

and ξ∗st =
1

N

N∑
i=1

λ̃
′
iF̃te

∗
is = η∗ts.

Lemma A.1 Assume Assumptions 1 and 2 hold. Under Condition A, we have that for each

t, in probability, as N, T →∞,

(a) T−1
∑T

s=1 F̃
∗
s γ
∗
st = OP ∗

(
1√

TδNT

)
+OP ∗

(
1

T 3/4

)
;

(b) T−1
∑T

s=1 F̃
∗
s ζ
∗
st = OP ∗

(
1√

NδNT

)
;

(c) T−1
∑T

s=1 F̃
∗
s η
∗
st = OP ∗

(
1√
N

)
;

(d) T−1
∑T

s=1 F̃
∗
s ξ
∗
st = OP ∗

(
1√

NδNT

)
.

Remark 3 The term OP ∗
(
1/T 3/4

)
that appears in (a) is of a larger order of magnitude than

the corresponding term in Bai (2003, Lemma A.2(i)), which is OP (1/T ). The reason why we

obtain this larger term is that we rely on Bonferroni’s inequality and Chebyshev’s inequality
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to bound max1≤s≤T ‖Fs‖ = OP

(
T 1/4

)
using the fourth order moment assumption on Fs (cf.

Assumption 1(a)). In general, if E ‖Fs‖q ≤ M for all s, then max1≤s≤T ‖Fs‖ = OP

(
T 1/q

)
and

we will obtain a term of order OP ∗
(
1/T 1−1/q

)
.

Proof of Lemma A.1. The proof follows closely that of Lemma A.2 of Bai (2003). The

only exception is (a), where an additional O
(

1
T 3/4

)
term appears. In particular, we write

T−1

T∑
s=1

F̃ ∗s γ
∗
st = T−1

T∑
s=1

(
F̃ ∗s −H∗F̃s

)
γ∗st +H∗T−1

T∑
s=1

F̃sγ
∗
st = a∗t + b∗t .

We use Cauchy-Schwartz and Condition A.1 to bound a∗t as follows

‖a∗t‖ ≤
(
T−1

T∑
s=1

∥∥∥F̃ ∗s −H∗F̃s∥∥∥2
)1/2(

T−1

T∑
s=1

|γ∗st|
2

)1/2

= OP ∗

(
1

δNT

)
OP

(
1√
T

)
= OP ∗

(
1

δNT
√
T

)
,

where T−1
∑T

s=1

∥∥∥F̃ ∗s −H∗F̃s∥∥∥2

= OP ∗
(
δ−2
NT

)
by Lemma 3.1 of Gonçalves and Perron (2014)

(note that this lemma only requires Conditions A*(b), A*(c), and B*(d), which correspond to

our Condition A.1, A.2 and A.5). For b∗t , we have that (ignoring H∗, which is OP ∗ (1)),

b∗t = T−1

T∑
s=1

F̃sγ
∗
st = T−1

T∑
s=1

(
F̃s −HFs

)
γ∗st +HT−1

T∑
s=1

Fsγ
∗
st = b∗1t + b∗2t,

where b∗1t = OP

(
1/δNT

√
T
)
using the fact that T−1

∑T
s=1

∥∥∥F̃s −HFs∥∥∥2

= OP

(
δ−2
NT

)
under

Assumptions 1 and 2 and the fact that T−1
∑T

s=1 |γ∗st|
2 = OP (1/T ) for each t by Condition
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A.1. For b∗2t, note that (ignoring H = OP (1)),

‖b∗2t‖ ≤
(

max
s
‖Fs‖

)
︸ ︷︷ ︸

OP (T 1/4)

T−1

T∑
s=1

|γ∗st|︸ ︷︷ ︸
OP ( 1

T )

= OP

(
1

T 3/4

)
,

where we have used the fact that E ‖Fs‖4 ≤ M for all s (Assumption 1) to bound maxs ‖Fs‖.

Indeed, by Bonferroni’s inequality and Chebyshev’s inequality, we have that

P
(
T−1/4 max

s
‖Fs‖ > M

)
≤

T∑
s=1

P
(
‖Fs‖ > T 1/4M

)
≤

T∑
s=1

E ‖Fs‖4

M4T
≤ 1

M3
→ 0

for M suffi ciently large. For (b), we follow exactly the proof of Bai (2003) and use Condition

A.2 to bound T−1
∑T

s=1 ζ
∗2
st = OP ∗

(
1
N

)
for each t; similarly, we use Condition A.3 to bound

1
T

∑T
s=1 F̃sζ

∗
st for each t. For (c), we bound T

−1
∑T

s=1 F̃sη
∗
st = N−1H∗

∑N
i=1 λ̃ie

∗
it = OP ∗

(
1/
√
N
)

by using Condition A.6. This same condition is used to bound T−1
∑T

s=1 η
∗2
st = OP ∗ (1/N) for

each t. Finally, for part (d), we use Condition A.4 to bound T−1
∑T

s=1 F̃sξ
∗
st = OP ∗

(
1√
NT

)
for

each t and we use Condition A.5 to bound T−1
∑T

s=1 ξ
∗2
st = OP ∗ (1/N) for each t.

Proof of Theorem 4.1.By Lemma A.1, it follows that the third term in
√
N
(
F̃ ∗t −H∗F̃t

)
is the dominant one (it is OP ∗ (1)); the first term is OP ∗

( √
N√

TδNT

)
+OP

( √
N

T 3/4

)
= OP ∗

( √
N

T 3/4

)
=

oP ∗ (1) if
√
N/T 3/4 → 0 whereas the second and the fourth terms are OP ∗ (1/δNT ) = oP ∗ (1) as
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N, T →∞. Thus, we have that

√
N
(
F̃ ∗t −H∗F̃t

)
= Ṽ ∗−1 1

T

T∑
s=1

F̃ ∗s
1√
N

N∑
i=1

λ̃
′
iF̃se

∗
it + oP ∗ (1)

=

[
Ṽ ∗−1

(
F̃ ∗′F̃

T

)(
Λ̃′Λ̃

N

)](
Λ̃′Λ̃

N

)−1
1√
N

N∑
i=1

λ̃ie
∗
it + oP ∗ (1)

= H∗Ṽ −1Γ
∗1/2
t Γ

∗−1/2
t

1√
N

N∑
i=1

λ̃ie
∗
it︸ ︷︷ ︸

→d∗N(0,Ir) by Condition A.6

+ oP ∗ (1) , (26)

given the definition ofH∗ and the fact that Ṽ = Λ̃′Λ̃
N
. Since det (Γ∗t ) > ε > 0 for allN and some ε,

Γ∗−1
t exists and we can define Γ

∗−1/2
t =

(
Γ
∗1/2
t

)−1

where Γ
∗1/2
t Γ

∗1/2
t = Γ∗t . Let Π

∗−1/2
t = Γ

∗−1/2
t Ṽ

and note that Π
∗−1/2
t is symmetric and it is such that

(
Π
∗−1/2
t

)(
Π
∗−1/2
t

)
= Ṽ Γ∗−1

t Ṽ = Π∗−1
t .

The result follows by multiplying (26) by Π
∗−1/2
t H∗−1 and using Condition A.6.

Proof of Corollary 4.1. Condition B and the fact that Ṽ →P V under our assumptions

imply that Π∗t →P Πt ≡ V −1QΓtQ
′V −1. This suffi ces to show the result.

Proof of Theorem 5.1. Using the decomposition (19) and the fact that

ẑ∗T = Φ∗ẑT +

 F̃ ∗T −H∗F̃T

0

 ,

where Φ∗ = diag (H∗, Iq), it follows that

ŷ∗T+1|T − y∗T+1|T =
1√
T
ẑ′T
√
T
(

Φ∗′δ̂
∗ − δ̂

)
+

1√
N
α̂′
√
N
(
H∗−1F̃ ∗T − F̃T

)
+ r∗T ,
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where the remainder is

r∗T =
1√
T

(
F̃ ∗T −H∗F̃T

)′√
T
(
α̂∗ −H∗−1′α̂

)
= OP ∗

(
1√
TN

)
.

First, we argue that

ŷ∗T+1|T − y∗T+1|T√
B∗T

→d∗ N (0, 1) , (27)

where B∗T is the asymptotic variance of ŷ
∗
T+1|T − y∗T+1|T , i.e. B

∗
T = aV ar∗

(
ŷ∗T+1|T − y∗T+1|T

)
=

1
T
ẑ′TΣδẑT + 1

N
α̂′ΠT α̂. To show (27), we follow the arguments of Bai and Ng (2006, proof of

their Theorem 3) and show that (1) Z∗1T =
√
T
(

Φ∗′δ̂
∗ − δ̂

)
→d∗ N (−c∆δ,Σδ); (2) Z∗2T =

√
N
(
H∗−1F̃ ∗T − F̃T

)
→d∗ N (0,ΠT ); (3) Z∗1T and Z

∗
2T are asymptotically independent (condi-

tional on the original sample). Condition (1) follows from Gonçalves and Perron (2014) under

Assumptions 1-6; (2) follows from Corollary 4.1 provided
√
N/T 11/12 → 0 and conditions A

and B hold for the wild bootstrap (which we verify next); (3) holds because we generate e∗t

independently of ε∗t+1.

Proof of Condition A for the wild bootstrap. We verify for t = T . We have that∑T
s=1 |γ∗sT |

2 =
(

1
N

∑N
i=1 ẽ

2
iT

)2

. Thus, it suffi ces to show that 1
N

∑N
i=1 ẽ

2
iT = OP (1). This follows

by using the decomposition

ẽit = eit − λ′iH−1
(
F̃t −HFt

)
−
(
λ̃i −H−1′λi

)′
F̃t,
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which implies that

1

N

N∑
i=1

|ẽit|2 ≤ 3
1

N

N∑
i=1

|eit|2 + 3
1

N

N∑
i=1

‖λi‖2
∥∥H−1

∥∥2
∥∥∥F̃T −HFT∥∥∥2

+3
1

N

N∑
i=1

∥∥∥λ̃i −H−1′λi

∥∥∥2 ∥∥∥F̃T∥∥∥2

.

The first term is OP (1) given that E |eit|2 = O (1); the second term is OP (1) since E ‖λi‖2 =

O (1) and given that
∥∥∥F̃T −HFT∥∥∥2

= OP (1/N) = oP (1); and the third term is OP (1) given

Lemma C.1.(ii) of Gonçalves and Perron (2014) and the fact that
∥∥∥F̃T∥∥∥2

= OP (1) . Next, we

verify A.2. For t = T , following the proof of Theorem 4.1 in Gonçalves and Perron (2014)

(condition A*(c)), we have that

1

T

T∑
s=1

E∗

∣∣∣∣∣ 1√
N

N∑
i=1

(e∗iT e
∗
is − E∗ (e∗iT e

∗
is))

∣∣∣∣∣
2

=
1

T

T∑
s=1

1

N

N∑
i=1

ẽ2
iT ẽ

2
isV ar (ηiTηis)︸ ︷︷ ︸

≤η̄

≤ η̄
1

N

N∑
i=1

ẽ2
iT

(
1

T

T∑
s=1

ẽ2
is

)

≤ η̄

(
1

N

N∑
i=1

ẽ4
iT

)1/2(
1

NT

N∑
i=1

T∑
s=1

ẽ4
is

)1/2

= OP (1) , (28)

where the first factor in (28) can be bounded by an argument similar to that used above to

bound 1
N

∑N
i=1 ẽ

2
iT , and the second factor can be bounded by Lemma C.1 (iii) of Gonçalves

and Perron (2014). A.3 follows by an argument similar to that used by Gonçalves and Perron
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(2014) to verify Condition B*(b). In particular,

E∗

∥∥∥∥∥ 1√
TN

T∑
s=1

N∑
i=1

F̃s (e∗ise
∗
iT − E∗ (e∗ise

∗
iT ))

∥∥∥∥∥
2

=
1

T

T∑
s=1

F̃ ′sF̃s
1

N

N∑
i=1

ẽ2
iT ẽ

2
isV ar

∗ (ηiTηis) ≤ η̄
1

N

N∑
i=1

ẽ2
iT

(
1

T

T∑
s=1

F̃ ′sF̃sẽ
2
is

)

≤ η̄

[
1

N

N∑
i=1

ẽ4
iT

]1/2 [
1

T

T∑
s=1

∥∥∥F̃s∥∥∥4 1

N

1

T

N∑
i=1

T∑
s=1

ẽ4
is

]1/2

= OP (1) ,

under our assumptions. Conditions A.4 and A.5 correspond to Gonçalves and Perron’s (2014)

Conditions B*(c) and B*(d), respectively. Finally, we prove Condition A.6 for t = T. Using the

fact that e∗iT = ẽiTηiT , where ηiT ∼ i.i.d. (0, 1) across i, note that

Γ∗T = V ar∗

(
1√
N

N∑
i=1

λ̃ie
∗
iT

)
=

1

N

N∑
i=1

λ̃iλ̃
′
iẽ

2
iT →P QΓTQ

′,

by Theorem 6 of Bai (2003), where ΓT ≡ limN→∞ V ar
(

1√
N

∑N
i=1 λieiT

)
> 0 by assumption.

Thus, Γ∗T is uniformly positive definite. We now need to verify that

1√
N

N∑
i=1

`′Γ
∗−1/2
T λ̃ie

∗
iT =

1√
N

N∑
i=1

`′Γ
∗−1/2
T λ̃iẽiTηiT︸ ︷︷ ︸

=ω∗iT

→d∗ N (0, 1) ,

in probability, for any ` such that `′` = 1. Since ω∗iT is an heterogeneous array of independent

random variables (given that ηit is i.i.d.), we apply a CLT for heterogeneous independent arrays.
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Note that E∗ (ω∗iT ) = 0 and

V ar∗

(
1√
N

N∑
i=1

ω∗iT

)
= `′ (Γ∗T )−1/2 V ar∗

(
1√
N

N∑
i=1

λ̃iẽiTηiT

)
(Γ∗T )−1/2 `

= `′ (Γ∗T )−1/2

(
1

N

N∑
i=1

λ̃iλ̃
′
iẽ

2
iT

)
(Γ∗T )−1/2 ` = `′` = 1.

Thus, it suffi ces to verify Lyapunov’s condition, i.e. for some r > 1, 1
Nr

∑N
i=1 E

∗ |ω∗iT |
2r →P 0.

We have that

1

N r

N∑
i=1

E∗ |ω∗iT |
2r ≤ 1

N r−1
‖`‖2r

∥∥∥(Γ∗T )−1/2
∥∥∥2r 1

N

N∑
i=1

∥∥∥λ̃i∥∥∥2r

|ẽiT |2r E∗ |ηiT |
2r︸ ︷︷ ︸

≤M<∞

≤ C
1

N r−1

∥∥∥(Γ∗T )−1/2
∥∥∥2r
(

1

N

N∑
i=1

∥∥∥λ̃i∥∥∥4r
)1/2(

1

N

N∑
i=1

|ẽiT |4r
)1/2

= OP

(
1

N r−1

)
= oP (1) .

Proof of Condition B for the wild bootstrap. Γ∗T = 1
N

∑N
i=1 λ̃iλ̃

′
iẽ

2
iT →P QΓTQ

′, by

Theorem 6 of Bai (2003).

The result for the studentized statistic (where we replace B∗T with an estimate B̂
∗
T ) then

follows by showing that ẑ∗′T Σ̂∗δ ẑ
∗
T− ẑ′TΣδẑT →P ∗ 0, and α̂∗′Σ̂∗

F̃T
α̂∗−α̂′Σ̂F̃T

α̂→P ∗ 0, in probability.

This can be shown using the arguments in Bai and Ng (2006, Theorems 3.1) and Bai (2003,

Theorem 6).

Proof of Lemma 5.1. Recall that Fε (x) = P (εt ≤ x) and define the following empirical

distribution functions,

FT,ε̂−ε̃ (x) =
1

T − 1

T−1∑
t=1

1
{
ε̂t+1 − ε̃ ≤ x

}
and FT,ε (x) =

1

T − 1

T−1∑
t=1

1 {εt+1 ≤ x} ,
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where ε̂ = 1
T−1

∑T−1
t=1 ε̂t+1. Note that FT,ε∗ (x) = FT,ε̂−ε̃ (x). It follows that

d2

(
FT,ε̂−ε̃, Fε

)
≤ d2

(
FT,ε̂−ε̃, FT,ε

)
+ d2 (FT,ε, Fε) ,

where d2 (FT,ε, Fε) = oa.s. (1) by Lemma 8.4 of Bickel and Freedman (1981). Thus, it suffi ces

to show that d2

(
FT,ε̂−ε̃, FT,ε

)
= oP (1). Let I be distributed uniformly on {1, . . . , T − 1} and

define X1 = ε̂I+1 − ε̂ and Y1 = εI+1. We have that

(
d2

(
FT,ε̂−ε̃, FT,ε

))2 ≤ E (X1 − Y1)2 = EI
(
ε̂I+1 − ε̂− εI+1

)2
=

1

T − 1

T−1∑
t=1

(
ε̂t+1 − ε̂− εt+1

)2

=
1

T − 1

T−1∑
t=1

(ε̂t+1 − εt+1)2 − 2
1

T − 1

T−1∑
t=1

(ε̂t+1 − εt+1) ε̂+
(
ε̂
)2 ≡ A1 + A2 + A3.

We can write

ε̂t+1 − εt+1 = −
(
F̃t −HFt

)′
α̂− (Φzt)

′
(
δ̂ − δ

)
,

where Φ = diag (H, Iq). This implies that

A1 ≤ 2
1

T − 1

T−1∑
t=1

∥∥∥F̃t −HFt∥∥∥2

‖α̂‖2+2
1

T − 1

T−1∑
t=1

‖Φzt‖2
∥∥∥δ̂ − δ∥∥∥2

= OP

(
1

δ2
NT

)
+OP

(
1

T

)
= oP (1) .

Similarly,

ε̂ =
1

T − 1

T−1∑
t=1

ε̂t+1 =
1

T − 1

T−1∑
t=1

(ε̂t+1 − εt+1) +
1

T − 1

T−1∑
t=1

εt+1 = OP

(
1

δNT

)
+ oP (1) ,

where the first term is bounded by an argument similar to that used to bound A1 (via the

Cauchy-Schwartz inequality). This implies that A2 and A3 are also oP (1).
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Proof of Corollary 5.1. Lemma 5.1 implies that s∗T+1 →d∗ 1− Fε (−xσε), in probability.

Since sT+1 →d 1 − Fε (−xσε) and Fε is everywhere continuous under Assumption 7, Polya’s

Theorem implies the result.
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