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Score-type tests for normal mixtures’

Dante Amengual®, Xinyue Bei*, Marine Carrasco® and Enrique Sentana™

Abstract/Résumé

Testing normality against discrete normal mixtures is complex because some parameters turn
increasingly underidentified along alternative ways of approaching the null, others are
inequality constrained, and several higher-order derivatives become identically 0. These
problems make the maximum of the alternative model log-likelihood function numerically
unreliable. We propose score-type tests asymptotically equivalent to the likelihood ratio as the
largest of two simple intuitive statistics that only require estimation under the null. One novelty
of our approach is that we treat symmetrically both ways of writing the null hypothesis without
excluding any region of the parameter space. We derive the asymptotic distribution of our tests
under the null and sequences of local alternatives. We also show that their asymptotic
distribution is the same whether applied to observations or standardized residuals from
heteroskedastic regression models. Finally, we study their power in simulations and apply them
to the residuals of Mincer earnings functions.

Tester la normalité contre un mélange discret de normales est complexe car certains
parametres sont sous-identifiés, d’autres sont contraints par une inégalité et certaines dérivées
sont identiquement nulles. Ces problemes rendent la maximisation de la vraisemblance peu
fiable numériguement. Nous proposons des tests du type score qui sont asymptotiquement
équivalents au rapport de vraisemblance et ne nécessitent que I'estimation sous I’hypothése
nulle. Une nouveauté de notre approche est que I'on traite symétriguement les deux manieres
d’écrire I'hypothese nulle sans exclure de régions de I'espace paramétrique. Nous établissons la
distribution asymptotique de nos tests sous la nulle et les alternatives locales. Nous montrons
qgue leur distribution asymptotique est la méme que I'on utilise les données ou les résidus
obtenus a partir d’une régression hétéroscédastique. Enfin, nous étudions leur puissance en
simulations et les appliquons au résidu de la fonction de revenu de Mincer.

Keywords/Mots-clés: Generalized extremum tests, Higher-order identifiability, Like-lihood
ratio test, Mincer equations / tests extremum généralisés, identification a ordre
supérieur, test de rapport de vraisemblance, équations de Mincer
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1 Introduction

Finite mixture models play an important role in economics, where they are often used
to model unobserved heterogeneity, especially in labor and industrial organization (see Berry,
Carnall and Spiller (2006), Cameron and Heckman (1998), and Keane and Wolpin (1997)) but
also in other fields such as finance, where the objective is to capture the observed skewness and
kurtosis of asset returns that may result from different market conditions. Mixtures also arise
in game theory with multiple equilibria, in measurement error models, as well as in duration
models (see Compiani and Kitamura (2016) and the references therein).

In this paper, we focus on finite Gaussian mixtures, which are the most popular. Suppose
that individuals can be of two types, j = 1,2 with normal distribution N(u;,o;) for type j.
Assume moreover that the types are not observed by the econometrician. Then, the probability

density function (pdf) of an observation is given by the following linear combination of the pdfs

AG (yz ;1H1) -l-(l—)\)d) <yi;2,u2) :

where ¢ denotes the standard normal pdf. The object of the paper is to test the null hypothesis

of the two types

of a normal versus a finite mixture of two normals.

Testing for normal mixtures is particularly challenging. First, the null hypothesis can be
written in two ways: either as Hy : ju; = g and 03 = 03, or as Hp : A (1 — \) = 0. Many papers
focus only on one of these two null hypotheses but we treat both together. Another difficulty is
linked to the fact that some parameters are not identified under the null hypothesis, although
their identity depends on the way in which one approaches the null. Moreover, when testing
A(l—=X) =0, A is on the boundary of the parameter space and standard asymptotic theory
fails (see Andrews (2001)). Finally, some parameters are only identified — if at all — through
higher-order derivatives (cf. Dovonon and Renault (2013)), which means that studying the
properties of the likelihood ratio (LR) test requires an eigth-order expansion. All these aspects
make testing for normal mixtures highly nonstandard.

Previous papers investigating the properties of the LR tests for normal mixtures include
Ghosh and Sen (1985), Hathaway (1985), Chen and Chen (2001), Chen, Chen and Kalbfleisch
(2004), Cho and White (2007), and Chen, Ponomareva and Tamer (2014). The closest paper
to ours is Kasahara and Shimotsu (2015). The main difference is that they only focus on the
null Hy : p1; = py and 03 = 03, while we simultaneously deal with the second null hypothesis
Hp : A(1—=X) = 0. Our work is also closely related to Cho and White (2007), who consider

both null hypotheses but exclude some corner regions of the parameter space. In this respect,



one important contribution of our paper is that we explicitly consider all possible values of the
parameter space under the null thanks to a novel convenient bijective reparametrization.

To circumvent the unusual features of the LR test, which not only make inference complex
but also render the maximum of the log-likelihood function of the alternative model numerically
unreliable when the null is true, some authors have proposed moment-based tests. Such an
approach goes back to the smooth tests in Neyman (1937). In particular, Quandt and Ramsey
(1978) use moments derived from the moment generating function, while others compare the
empirical characteristic function to the theoretical one under normality (see Amengual, Carrasco
and Sentana (2020)), or simply a handful of higher-order moments of the normal distribution,
as in Jarque and Bera (1980), Bai and Ng (2005), and Bontemps and Meddahi (2005), who look
at the expected values of Hermite polynomials rather than simple powers.!

In this paper, we propose score-type tests based on expansions of the log-likelihood function
for three null hypotheses of interest: equality of means and variances, equality of means only,
and equality of variances only. In all three cases, our tests are asymptotically equivalent to the
analogous LR tests while being much simpler to implement because the unknown mean and
variance parameters are estimated under the null hypothesis. Interestingly, when testing for the
equality of means and variances, our test boils down to the popular Jarque and Bera’s test based
on skewness and kurtosis, which implies that theirs is equivalent to the LR test in that context.
However, when we look at the global LR test, which explicitly considers the two different ways
of writing the null hypothesis, the equivalence disappears.

Empirical researchers in economics and finance, though, are often interested in testing the
normality of the standardized residuals of an econometric model. For that reason, we investigate
if our testing procedure is robust to parameter uncertainty. We show that when the mean and
variance of the observed variable given some conditioning variables are parametric functions
of those variables, replacing the unknown parameters by a constrained maximum likelihood
estimator obtained under the null does not alter the expressions for our proposed test statistics
or their asymptotic properties.

The rest of the paper is organized as follows. In Section 2, we introduce the model and the
three null hypotheses. Then, we derive the test statistics and their distributions under both the
null and suitable sequences of local alternatives in Section 3, and establish their robustness to
parameter uncertainty in Section 4. Next, we discuss the results of our simulation experiments
in Section 5, and present an empirical application to Mincer earnings functions in Section 6.

Finally, Section 7 concludes, with the detailed proofs collected in an appendix.

'Bai and Ng (2001) propose a test for conditional symmetry in time series contexts based on the empirical
distribution function, which can also be used to test the null of normality.



2 Model, hypotheses, and overview of the test

The model we consider is

y=n(ra)+o(ra)e (1)

where p and o are known functions of z with a finite dimensional unknown parameter o« and
¢ is independent of x with zero-mean and unit-variance. We want to test ¢ is standard normal
against the alternative that it follows a standardized mixture of two normals. Observations are
given by (x;,y;), 1 =1,2,...,n, where x; could be the lagged value of y; to allow for time-series
models, and for simplicity we assume that &; conditional on the past is 7id. As we will show
in Section 4, estimation of a does not affect the properties of the test, so at this stage we can
assume « is known and focus on the case without conditioning variables.

Assuming that p (z;, ) = 0 and o (x;, @) = 1 without loss of generality, we want to test:
Hy : y has density ¢ (y;) against
H; : y has density \¢ (%) +(1-=X\)¢ (y;ff), where

) §(1—N) . A
My = 5 Mo = 1_ )\Ml
14+ A1 —\)o?
1
UT2 _ and 052 = eXp(%)Ufza (2)

[T+ A1 =A% A+ (1 — A) exp(s)]
with 0, 2, and A being unknown parameters. This parametrization guarantees that the mar-
ginal distribution of y has zero-mean and unit-variance regardless of the values of the shape
parameters. As the labels of the two regimes are not identified, in what follows we set A > 1/2.2
Let ¥ = (6, 7, \), with ¥ € [—6,0] x [~32,5] x [1/2,1]. We consider three different parameter

spaces

O] = [-6,0] x [, x [1/2,1],
04 = [-0,6] x {0} x [1/2,1], and
b ={0} x [—3,3] x [1/2,1].

©] corresponds to the case where 4, >, and A are free to take any values within their respective
intervals. In turn, ©} corresponds to the case where s is constrained to be equal to zero,
which is relevant when the econometrician knows that the variance is the same in both regimes.
Finally, ©% corresponds to the case where § is constrained to be equal to zero, which captures

the knowledge that the mean is common to both regimes.

’In the unlikely event that A = 1/2, we could label the two components based on the sign of x, and if that
also failed, we could eventually rely on the sign of 4.



It is well known that the information matrix of the maximum likelihood estimators of (9, 5)
is singular under Hy. To isolate the singularities and have the first-order derivatives exactly

equal to zero under the null, we introduce the following reparametrization:
w =k — (2\ —1)52/3, (3)

so that the parameter vector becomes § = (9, k, \). The null hypothesis Hy can thus be written

as either A\=1or § =k = 0. Let
0; ={(0,1,A) : (6,5 — (2 —1)0°/3,A) € ©}}, j=1,2,3.

The goal of our paper is to construct a score-type test for each of the three hypotheses that is

asymptotically equivalent to the analogous LR statistic

n

LRj =2 |sup Ly(0,k, ) = Ln(8,5,1) | with Ly (8,5, ) = Y _Li(6, 5, ), (4)
0cO; =1

where [; is the log-likelihood of y; given . The main difficulty of finding a score-type test is
that some elements of 6§ are not identified under the null. Indeed, under Hy : § = k = 0, the
parameter X is not identified. Similarly, the parameters § and k are not identified when \ = 1.

The existing literature circumvents the problem by testing
Hop : (6,k) =0 with A <1—¢e <1, or testing Hopz : A = 1 with max{|d|, |s|} > ¢

(see, e.g., Cho and White (2007), and Kasahara and Shimotsu (2015), among others). However,
the “corner case” {(d,k, ) : max{|d|, |k|} <e, A >1—¢} is missing, and it is not obvious that
the resulting test statistic is asymptotically equivalent to (4).

To address this issue, we partition the parameter space as follows,
Poj ={(0,k,A) € ©; : max{|],|x|} <1—-A} and P, ; = {(d,k, ) € ©; : max{|d], ||} > 1 — A}

for j = 1,2,3 so that we can test the two null hypotheses simultaneously. To the best of our
knowledge, this has never been done before.

In what follows, we call Hy,; : 0 =k =0 with 0 € P, ;, and Hpp; : A =1 with 6 € B, ;. To
begin with, we treat Ho, ; and Hoy, ; separately and develop the two corresponding test statistics,

but then we will combine them by taking the largest of the two.



Specifically, we show in the next section that

H2, H}
2| sup Ln(0) — L,(6,K,1)| = —2 + —="40,(1), and
Lepi’,l (6) - L >] o)
2
2| sup L,(0) — L,(d,k,1)| = sup M +0,(1)
9€P,y 1 (8,1):(6,%,1)€01\{0,0,1} V(6,k) |

where |-]_ = min(0, ),

Hyp=> hsi=>» vi(y; —3),  Vs=var(hs;) =6,
i=1 i=1

n

Hyp=) hii=Y» (3=6y7+y!)  Vi=var(ha;) =24,
=1 =1

Vi Ve
2 g2 2
sy (=) %+ 02— 1) and
2 2
2 _ H—62 2
V(d,r) = pl0 /(2 " ) L [3 —2e" 3 4 ("8 + 52)2]

Thus, we obtain three score-type tests asymptotically equivalent to the respective LR tests,

namely,
H2 H? G5, %) |
LM, = max dn oy An sup _—
nVs Vi (5x):(6.51)€0:1\{001} | VV(0,K) |
2
_ Gn(0, k)
== sup —_— y
(6,):(8,5,1)€01\{0,0,1} | \/V (0,K) |
2 2 2 2
LM, = max o 01 [Hyp, < 0], sup | et :
nVs  nVa 81<3,/3120 | +/V(5,6%/3)
and

2 2
H? 0 0
LM3 = max ﬁ]_ [H47n > 0] , sup M — sup M ,
nVa | mi=sso -

k<72 /x>0 | /V (0, k) VV(0, k)

where the second equalities for LM; and LMjz hold because the test in P, is no larger than the

test in P, for all possible samples.



3 Test statistics

In this section, we focus on testing whether y; is a standard normal versus the alterna-
tive where y; is a standardized mixture of two normal distributions. The case with nuisance

parameters will be treated in Section 4.

3.1 Test of Hy,

As we mentioned above, testing Hpq1 : 6 = k = 0 with 0 € P, assesses whether the
mean and variance are the same in both regimes. Similarly, testing Ho,2 : 6 = 0 with 6 € P, »
implicitly assumes that the variances are known ex-ante to be the same in both regimes and
one simply wants to test whether the mean is also the same. Finally, testing Ho, 3 : £ = 0 with
# € P, 3 maintains that the means of the two regimes are known ex-ante and one only wants to
check that the variances coincide too.

Let LR, ; be the LR statistics for testing Ho,,j, namely

LR, ;=2 Sup Ln(0) — Ly (6, 5,1) | .
a,j

Thanks to our reparametrization, the derivatives of the log-likelihood with respect to § and

at the point (0,0, A) are such that

ol; ol
%" o
62li 82li 1 82li 1
_ = A1 = Nhsi, — ==A(1— A)h,
252 =% gean — 2 T Nhan g = A= Vi
93, o 2 2
@:07 and % :—§)\(1—A)<1—A+A )h4z

Using an eigth-order expansion of the log-likelihood function, we can characterize the leading
terms which are the basis for our score-type tests. In particular, if 1[A] denotes the indicator
function for event A, the score-type test statistics corresponding to the three null hypotheses

are given by

H3, Hj
LMy, = —= -
a1 A
3 i
LM, = i “1[H 0 d
a,2 n‘/i‘) + ’er4 [ 4,n < ]7 an
Hi,
LMa73 = Vi 1 [H47n > 0] .

In LM, 1 we recognize Jarque and Bera’s test, which exploits both the skewness and kurtosis



of the data. In contrast, LM, 3 exploits only its potential lepkurtosis, while LM, both its
skewness and its potential platykurtosis. Intuitively, when 6 = 0 but x # 0, the alternative
becomes a scale mixture of normals, which can only be leptokurtic and symmetric. On the other
hand, when x = 0 but § # 0, close to the null we can have either positive or negative skewness
but only platykurtosis. Finally, in the unrestricted case there are no restrictions because two-
component Gaussian mixtures can generate the entire admissible range of skewness-kurtosis
coefficients.

The following propositions establish the equivalence between the LR and our score-type tests

and give their asymptotic distributions.
Proposition 1 For j =1,2,3, LR, j = LM, j + 0, (1) under Ho,,;.
Proposition 2 Under Hy,

LM,1 53, LM,s %3 + max(0,2)%, and LM,3 % max(0,Z)?,

where X? denotes a chi-square random variable with j degrees of freedom and Z is a standard

normal independent of X3.

3.2 Test of Hy,

We are now concerned with testing Hop; : A = 1 with 6 € B, ;. Hop1 corresponds to the
case where both the mean and variance can be different across regimes under the alternative,
Hop 2 to the case where only the mean may differ across regimes and Hyy, 3 to the case where
only the variance is allowed to change. Importantly, we are in the rather unusual setting where
the parameter X is on the boundary of its range and some nuisance parameters are not identified
under Hj.

The score with respect to A\ at the point A\ = 1 is given by

A R S UG O PUPR
e 2<3 e 3) K_ﬂexp{z [yi (yi +9)%e (5)
e~ 3

52 2 52
—0y; — <1 - eﬁ_3> % + 5(%‘2 - 1).

To complicate the analysis further, the score with respect to A equals zero when § and k are 0
simultaneously. For that reason, we first focus on the case where the couple (6, k) is away from
(0,0), leaving the discussion of the general case where (J, k) may go to (0,0) for later.

Let B ={(0,K,1) € Py1 : Vo + k2 > ¢} for some € > 0. From the form of the score in (5),

(82
we can see that the variance of 9l;/0\ becomes unbounded when e <H 3 ) > 2, so in principle



it may seem that we should restrict x — §2/3 < In(2). However, our test statistic is based on
the ratio of dl;/O\ over its variance, a ratio that goes to zero for x — §2/3 > In(2). Therefore,
we will never get a maximum in this range because we take the supremum over other values
of kK and ¢ for which the ratio is not 0. As a result, we can ignore this constraint when the
variance in the denominator is estimated. In contrast, we need to restrict » — 6%/3 < 5 < In(2)
to avoid numerical overflow when we use the explicit theoretical expression (6) of the variance

in computing the test statistic, even though the previous argument still applies.

Lemma 1 Under Hy, we have
RN
n(0,k) = — — =G (6,K),

where G (0, k) is a Gaussian process indexed by (d, k) € B with mean 0, variance given by

expl0?/(2 — e 5)]
\/(2 - e“_ﬁ)e“_ﬁ

and covariance cov|G (01,K1),G (92, k2)] = g (51, K1 — %, 0o, Ko — %), where

var|G (6, k)] =

2 2
-3 [3 —2e"F 4 (T 4 52)2} , (6)

(6%6"“1 +6%e”2)
exXp T gekitky (62651 4 51€H2)2
Y (51’ k1,02, '%2) = \/6“1 1 eR2 — eR1tk2 exp _2651"'”2 (e”1+“2 —efl — 6'{2) (7)

_% [3 + 28102 + (5102)” + 67(€"2 — 1) + 83 (" —1) — e — & + e"‘ﬁm] :

For a given (9, k), let

2

In this context, we can define our test statistic as

mm: sup LM, (6, k)
(6,x,1)EB

and the LR test statistic by

EJSLM =2| sup Ln(0)—Ly(,k,1)
GEP]]JHB

We can then show that:

Proposition 3 Under Hy, we have that
(a) LM, (8,5) = G (8,))2,



where G (0, k) is a Gaussian process with zero mean and correlation function

cor[G (61,51, G (82, k2)] = var|G (81, k1)~ 2cov[G (61, k1) , G (62, k) ]var|G (82, K2)] "2,

(b) LMy1 % sup [G(6,5)|%, and
(6,x,1)eB
(c) LRy1 = LMy + 0, (1).

As we mentioned at the beginning of this section, so far we have restricted (J, x) away from
0 for simplicity. But now, we consider the case where (J, <) — 0, which is more complex because

the score with respect to A equals zero when § and k are simultaneously 0. Consequently,

{ G (6, )

var|G (6, k)] H(0:,1) € 1\ {0,0, 1}}

is not Donsker because we could have both (d1p,, k1) — 0 and (02y, k2,) — 0 but

li gn (51717 Hln) . gn (5271; EZn)
im lim .
n—00 \/var[G (01, K1n)] o0 \/var[G (02n, K2n)]

To deal with this problem, we reparametrize the model and define

/

G (1) = ~Gald(7, m), ()]

and

!

V' (r,m) = —gvar{Gla(r,m), w(r,m)]},

so that 7 — 0 if and only if (§, k) — 0, in which case lim,_ Q;L(T, m) is well defined. We can
further show that {G/ (7,m)} is Donsker (see the proof of Proposition 4 for details).

Consider the score-type tests corresponding to Hyy ;, with j = 1,2, 3, namely:

2
LM, = . {g(é)nJ

(6,5):(8,K,1)€01\{0,0,1} var[G(0, K
2
(0,5
LMo = sup —g ( 3 ) > )
OI31>0 | yfuar(G(8, )]

and

2
LMy3= sup —gn 0,%) ,
k|<7,|k|>0 | \/var[G(0, k)]

where we have excluded the element {0, 0, 1} because at this point var[G(-)] = 0. Let us explain



the choice of the spaces over which the supremum is taken. Recall that
0; ={(6,5,A) : (6,5 — (2A —1)6%/3,)) € O/}

When A =1, (6,5,1) € Oy is equivalent to {(0, k) : |§] <6, |k — 02/3] < x}, ie.,

G (6 ’ G (6 ’

(6,5,1)€01\{0,0,1} | \/var[G(d, k)] 16<8,|k—82/3|<x | Vvar[G(d, k)]

Similarly, (d, k, 1) € O3 is equivalent to {(5, K): 0] <o,k = 52/3}, while (d,k,1) € O3 is equiv-
alent to {(0,x) : § =0, |r| < 5x}.
In this context, the following proposition establishes the equivalence between our proposed

tests and the LR:
Proposition 4 Under Hg, we have
LRy; = LMy + o0, (1),

where

LRy; =2 | sup Ly(0) — L,(6,K,1)]|.

3.3 Combined test of H

Now, we want to test Hp against H; as defined in Section 2. Three tests are available
depending on the set ©;, j = 1,2, 3, of 6. Note that ©; = P,; U B, so that the likelihood ratio
test LR; = max(LRq;, LRy ), and similarly LM; = max(LM,;, LM, ;). Using the previous
results, we have LR; = LM; + o, (1).

Interestingly, we can show that the test statistic in P, is no larger than the one in P, with
probability 1 for ©; and ©3, which implies that the corresponding tests can be simplified as

follows:

Proposition 5 Under Hy, we have

2
LR, = sup Gn(9, 1) +0,(1) (8)
16]<8,|k—382/3|<z, sl 16150 | VV (0, K) |
and
Gul0.5) |
LR3 = sup —— | +o0,(1). 9)
6] <5, |0 { V(O,H:)J Y

10



However for O,, the test statistic in P, may be either smaller or larger than that in P, with
positive probability asymptotically (see the appendix for further details).

In summary, our score-type tests are
LMl = LM[,J, LM2 = maX(LMaQ, LMb’Q) and LM?, = LMb73
for testing Hy against a finite normal mixture with 6 € ©1, ©2, and O3, respectively.

3.4 Distribution under local alternatives

Given that there are two ways of expressing the null, there are two types of local alternatives
to Hy : y; ~ N (0,1), depending on whether \ goes to 1, or (4,x) — (0,0).

We first consider local alternatives in which A goes to 1, namely

P
v

where p is some positive constant and ¢ and k are assumed away from 0.

Hlni)\nzl—

Let Pg »,, with 8 = (9, k), denote the probability measure of y1, . . ., y, corresponding to Hiy,,
and Py be the probability measure of y1,...,y, corresponding to Hy. In addition, let X% (v)
denote a non-central chi-square random variable with k degrees of freedom and non-centrality

parameter v. We can then show that:

Proposition 6 (a) For any (5,1) € B, Pg )y, is contiguous with respect to Py.
(b) Under Hyy,

}%" —C3p ‘/3 0 c3
}%l i) N —C4p , 0 V4 Cq4 ,
NI —var[G (8)]p s e varlG(B))
where
—cov (hy, 25) =6 135 (% 1
€3 = Cov 315 I\ — e
and

(c) Under Hip,

11



(d) Under Hi,,

LMy; % sup min{0,G (8) — var'/?[G (B)]p}>.
(B,1)eB

The following remarks are in order:

1. The LM b1 test has nontrivial power against local alternatives of order 1/y/n.

2. It follows from Proposition 6 that the LM test has non trivial power against Hy, provided
either 6 # 0 or kK # 0. On the other hand, if A goes to zero faster than 1/y/n, then LM; will not
have power even if § # 0 and x # 0.

3. The asymptotic distribution of max(LM, 1, LM p1) under Hy, could in principle be de-
duced from Proposition 6 (b), although there is no simple expression for it.

Next, we consider local alternatives in which (d, x) approaches (0,0). Let Py, be the distri-

bution of y; under local alternatives such that limy, oo (w1n, Wany = (w1, w2) € R?, where

1
Win = _5 (1 - >\n) )\n\/ﬁénﬁna

1=\, + 22 )

1
wa, = (1—=A) v/ (8/-@%; — 26 n 54

Somewhat unusually, we can have wi, = O (1) and wa, = O (1) in two different cases:
(a) when /n (1 — \y) dpkn = O (1) and (1 — \,) v/nK2 = O(1), or
(b) when /n (1 = \y) pkin = O (1) and /0 (1 — \,) 62 = O(1).
We can then show that:

Proposition 7 (a) Py, is contiguous with respect to Py.

(b) Under the local alternative Py, , we have

H??n H42n d

LM,; = an + an4 5 x5 (Vawi + Vaws)

LMy, = sup LM, (8)> sup min{0,G (B)+ var 2[G (B)] (csws + caws)}>.
(B,1)eB (8,1)eB

An interesting implication of Proposition 7 in terms of power is the following. We have
3 m—g
cawy = |0°+30 ("3 —1)|w <0,

while the sign of

2 2 2
CAWy = [6(52 (1 — e“(si’r) — 5 -3 (1 — 6”63) ] wo

depends on both the type of local alternative (either \/nx2 = O (1) or v/nd% = O (1)) and the

values taken by § and k. Since we take a minimum over ¢ and x, we can always find values of
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these parameters such that cqws < 0. Consequently, the expectation of dl;/0\ is negative and
the test LM »,1 Will have nontrivial power against Py, . However, if ,, and d,, go to zero too fast,
or in other words, if w1 = 0, (1) and wa = op, (1), then the test will have trivial power.
Nevertheless, we would like to emphasize that Propositions 6 and 7 imply that our tests are
consistent for any fixed alternative for which A # 1 and either § # 0 or kK # 0. Indeed, the

different test statistics diverge under such fixed alternatives, and their power goes to 1.

4 Robustness to parameter uncertainty

In this section, we study the impact of estimating the mean and variance parameters under
the null on the asymptotic properties of our testing procedures. Specifically, we consider the case
where the conditional mean and variance of y are parametric functions of another observable
variable z, as in (1). Autoregressive and GARCH models are particular examples in which x
contains lagged values of y. In this context, the objective becomes to test whether the standard-
ized innovation ¢ follows a standard normal distribution versus a standardized mixture of two
Gaussian components.

The conditional log-likelihood of the i*" observation is given by

2

Ly —py (@) o

1
k—§lnay(a¢i,a)+ln 5 P |~ 5 ¥
o1 71 02 (z;, )
2
1—A 1 Yi — Uy (T4, N
TR P | T i by (@ )—Mg )
b T2 0% (zi, @)

where k is an integration constant and uf, u3, 032 and 032 are defined in (2).
Assumption 1 puy (z;,«) and oy (x;,«) are eight times continuously differentiable with
respect to o.

Assumption 2 For all k € N% and /k=1,...,8, it holds that

"y (i, ) ? 'k02 (x4, ) ?
E Y (2] < 00, E Y (2 < 0,

ook Oak

where k = (kly .- '7kd9)7

'k 'k
Py (r0) O uy (ma)
dak 90k 9ot
oyt .. 0oy
/ !
kol (z,a) 0ol (w,q)
k - ka,,
dox Dok . 9l
1 da
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Proposition 8 Under Assumptions 1 and 2, replacing o by the restricted mazximum likelihood
estimator under Hy, &, does not alter the expressions of the score-type tests or their asymptotic

distributions.

In practice, y; is simply replaced by §; = [y; — py (%5, &)]/1/0% (@, &) in the expressions for
the different test statistics discussed in the previous section.

Proposition 8 is reminiscent of Proposition 3 in Fiorentini and Sentana (2007), who proved
that when a researcher estimates a multivariate parametric location-scale model with a para-
metric distribution for the innovations that nests the multivariate normal, including mixtures of
normals as a particular case, the (scaled, average) scores of the mean and variance parameters
are asymptotically independent of the (scaled, average) scores of the shape parameters when the
true distribution is in fact Gaussian. However, their proof assumes a regular model in which the

information matrix equality holds.

5 Monte Carlo evidence

In this section, we assess the finite sample performance of our proposed tests by means of
several extensive Monte Carlo exercises. The composite null hypothesis is a normal distribution
with unknown mean p and variance o2, while the alternative is a mixture of two normal dis-
tributions with either different means, different variances, or different means and variances. In
addition, we compare our tests to the LR test and some popular nonparametric procedures based
on either the empirical cumulative distribution function (cdf) or the characteristic function.
Specifically, we look at the Kolmogorov-Smirnov (KS) test and the continuum of moments-test
proposed in Amengual, Carrasco and Sentana (2020) (ACS).

In this context, the LR test effectively reduces to

n n 1
LR; =2 sup ZL(.@i;e) - QZL <Qi;0,0, 2) ;
=1

96@]' i=1

where the standardized observations are

i — . 1 . N
U = ——n" M", with [, = - Zyi and 62 = (yi — f1p)?.

On

To calculate the maximizers of the first term, we use GlobalSearch Toolbox in Matlab with initial
value (0,0,1/2) and 1,000 potential starting points for 6 and k. We have also tried as initial
values the maximizers of the eighth-order expansion of the log-likelihood function. Specifically,

for each ©;, we consider:
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n

e Initial value 1: (&5, kf — (2X;, — 1)(05,)?/3, A%), where 0}, k5 and X}, are defined in Step 5

of the proof of Proposition 1.

e Initial value 2: (8y, sy — (2)\p — 1)02/3, \p), where

2
(6, k) € argmax (lOLn (5,5, 1)/0A] )
(0,5,1)€0;,6%+k2>1073 V(6,r)

and

B 1 1 OL(0p, kp, 1) 1
)\bmax{l—i_n{\/(éb,ﬁb) o J72}~

In addition, we also tried the optimization of the reparametrized log-likelihood function

sup Y L(ji; 0),

96@j i=1

using analogous initial values. It turns out, though, that the original likelihood with initial
value (0,0,1/2) yields the value of the parameters that yielded the largest criterion function in
all 1,000 trial points.

As for the other tests that we use for comparison purposes, we compute the KS statistic
on the basis of the probability integral transforms of the standardized observations obtained
through the standard normal cumulative distribution function (cdf), while we fix the Tikhonov
regularization parameter a to .01 and the scale parameter w? of the Gaussian density used
to define distances and inner products in a suitable L?-type Hilbert space to 1 in view of the
simulation results in Amengual, Carrasco and Sentana (2020).

In all cases, we compute empirical critical values using the following parametric bootstrap
procedure. First, we generate y1, ..., y, itd N(0,1) and calculate the test statistics based on the
observations standardized with the estimated mean and variance in that sample, restricting the
parameter values over which we compute the sup to |§| < 0 = 2 and |»| < 5z = 2/3. We then
repeat this 100,000 times to get the 1 — « quantile of the test statistics which we use as critical
values.

To assess the size-corrected power of the different tests, we generate y1, ..., y, from a stan-
dardized normal mixture distribution with several combinations of A, J and 2 that include
symmetric mixtures — with either inliers (»x < 0) or outliers (s > 0) — as well as asymmetric
ones (0 # 0). Then, for each sample we standardize the observations and calculate the test statis-
tics as before, repeating this step 10,000 times. Finally, we compute the corresponding rejection
rates using the empirical critical values obtained under the null by means of the parametric

bootstrap procedure described in the previous paragraph.
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Rejection rates for sample sizes n = 125 and n = 500 are reported in Tables 1 and 2. We
report results for LM;, LM, ; and LM, ;, j = 1,2,3, whenever different. Note that LM, is
denoted as JB in the tables because it coincides with Jarque and Bera’s test. Moreover, LMy, 1
and LM 3 are omitted from the tables because LM, coincides with LMy 1, and LM3 with LMy, 3.
The upper panels contain results for different combinations of § and > when A =.75, while the
lower ones do the same but when the mixing probability is .95. As a guide, we also include two
columns reporting the third and fourth moments of the alternative DGPs that we consider.

By and large, the results are very encouraging. When focusing on the parameter space 01,
our LM test performs similarly to the usual Jarque-Bera test, while for Oy (03) it clearly
dominates both LM, and LM, (LM,), as expected. In addition, the relative performance of the
tests for different ©’s is in line with the alternative DGPs we consider. Still, the ACS test does
a good job, beating both the LR and our score-type tests for some specific alternatives.

We also assess the asymptotic equivalence between our LM test and the LR test by computing
Gaussian rank correlation coefficients (see Amengual, Tian and Sentana (2022)), which are
robust to the presence of unusually large values. Specifically, when n = 125 (500) we obtain .90,
.88 and .86 (.93, .90 and .86) for O, O2 and O3, respectively.

Finally, we can confirm that computing times for the score-tests are significantly smaller than
for the LR tests, taking 0.59, 0.62 and 0.27 seconds per simulation when n = 500 versus 1.57,
1.20 and 1.53 seconds for ©1, ©2 and O3, respectively. Nevertheless, these figures underestimate
the numerical advantages of our proposed tests in practice for two different reasons. First, the
location-scale model that we have considered in this section only contains two parameters, unlike
more realistic empirical models such as the one considered in the next section, which typically
contain many more parameters that will have to be estimated under the alternative too. Second,
supplemental appendix E7 of Fiorentini and Sentana (2021) shows that the ML estimators of
the unconditional mean and variance parameters ; and o2 in any given sample are numerically
the same regardless of the values of the shape parameters ¢, > and A, which effectively means
that we did not have to re-estimate them under the alternative because they coincide with the
sample mean and variance (with denominator n) of the observations. As a result, the criterion
function under the alternative calculated keeping ;o and o2 fixed at their restricted ML estimators

coincides with the criterion function maximized over all five parameters.

6 Empirical application to wage determinants

As is well known, the popular Mincer (1974) regression equation explains the (log) earnings

of individual workers as a function of their education, measured by the number of years of
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schooling, and their experience, which is usually captured by a quadratic polynomial to reflect
skill depreciation. The rationale for these variables is that labor earnings are usually regarded as
the returns to human capital, with education and on the job-training being two different forms
of investment in it.

The simple Mincer equation, though, fails to capture cross-sectional heterogeneity in the
earnings of workers with identical schooling and experience. As an example, it is often argued
that female MBAs typically earn noticeably less than male MBAs with the same number of years
of experience. For that reason, empirical Mincer earnings functions often include several dummy
variables, like gender or race, aimed to capture part of that heterogeneity. Formally, the gender
dummy regression coefficient can be understood as the proportional decrease in labor earnings
for a woman relative to a man with the same schooling and experience profile. Not surprisingly,
earnings discrimination analysis often focuses precisely on the statistical significance of this
regression coefficient.

But another crucial determinant of earnings is innate ability, for which data is regrettably
inexistent in most labor surveys.> Given the dummy representation of a discrete mixture that
we have exploited in our tests, a mixture model for the residuals of the Mincer equation seems
very adequate to capture the possible existence of different underlying groups (or categories) of
workers with noticeably different ability characteristics.?

Chapter 5 of Berndt (1991) contains not only a detailed analysis of the issues that arise in
estimating the determinants of labor earnings, but also a random sample of 534 observations
from the May 1985 issue of the Current Population Survey compiled by the US Bureau of
Census. Given the illustrative nature of our analysis, we estimate by OLS the following baseline

specification with all the observations in this dataset:

Inw=ac+arFE+ apOTHERS + ¢,

where w is earnings, F'F the female dummy variable, and OT H ERS includes dummy variables
for union status, blacks, Hispanics, years of education, years of experience, its square and an
interaction term between schooling and experience. In addition, we estimate the same regression
specification using exclusively female and male subsamples separately after dropping F'FE to avoid
collinearity. For each of those three empirical specifications, we test whether the residual follows

a normal distribution with 0 mean and unknown variance o2.

3Griliches and Mason (1972) constitute an important exception, as they had data on both earnings and IQ
scores for the individuals in their sample. Somewhat surprisingly, though, they found that their ability measures
were essentially uncorrelated with schooling, which means that the omitted variable bias in measuring the returns
to education was negligible.

4See Bonhomme and Manresa (2015) for a closely related approach in panel data.
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Unfortunately, we cannot use the parametric bootstrap to compute the critical values as we
did in our Monte Carlo simulations because of the presence of regressors. For that reason, we

use the following semiparametric bootstrap procedure:

1. Regress Y (= Inw) on the explanatory variables (X) and obtain the ordinary least-squares

estimates &, 2, and the OLS residual &.
2. Calculate the test statistic (denoted T for simplicity) using €.

3. Using random sampling with replacement to nonparametrically bootstrap the regressors,
Xp, and then construct

Y, = Xpax + oep,
where ep|(Y, X) ~iid N(0,1).
4. Regress Y, on X, and get & and &y.
5. Calculate the test statistic T} with input &.

6. Repeat 10,000 times steps 2 to 5 and compute the bootstrap p-value as

1< .
5 > 1T, > 1)
b=1

Importantly, we can achieve higher-order refinements to the asymptotic distribution by im-
posing the normality of the standardized innovations.

The results of the empirical application are displayed in Table 3. The first column includes
results for the full sample, and the second and third ones for men and women separately. On
the basis of the p-values, we can see that the distribution of wages for the entire sample, condi-
tional on the regressors, is leptokurtic but apparently symmetric. However, when we distinguish
between males and females, some asymmetry appears, with positive skewness for men and nega-
tive skewness for women. Moreover, our tests reject the null hypothesis of normality against the

normal mixture, which suggests that some unobserved heterogeneity remains in both samples.

7 Conclusions and directions for further research

This paper presents score-type tests for normality against normal mixtures with different
means or variances. Our tests, which are robust to the sampling uncertainty resulting from
the estimation of the conditional mean and variance parameters used to construct standardized

residuals, are asymptotically equivalent to the LR test.
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For illustrative purposes, we focus on mixtures of two normal distributions. Considering more
than two categories would represent an interesting extension. We could also explore procedures
to determine the number of components in normal mixture models, as in Kasahara and Shimotsu
(2015). We have restricted ourselves to serially independent observations, but the underlying
regimes may be somewhat persistent in many macroeconomic and financial applications. An
extension of our work to the Markov-switching models recently considered by Carrasco, Hu and
Ploberger (2014) and Qu and Fan (2021) provides another promising route for future research.

It would also be interesting to consider other distributions besides the normal. In fact, the
normal distribution is very special and some of the difficulties we have dealt with, such as the
singularity of the information matrix, may not arise with other mixtures. Scale mixtures of
univariate normals give rise to mixtures of chi-square distributions with 1 degree of freedom
for the squares, and the same happens in the multivariate case if we consider the exponents
of the multivariate normal density, except that the degrees of freedom of the chi-squares will
coincide with the dimension of the random vectors. Therefore, it should be possible to test for
mixtures of two chi-squares using our existing results. We are currently exploring some of these

interesting research avenues.
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Appendix: Proofs

The proofs of our main theorems use some lemmas which we state and prove at the end

of the appendix. We will also make extensive use of the following notation:

1. the stochastic sequence ay, is “bounded in probability”, or Op(1), when Ve > 0, there exists

M such that Pr(|a,| < M) > 1 — ¢ for all n;

2. the sequence of events A,, holds “infinitely often” (i.o.) when the cardinality of the set

{n: A, holds} is infinite; and

3. A, holds ultimately (all but finite) when there exists N such that {n : A, holds} = {n :
n > N}, with N < co.

Proof of Proposition 1
Overview of the proof

In this part, we find the score type test statistic that is asymptotically equivalent to

2 Sup Ln(e) - Ln((S? K, 1) )
0cP,

where P, satisfies that (0,0,1) € P, C ©;. Notice that in the proof, we use P, as the parameter
space, but we could, when required, change from P, to P, for k = 1,2,3. With a slight abuse

of notation, we also define

LR,(0) = 2[L(0) — L,,(0,0,))], and

H3,n

Vn

H
wy — Vaw? + 25220, — Viw?d, (10)

LMS(9) =2 7

where

A1 =X+ 22

A
T V(1 — X6t + g\/5(1 — Mk2

A
wy = —5\/5(1 — Aok and we = —

Moreover, note that L, (d, x,1) = L,(0,0,)\).
There will be five steps in the proof:

1. For all sequences of 6,, € © with (6, k) 2, 0, we have that
LRy, (0n) = LMy (0n) + oplhn(6)],
where h,,(0) = max {1,n(1 — X)26%, n(1 — X)26%k%, n(1 — \)2k1}.
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2. Defining LM = (§EM LM N\LMy ¢ aromaxy.q LMZ(0), we show that (6L kLMY 2
and hy, (0LM) = 0,(1).

3. Defining 057 = (658 xLE NLR) ¢ argmaxyee LR, (6), we also show that (657 kL) 25
and hn (02F) = 0,(1).

4. We then prove that LR, (05%) = LM2(0EM) + 0,(1).

5. We finally simplify LM2(LM) to LM, (resp, LM, and LM,3) in Py (resp, Pao and
P.3).

Step 1

We want to show that for all sequences 6,, = (0n, kn, A\n) € © with (0, k) LR 0, we have

LR (6,) = LM%(6,) + 0p[hun(60)], (11)

where hy,(0) = max {1, n(1 — X)26°%, n(1 — X)26%k%, n(1 — A)?k*}.
Let [ denote the log likelihood of the obervable y, h3 = y(y? —3) and hy = y* — 63> + 3. The

scores and relevant higher-order derivatives with respect to § and & at the point (0,0, \) are

Let

and

ol ol
55 =0 5-=0
92 021 1 0% 1
2 = geor ~ 2T MM 55 = (L= MM,
31 o4l 2
i R 1— 2
55 0, and 55 3( MAL = A+ AR
Tk _ L 0MTELL(0)
" k1 !ko! 8(5]“18%’92 (0,0,An)
Akl — 1 oktkaL, (0)
kilka! 050Kk |5, 2 a0
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with (O, #n) between 0 and (d,, k,). Then, taking an eighth-order Taylor expansion we get

%LRn(Hn) =Ln(0) — Ln(0,0, \p)
=\/n6% (A1n + 8, Aon + V/noh Asy)
+ vkl [Aan + knAsn + Vnsg (Asn + KnAr)]
+ V/ndpkn [Asn + 0n (Agn + V103, Aton) + fin (Arin + Vs Arzy )]

1 .. .
2.2 2 ALK, 57 K
+nolkn (Arsn + Aun) + D ~ATng sy, (12)
j+k=9
where
Ay =3 Lol g 227: A ppolgios 4 —Iipsal o4 L poo
n n n ) n j:5 \/ﬁ n n 9 n n n 9 n \/ﬁ n )
8
Ag, =L Lpoal 4 _ Ly A=Y Yroal s 4 =4 L iy
mn n n Y n n n ) j:5 n n n ) \/’E n Y
S (1 (1 (1
_ Al gi-2 _ Lroulgi—6 4. — Aol -2
7j=2 7j=6 Jj=2
T (1 qa) 1 1 .
fh%;:§:{Lgﬂ}mga Mg = 2LEY and A= Y {zgﬁ}agﬂdf{
j=a " " 8>jtk>5
J>2,k>2
Next, we have to show that
> AUHS L = 0y [hn(02)); (13)

j+k=9

To do so, it is worth noticing that for j + k£ =9,

. j+k j+k-+1 ~
L] <[L L 97FLa(6) 11 0 La(®) 5 (14)
n njlk! 987 9kF |goan| (7K 88 OKE |5, k)
1 1 9tk (6) o
- - Z = —n\ Rn
n gkl 067 0KF L |5 5 A
1 DITEI(9) 1 >
— |E —— +0, | —=
= [4lk! [ 957 IKF | (0.0.0,) p<\/ﬁ
1
+(1- /\n)W (15)
oITk+1 (g 8j+k+1Ln 0
X E +71() + 7() +Op(].)
o8 T oKk (0,0,A\) 967 Ork+1 (0,0,An)
1
—0[(1= M%) + 0y (=) + onl1 = ). (16)

where (14) is a Taylor expansion around (0,0, \,,), (15) follows from the central limit theorem
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and

max{|0n |, [Fn|} < max{|6,], |[kn|} < (1= Apn),
while (16) follows from
G
| | —ol-a
" 10,000)

for j/ + k' =9 and j' + kK’ = 10, which can be easily checked by hand. Then,

> AbHsI ek = Y {0 [(1- )% + 0, (;ﬁ) +0,[(1— /\n)]} nél Kk

J+k=9 J+k=9
= Y 0l = M) ndel+ > Op(Vrshel)+ > 0p[(1— An) ndlxl

j+k=9 j+k=9 j+k=9

=0p [P (00)]

which follows from 6y, £y, = 0p(1) and (1 — Ay,) > max{|d,|, |kn|}-
If we then use (12) and (13), we can show that

%LRn(Hn) = /76% (A + V64 Ag) + VK2 (Agn + VK2 Agy)
+ \/ﬁ(snﬁn (ASn + \/ﬁdnKnAl?m) + Op[hn(en)}a (17)

which follows from the fact that Ay, to Ai3, are Oy(1), and A4y, = 0,(1) because the terms in

curly brackets are O,(1). Also,

%LRn(en) __all _;6” ) If/“g V(1 — A8
- % Al *?:\6” i A%)] 2 Van(l — A\n)?63
et i e - 2 (30) vant - aued
= At~ (2) Van(l = \)26202 + oylha(6,)]  (18)
:If/:’%‘wm — %ng%n + If/‘*?;:wgn — %Vuu%n + 0p[hn (0], (19)

with

A Aa(1 = Ny 4+ A2 An
win = =L~ M) and g, = 02 Ry s M,
(20)

where in the first step we re-write (17) as (18). Then, letting

l[k:l,kz} B 1 oFitka]

 k1'ko! 96k 9Kk’
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the result follows from

1 1 1 1 1 1
ELE’O] = —§E[(l[4’0])2] +Op(n~2) and ELL?A] = —§E[(l[0’2])2] + Op(n™2),

(see Lemma 1 in Rotnitzky et al (2000)), and

1 1 _1
— 123 — — B[] 4 Oy(n ),

n

which can easily be checked by hand. As for the second step, it is a simple rearrangement of
terms to go from (18) to (19). Therefore, the only difference in the leading terms is the coefficient

of V4, namely,

2 24172
1—
wgn_(@ (1A% - | 22t 32”“”) n(1=An)*0 = Op[n(1=2)*0p 5] = 0p[hn(0)],

as we wanted to show.

Step 2

First, we show that h,(05M) = O,(1). By definition, we have

1 1
LMEZ(0) =2—=Hj3 w1 + 2—=Hy yw2 — Vawi — Vaws
n

Vi Vi
B 1 Hy,\® 1 (Hsp\? 1 Hin\® | 1 (Hin
‘”’("‘“l‘vsﬁ> *%(ﬁ) ) fulw )

It is then straightforward to see that wiM = 0,(1) and wiM = O,(1), where wiM and wiM

are defined in (20), because

1 1
“2Hs, T2 H,
WTB’ = O0p(1) and n 2V4 in 0O,(1)
by the central limit theorem. Next, we have that
|\/ﬁ(1 _ )\LM)dLMHLM‘ _ '2w1LnM < ‘4wLM = 0,(1)

n n n - )\LM = In | — ¥p ’

whence
V(L = APa e = 0, (1). (21)

In addition, we also have

LA (- B O gy

8 wiM
\M 2n
n

< 16 |wi | = 0,(1).
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MY2 — 0,(1) and /(1 — AEM) (6EM)! = 0,(1). Together

Moreover, it holds that 65M kLM = o,(1) because

Then by Lemma 7, /n(1 ALM) (

L
with (21), we have h, (05M) = 0,(1).

Va(lrpM)? < V(g™ (1= X0M) = 0,(1)
and
Va(165M )7 < V(M)A =AM = 0,(1),

as desired.

Step 3

In what follows, we show Step 3.1: (65%, k2%) 2,0, and Step 3.2: hy, (657, kLR NLRY = 0,(1).

Step 3.1
Let lo(0) = E(o,0,) [[(0)]. Invoking Lemma 8, we have

SUPgco

1
ELn(e) — 10(9)‘ 2o (22)
(i.e. uniform convergence). Moreover, for all € > 0, we have that

10 (0.0.) > supge, o g, of6) (23)

(i.e. well separated maximum), which follows from the fact that 6 = x = 0 is the unique
maximizer (note that (1 — ) > max{|d|,||}), lop(@) is continuous, and O is compact. Hence, we
have that (627 kL) = 0,(1) by virtue of Lemma Al in Andrews (1993).

Step 3.2

hn(051) = O, (1) follows directly from Step 3.2.1 and Step 3.2.2 below.

Step 3.2.1

We first show that n (1 — ArLLR)z (5£R)8 = Op(1) and n (1 - AﬁR)z (/ﬁﬁR)4 = Op(1).
contradiction, assume that either n (1 — /\ﬁR)2 (5{;R)8 # Op(1)orn (1— /\ﬁR)2 (/ﬁﬁR)4 # Op(1),
so that there exists € > 0 such that for all M it holds that Pr(A4,) > € i.o., where

I 1 LR\ (sLR\4 L 1 LR\ (,.LR\2
An:{288n2 (1= M) (527t > b o { bt (0o ARy () s )
Since Hzp/+/n and Hyp/y/n are Op(1), there exists M; such that Pr(B,) > 1 — e/4 for all n,

H. H
Bn:{ \/37;:<M1}ﬂ{ 47’: <M1}.
Next, let 7,(0) = LR, (0) — LM, (6). Since k=% §L% and r,(0L%)/h(0L7) are 0,(1), with

where
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positive £ < 1/3, we have that Pr (C,,) > 1 — ¢/4 ult., where

’I“n(eLR)

n

i (07:7)

Cp = {|kER] < &, |6EF < €} n {

<§(2;8>2}.

LR in the same way as we,, but with the parameters \,, x, and J,, replaced by

Let us define wy

MR GLE and 6LE | respectively. In addition, let

D, - {|w A < b mase[nd (1 - ALR) (857)" 20t (1 ML) (sER)] } ,

E,= {n% (5£R)4 > 202 (f@ﬁR)Q} and F, = {|wy R < Jwld |}

Then, we can show that for all M,

Pr(A, N B, N Cy) > Pr(A,) + Pr(B,) + Pr(C,) — 2 > % io.,

where the first inequality follows from Pr(ANB) > Pr(A4)+Pr(B) —1, and the second inequality
follows from the lower bounds of Pr(A,,), Pr(B,) and Pr(C,,) derived above.

In addition, let M > M; /¢ and consider A,, N B,, NC,, N D,, N E,,. We next use Lemma 9 to
show that A, N B, N Cy, N D, NE, C {LR(65%, kEE ALF) < 0} = 0. To do so, let us check all
the required conditions. First, notice that |Hs,//n| < M; and |Hyp/+/n| < M are satisfied
on B,. Second, we can easily check that

M,y
wi| > —= and [wf| > wg|

3
because
n (1= ALR)? (KERSLR)? = pa (1 — AER) (5ER)? na (1 — ALR) (5LR)°

LR
_ {8102” +g 1— )\ﬁR + ()\ﬁR)Q]n%(l _ )\7LLR) (553)4} (24)

n )\LR ((5LR)
R 11 LR LR\4| 1 LR LR\?
[ 16\w2 \+6nz( =A%) (6, )]Tw(l—/\n ) (6;7) (25)

11 n (1 — ALR)? (sLR)®
o R I et KL EY

where (24) follows from the definition of w’, (25) follows from the bound of A:¥, the first
inequality of (26) is a direct consequence of combining D, with E,,, while the second one follows

from the definition of C,,.
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Then, we have

L. \LRy [(sLR\%
1nz(1— A, )(5n )
4 3¢
> > g

1 4 ..
> g (1= A7) (027) = g (i)

>

LE| — AR
2

1 LR\, .LRsLR
‘wln nQ(l_)‘n )K’n 5n

where (27) follows from (26), (28i) follows from combining A, with F, and M; < M, while
(28ii) follows from combining D,, with E,.
Next, we check that 7, (X%)/ (wlLR)2 < & thanks to

n

nt (1 - XER) (o17)"

‘n%u—AﬁR)ngagR > i > n3(1 - ALR) (5LR)* (29)
1. VLR (sLR\% 1, YLRy(,LR\2
byt AN GO A AD O g ey,
3¢ 3¢
(30)

where (29) follows from (26) and £ < 1/3, and (30) follows from the definition of E,, and £ < 1/3.

Thus, h, (057 =n (1- )\,I;R)2 (f@,f;RéﬁR)Q and, as a result,

2 2
ra(08%) | | (0™ ha(05™) | | ra(65) [0 (1= AZT)” (s 65")
2|~ LR 2|~ LR 2
(i)™ (027 (wif) fin (0777) (wi?)
1\* 4
< — | —== 31
“(s) s < o
where (31) follows from the definitions of C,, and w’®. But then, we have that LR(0%%) < 0

conditional on A, N B, NC, N D, N E, by virtue of Lemma 9, and consequently, that 4,, N B, N
C,.ND,NE,=0.

Consider now A, N B, NCy, N D, N ES. We can use Lemma 9 again to show that A, N B, N
Cn N D, NES C {LR(OL™) <0} = (. First, notice that |Hs,/v/n| < My and |Ha,,//n| < My

are satisfied on B,. Next, we have to check that |wlf| > M;/¢ and |wEE| > |wkE|. To do so,
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notice that

(1 M) (SR 2 k() ()" (- AE)? 2)

3 36

>n2 (1 — )\ﬁR) (/{ﬁR)2 (1 - )\ - )\2) (33)

by am gm0 L

> nz ( )\LR) (ﬁﬁR) 36 (34)
1 1

< (3 (=) ()7 — 2o

> an (1= M) (1)’ g12 (35)

where (32) follows from the definition of C,,, (33) follows from the definition of w&f?, (34) follows
from the bound of A:%  and (35) follows from combining D,, with EC.
Then,

(1= ALALR 1203 (1 — AER) (w29)? 1
|wh! \_—) n5£6L324m( ZMH”) > ona (L= M) (E7)°(36)

>M > (i)

, (37)
> Jwi"| (i)

where (36) follows from (35), (37i) follows from combining A,, with Ef, and (37ii) follows from
combining D,, with E°.

To check that r,(05%)/ (w{’f) < &, let us write

Zn%(l — \LRY (K;ﬁR)2

n%(l — ALRyLRGLE| > ¢ > n%(l ALR) (mﬁR)Q (38)
1 2 1 4
nz (1 — AL LRSLR 2n2(1 — A;;?R) (k™) s (1- ArLé_R) (5:")
> nE (1 - AER) (a5R)* (39)

where (38) follows from (35), and (39) follows from the definition of ES. Thus, h,(#L7) =

n (1 — )\,,LZR)Q (/@,,LZR(%R)Z and, consequently,

(HLR) n (1 . )\LR)Q ( LR(;ﬁR)Z
(whE)® (whft)®

where the last inequality in (40) follows from the definition of C),. By Lemma 9, we have

n (HﬁR)
ha (057

<&, (40)

‘ (Ar)?

LR(ALT) < 0 conditional on A, N B, N C, N D, N ES, and thus, A, N B, NC, N D, NES =

Consider now the case A, N B, N C,, N DS N F,,. We can use Lemma 9 once again to show
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that A, N B, NC, N DS NE, C {LR(OL®) <0} = 0. Noticing that |wlF| > M > M;/¢ is
satisfied by combining A,, with D¢ and F),, and that |wEE| > |wl | is satisfied by F),, we have

to check that |r,, (L%)/ (wlLf“)2 | < &. To do so,

Tn(eaIzJR)

(whr)*

Tn(eﬁR)
ha(077)
max {1, n (1 — )\7LLR)2 (mﬁR)4 , 1 (1 — )\ﬁR)Q (5,];R)8 1 (1 — )\TLLR)2 (/{,LLR@LLR)Q}

(wh)*

(41)

X

max { (288ugF)” , (2wbR/AER)*}

(wh)”

(42)

where (41) to (42) follow from the definitions of D¢ and w;. By Lemma 9, we have that

LR(6ER (LR \LEY < ¢,

n '''n r°'n

conditional on A, N B, N C, N DS N F,, and therefore A,, N B, NC, N DS N E, = 0.
Finally, consider the case A, N B,, N C,, N D¢ N Ff, in which

ha(0LR)  max {n (1= AERY? (BB (1= ALRY? (65R)® (1 — ALFY? (ﬁgRagR)Q}

(whf)® (wh)’
max { (288u§f)? , (1wbR)*}
<

- (whr)*

<124 x 4, (43)

where the first inequality in (43) follows from the definition of D{ and the second one from the

definition of F°. But then,

LRn(eﬁR) HS,n wﬁ? H4,n 1 (wﬂ?)2 Vi + Tn(eqlmlR)
2 = 2 LR '3 2 V4 2
(w52 Vi (whh) Vi wg, (w5?) (wg™)
M1 M1 TH(QLR) 4
<2— 42— — —n 12 4 44
<2297 Vi R (017 x 12% x (44)
<4E-Vy+£<0, (45)

where (44) follows from the combination of A, with By, DS, F¢ and (43), and (45) follows from
the definition of C}, and V; = 24.

To summarize, we have A, N B, N C,, = 0, which contradicts

Pr(A, N B, NCy) > = io.,

[\eN e
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as desired, and thus, n (1 — )\7LLR)2 (6,LZR)8 = Op(1) and n (1 — ATLLR)2 (I{LR)4 = Op(1).

n
Step 3.2.2
Next, we will show that n (1 — AﬁR)2 (5TLLRK7LLR)2 = Op(1), i.e. that for all € > 0, there exists

M > 1 such that Prln (1 — )\7LLR)2 SLRGLR2 M| < € ult. To do so, notice that

ra(OEF) = 0p[hn (057)] = op[max{1,n (1 — ALR)? (657xER) %)

because n (1 — A2R)? (§58)® = 0,(1) and n (1 — ALF)? (kEB)* = 0,(1). Letting 0 < m < 173,

n

we have that
167, (AL

Pr 3 5
max{1,n (1 — )\ﬁR) (57€R/€7%R) }

In turn, given that H3, /v/n and Hy,/+/n are Op(1), there exists M > 1 such that Vn,

> 2m> < % ult. (46)

H4,n 2
3 Vs € (ﬁ) 2 €
Prl——>M(—=-2 - P M —. 47
r[\/ﬁ_ (2 m>]<4and r o, >m <3 (47)

We then have that Pr (|w{’f} > M) is equal to

= Pr [{Julf] > M} 0 {LRO) > 0)]

LME(OL®) | ru(057)
LR n\n n\"n
b (] > 200 { S+ T 20

vt (8o} (80 )
e ot > a0 {25+ > 0o [ | 27"}}
2

LR 1 H4,n 1 H4,n
Hypn 1 V3 V4(w2n ‘Wﬁ) W(ﬁ)

<Pr [{|wlB > M}n — - = + +m >0
} In ‘ NLD wILf 2 2(w1Lf)2 2(w1Lf)2
4P ra(0n”) >m4
2
(w.F)
2
LR 3,n r|V3 Hi, 1 €
<Pr ({\wln | > M}m{ |5 T gy (wf,{?)z }) +3 (48)
2
3 V3 Hi, 1 €
<P s B gy - A = qult. 49
4 = (2 2muﬁ)+2u’ (49)
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where (48) uses (46). In addition,

<P Hi, 1 . H}, —r?
(49) ' m_QnWW 2nV4_m
H?2 1 H?
3 . 4n L 4,n 2
(2 m 2nV4M2>}m{2nV4>mM} *

V3 HZn 2 €
<Pr — =2 P —
[\/ﬁ > <2 mﬂ—i— r<2nv4>mM —|-2

S At (50)

where in (50) we have used (47).

Step 4

We now show that LR,(05%) = LM2(0EM) + 0,(1), that is, that Ve; > 0,Vea > 0, there
exists IV such that for all n > NV,

P (|LRy(05%) — LMI(OEM)| < e1) > 1 — €.
Letting

n

nd (1= NER) (0FM) " Ind (1= AER) 65M kM), na (1= AER) (nEM)Y

G = {n¥ (1= AER) (05F)", 1n% (1= AER) OERRER|, nd (1= ALR) (kER)?,

we know that max {G,} = Op(1), so that for ez > 0 there exists M such that for all n,

Pr (max G,, < M) >1—%2. (51)

LettingA:{Ge@:n% (1-X)6* < M, %(1—)\)H2§M,’n%(1—)\)5/ﬁ)| < M}, we can then

show

sup | LR, (6) — LME(0)| = o,(1),
fcA

i.e. there exists N such that for all n > N, we have that

Pr (sup [LR(0) ~ LMEO) < ) > 1- 2. (52)
fcA 2

To show this, let

(Ony Kny An) € arg max |LR,(0,k,\) — LMZ(0,k, A)|.

(6,k,N)EA

31



Given that n2 (1 —\) 02 =0,(1) and n? (1= X\,) K2 = Op(1), we have 6, k, 2 0, whence

n

sup |LRy(0,k,A) — LM (8, k,\)| = |LRn(6n, Kny An) — LM (0, in, An)| = 0p(1),
(6,k,\)EA

where the second equality follows from (11). Therefore, for n > N we have

Pr( W(O5F) — LME(OEM)] <€)
Pr ({|LR, (65" LMg(egM)\ <ea}n{otf e A} n {05 e A})
<{sup |LR,(0) — LM2(0)| < 61} N{o:t e A} n {05 € A}> (53)
0cA

>Pr <Sup |LR,(6) — LM2(8)| < 61> +P ({05 e A} n{0EM € A}) -1 (54)
0cA
€9 €2 1

1= 415 -1=1-e, (55)

where we have used Pr(E; N E2) > Pr(E1) + Pr(E2) — 1 to go from (53) to (54), and (51) and
(52) to go from (54) to (55).
Step 5

We consider the different cases separately in Step 5.1: P = P, 1, Step 5.2: P = F,2 and
Step 5.3: P = P, 3.
Step 5.1 We have that

1 H3,\> 1 [H3,\? 1 Hio\? 1 [Hyn\?
LM;LL((S:'KL’A)__‘/{%<7U111_ 3’> +< 3’> _‘/;1<UJ271_ 41) +< 47> )

where
1 1 1— 2
wy = =5 (1= MMk and wy = A1 — A\)v/n <8m2 — 26”54> .
Next, let wo; = @\/’EKP and wyy = —%\/ﬁ(ﬂ We first aim to find an upper
bound for LM%(#%M). In that respect, we can easily show that
H2 2
LM (OEMy < Z3m 4 Z4n 56
n(0p7) < s v, (56)

Second, we aim to find a lower bound for LM(#LM). To do so, let A =1/2,

1
2n—%( 2H4”>4 it Hyp <0

g /3 e i Hyp > 0

n 4
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and

1
o)) [ (C8)" it i <0
4sign(H3’n)n_i %}\I}lﬁ" if Hyp, >0

It is then easy to verify that (J), k%, A\;) € P, with probability approaching one, whence

n»t'nl 'n

2

H? ~ HZ,
LM (07M) = LM (87 1y An) = —22 4 — + 0p(1). (57)
3 4

To verify the second equality of (57), we can easily check by hand that

o 1 *\ | x x 1 H3,n
wy = —2(1 — XN NNSE K = AV
1
* * 1 -1 4 H37n 2 12 H4,n 5 _ .
w§1 — M\/ﬁ(lﬂ*)z _ 351 4 (73 T ) / (—W7> = Op(l) if H47n < 0,
8 1 Han )
Vi \}l'r’? if H4,n 2 0.
I € S L A S G [ et
Wi = 5 Vi(s;)!
1 Han )
_1 Hs Han )
R <_ vi v /\/ﬂ) =o0p(1) if Hyp >0

with
" . 1 Hy,
U)2 = w21 +w;2 = E \/ﬁn + Op(].).

But then, (56) and (57) imply that

. Hg, Hi,
LMZ (05M) = v + 0p(1).

Step 5.2: Recall that ©y = {# : X € [1/2,1],0 € [-4,],x = (2X — 1)6%/3]}. Then, given
that = = (2\ — 1)6%/3, we will have

(= IMNA=D) g (L= X))

_ 1 _ 2 4
wy = 5 - (=1 —2X+2)%) /nd*.

that wy < 0 for 8 € ©5 so that

As before, we first aim to find an upper bound for LM®(#%*). In that regard, we can notice
1 (Hz,\?
IMOEY, M) < o (2] s

v, < 1 H4,n>2+ 1 <H4,n>2
= Vi (wy — — =
s\ Vi) umer-| U7 Vava) Vi\m

H3n2 1 H4n2
: — 2 1|[H 0].
() +5 () 1ma<o
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Second, we aim to find a lower bound for LM%(#LM). For that purpose, let A € (1/2,1),

1
—sign(Hz )2~ (_BHM) Y i Hyp <0
1

Va /n
5;: == 1 LHS,n 3
_1 Va n .
—n 6 m;\%;\m lf H4,7’L Z 07
and .
ign(Hs p 3 3n
T+n 3 T 3’;‘/3 v if Hyp <0
* 4,n \ 4
An = 2(-#7)
A if Hyp >0
We can then verify that
= — _ 1
wy 6 \/ﬁ<5n) V3 \/’Tl +0p( )7
1— A"
wy = T2y ox ooV
B T op(1) if Hy,, <0
= 4
(1= I 72\ -1 1 6 H3 n]3 .
= (—1 — 2\ 4 2) ) n_s [(1_5\):\(2;\_1)73 \% =o0,(1) if Hyp > 0.
As a result,
H? H?
LM (O5M) 2 LM, k0 A3) = P2+ D o < 0]+ 0p(1),
whence ) )
H H
LME(OEMy = =30 4 A, <0
n( n ) n% + nV4 [ 4n ]7
as desired.

Step 5.3: Recall that ©5 = {9 : X\ € [1/2,1],§ = 0,5 € [—k,R]} and P,3 = {(J, K, \) :
(6,6 — (2A —1)6%/3,\) € ©%, max{|d], x|} < 1 — \}. Exploiting the fact that § = 0, we have

1
w; =0 and wg = §>\(1 — MVnk?.

Thus,

1 Hin\2 1 [(Hin\?
LM =V, _ )y ()
n(é’K’)\) ! <w2 L4 \/ﬁ) [4 ( \/ﬁ>

Next, we first aim to find an upper bound for LM2(0LM). Tt is easy to see that wy > 0 for
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f € O3 so that

LMy (M, w7 A5M) < sup
weERT

e ) e ()

‘;4 (?) 1[Hyy > 0].

Second, to find a lower bound for LM&(6LM) let X = 3 and

0 if Hy, <0,
K =

n _1 [2Hy, .
4n~1 Vavin it Hy, > 0.

*

As a result, wi = Vi}fﬁl 1[Hy, > 0], whence

2
LM(OEM) > L M0, k%, N =

iV

nl[H4,n Z 0]7
nvy

as desired. (]

Proof of Lemma 1

By Theorem 10.2 of Pollard (1990) (see also Andrews (2001)), \F 2 di(,1)=G()if() B
(the set within which the index lies) is totally bounded, (ii) the finite dimensional distributions

of le 73 (., 1) converge to those of G(.), (iii) {le " 6>\ (,1):n> 1} is stochastically

equicontinuous.
(i) is satisfied because 8 = (6,K) € B = {(6, K):(6,k,1) € Pyy and /6% + K2 > e} and B
is compact.

(ii) The process % (.,1) is ¢9d with mean 0. Moreover,

E sup
BeB

55 (1) <o 59

Indeed, the absolute value of the score involves a constant, a linear combination of |y;| and y?,
and finally an exponential term. By the definition of B, we cannot have § = 0 and k = 0
simultaneously. Below, we use the notation y for y; while » denotes x — /3. As x and § belong

to compact sets, so does 5. Hence, we can write s € [—3¢,%]. Moreover, 1 —e¢ * <1—e % <1
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and

! L p WP _ e [ 10 =€) o ¥ _&
\/676}{1) [2 {y e = e exp 5 o y°| exp o exp 5o

IN

o305
< exp [; (1-e%) yz] exp (Jy| e* |3])

9" () (59)

Note that E[g* (y)] is finite because 1 —e™* < 1. So we can major

% (B, 1)‘ by terms which
do not depend on 8 and have finite expectations.

By (58), the martingale difference central limit theorem of Billingsley (1968, Theorem 3.1)
implies that each of the finite dimensional distributions of ﬁ > % (., 1) converges in distrib-
ution to a multivariate normal distribution whose covariance matrix is characterized by (7).

(iii) Let vy, (8) = ﬁ > % (8,1). A process v, () is stochastically equicontinuous if for all

€ > 0, there exists ¢ > 0 such that

mn—wop sSup ‘V'rz (61)_7/71 (ﬁQ)‘ >e| <e.
181 —B2ll<e

To establish that the process v, () is stochastically equicontinuous, we use Theorem 1 of An-
drews (1994). First, we use the notation f for v, (8) = ﬁ > [ (yi, B) and show that f belongs
to the type II class of functions defined in Andrews (1994, p.2270). This is the class of Lipschitz

functions in 8, which is such that

|f(751) - f(>52)’ < M() Hﬁl - 52” ) for all 61762 € B

But

e*? — et

2

+e #2/2 exp {

F(051) £ (0.62) —elep {7 - o+ o)

N | =

W (y+ 62>2e—”2]} (62— 80)y

2 52_52
+ (6%1 _ 6%2) % + (122)(3/2 — 1).

Using the mean-value theorem, we have

€2 — &1 = € (357 — 1)
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where 7 lies between s and s. Hence, |€2 — e*1| = € |300 — 501| < €7 |59 — 3¢1|. Let

909) = e {17+ 07 |

The mean-value theorem gives

9(u.6) =9y 8y) = ;[ (y+8)2—1} 9(y,B) (1 = 522) = (y+38) e (9, ) (61— 62)

171 5 - — .
980 =g )l < 5 [ (v + 21yl ] + b)) +1] 9" 0) o — 2]

+ (lyl + [8]) €¥g* (y) 161 — b2/,

where E = (5,/%), 6 is between d; and o, and ¢* is defined in (59). Note that |0; — d2| <
181 — Bs|l and |21 — 35| < ||B1 — Boll. Hence, f is Lipschitz with M (y) = co + c1y + c2v® +
cs |yl g* (y) + cay?g* (y) for some constants co, c1, 2, c3 and c4. Now, to apply Theorem 1 of
Andrews (1994), we need to check his Assumptions A, B, and C. Specifically, Assumption A: the
class of functions f satisfies Pollard’s entropy condition with some envelope M. This is satisfied
with M = 1Vsup |f|V M(.) by Theorem 2 of Andrews (1994) because f is Lipschitz. Similarly,

Assumption B:

n—oon,

1 _
lim — ZEM2+“ (yi) < oo for some v > 0.
(2

This condition is also satisfied because y; is a standard normal random variable (r.v.). In turn,
Assumption C: {y;} is an m-dependent triangular array of r.v’s holds because {y;} is iid. Finally,

stochastic equicontinuity follows from Theorem 1 in Andrews (1994). O

Proof of Proposition 3

Expressions (a) and (b) are direct consequences of Lemma 1 and the continuous mapping
theorem.

In turn, expression (c) follows from Andrews (2001). To see this, we need to check the
assumptions in Andrews (2001), whose notation is such that 6 is our A and 7 is our (9, k).
Let I; denote the log-likelihood of y;. Note that A 4+ (1 — A)exp(») < 1+ exp(3) and 1 +
AM1-=N)62<146%/4<1 +3°. As a consequence, o} > [(1 +32) (1+exp(32))]~! > 0 and
% > exp (—7) [(1 +S2) (1+exp ()1 > 0.

To verify Assumption 1*(a), it suffices to apply the uniform law of large numbers (see Lemma

2.4 of Newey and McFadden (1994)) which holds because {l;} is iid, continuous in both A and
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B = (0, k) with probability one, and

1 1
E sup |;(B,N)]< sup In -+ — ¢ < o00.
Ae[0,1],8€B A€(0,1],8€B V2moy V2mos

Moreover, the limit ). 1; (5,A) /n is E[l; (8,\)] = (B, ), which does not depend on /5 when
A=1.

To verify Assumption 1*(b), we need to show that [ (8, A) is maximized over [0,1] at A\g = 1
for each 3 € B. By the properties of maximum likelihood estimators (see Theorem 2.5 of Newey
and McFadden (1994)), it suffices to check that P [l; (8, \) # l; (Bg, Xo)] > 0 for any § # 5, and
A # Ao = 1, which is true here.

Assumption 22" (a) is clearly satisfied for O = (1 — ¢, 1).

As for Assumption 22 (b), it is easy to check that I; (3, \) has left and right partial derivatives
with respect to A on ©F, V3 € B.

Regarding Assumption 2% (c), we can show that for all 7,, — 0,

1= [ 82 02
=S [Wli (8,A) = 532 (6, 1)] || = 0pg (1)

sup

AE[OJ]:H)‘_IHS"/W, n

=1

where X5 = opg (1), implies that supgc g || Xng|l = 0p (1). This condition is tedious to check
but does not raise any special difficulty, so the details are omitted.

Assumption 3* holds by Lemma 1. Assumption 5 is satisfied for B,, = b, = v/nand A = R™.
Assumption 6 holds because R™ is convex.

Assumptions 7 and 8 hold with Ag = R™ and with the fact that 8 (in Andrews notation)
corresponds to our A, and (J,%) (in Andrews notation) is absent in our setting.

Assumptions 9 and 10 are satisfied. Assumptions lo and 4o hold trivially because the
restricted estimator is A = 1 and therefore not random.

By Theorem 4 and the remark at the bottom of p. 719 of Andrews (2001), it follows that
LRy = LMy, + 0, (1). O

Proof of Proposition 4
Overview of the proof

In this part, we find the score-type test statistic that is asymptotically equivalent to

2 | sup Lp(0) — L (0, , 1)
feP,
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where P, satisfies that (0,0,1) € P, C ©1. Notice that in the following proof we use P, as the
parameter space, but we could, if necessary, replace P, with B, for k = 1,2,3. For 0 € B,
define

LR, (0) =2[L,(0) — L,(d,k,1)]

and for 6 € P,\{(0,0,1)}, let

2 OLn(6,k,1)
LM;(0) = T on VA1) V@ Rn(x - 1)?,
2
Vi(0,r) = E (W) ] .

We will show that the LR test statistic is asymptotically equivalent to the following score-type

statistic:

. 2
sup LRo(0) 1 sup (min {0L, (9, k,1)/0\,0}) T 0y(1)
0eP, T §,k:(8,1,1) P\ (0,0,1) V (0, k)

The LM statistic is usually constructed based on the first two terms of the Taylor expansion.

A third-order Taylor expansion of /() gives

ol(d,k,1)
oA

10%1(8, K, 1)

1 9%1(8,k, \)
A =D+ 5% N

16, k,N) —1(6,k,1) = (A—1)2+ FTRrY (A —1)3.

It is then easy to verify that 0l(d,x,1)/0N = 0 at (§,x) = 0, which confirms the singular

information matrix problem. Moreover, the limit

) ol(0,k,1)
lim
6.6)—0 \/V(0,k)  OA

does not exist because its value depends on the direction of (J,x). One way to circumvent this
problem is to normalize % by a function of (6, k) and further reparameterize the model.

To be more specific, for 62 4+ k2 > 0, let

_ L1l _
n—max{ 365 35 25/1 }(1 A), (60)
T = max{ %54 — %/12 ,';55 }, (61)

min {|50" — 32|, | 0n]}
mas ([0~ 7] [San]}

m =

(62)

Note that 7 > 0 if and only if 6% + x? > 0. Additionally, we can normalize the score by 7 as
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follows: if ‘3—1654 — %52‘ > ‘%5/@‘,

l 1 1 1 1
;ii% Tla(%;,) = sign (3654 — 8ﬁ2> h4 + sign <25m> hsm,

and if |§=0* — 12| < |16k,

1(6,k,1 1 1 1
;i_% Tla(a’;’) = sign <3654 — 852> ham + sign (25/<;> hs.

To further simplify the notation, we also reparameterize from 60 to d = (n, 7, m).
To guarantee that there is a one to one mapping from 6 to d, we further partition the

parameter space into the following sets. Let

1 1 1
Al(): {(6,H,A) GPb: ‘25/&7 S ‘36(54—8:"4?2 ,62+52>0},

8
A30:{((5,ﬁ,)\)EPb:ﬂ20,52+ﬁ2>0},

1 1
A20:{(5,/€,)\)6Pb:3654_5220,52+/€2>0}5

Aso = {(6,k,)) € Py: 3> 0,6+ &% >0},
Define A;; = B\ (Aio U {(0,0,1)}) and let
{AY, A} = {0 Ay, (. da) € {0,131}
It is easy to see that
05;1}13)}) LR, (0) = max eseu/lx)k LR, () and 98;1]1% LM () = max eseujz LM®(6).

As a consequence, it suffices to consider the asymptotic equivalence between supyc 4= LRy, (0)

and supge 4» LM, () for each A*. Let
DF = {d = (n,7,m) : there exists § € A* such that (60)-(62) holds} .
Similarly, let

Ak = {(5, k) : there exists A such that (J,k,A) € Ak} ,

Dk = {(7’, m) : there exists n such that (n,7,m) € Dk} .

By Lemma 5, there is a one-to-one mapping between 6 € A¥ and d € D,
We will show below the asymptotic equivalence of supye 41 LR, (0) and supgc 41 LM, (6) for

Al = ﬂleAio. The proofs for the remaining 15 sets are very similar, so we omit them in the
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interest of space. With a slight abuse of notation, let d(7,m),x(7,m),\(n,7,m) denote the
value of d, k, A for given (n,7,m), and let n(d, k, A), 7(d, k), m(J, k) denote the value of (n,7,m)
for given (0, k).

For (1,m) € D}

T™m?

let

Gl(r.m) = -1 OLn(O(T,m), 5(7,m), 1)

NG oA ’

so that

. 1
lim Ga(r,m) = ﬁ(fﬂ + mHs).

Finally, let

LMg("% T, m) = 2gg<77 m)\/ﬁn - V<Ta m)nnza

LR%(n,7,m) = LR,(6(r,m), k(T,m), X(,7,m)),
There will be four steps in the proof:
1. For all sequences of (1,,, Tn, mn) € D and n,, 2 0, we have that
LR 0y Ty M) — LM (1, Ty min) = 0p ().

2. {Gd(r,m): (r,m) € D}, } is Donsker.

3. We prove that

. 2
sup LRZ(d) = sup LM;f(d) +o0p(1) = sup (rmn {gff(T,m),O})

+ op(1).
deD? deD? (r,m)eDt,, V(4 k) P

4. Main theorem (combine results for the 16 sets and go back to the (4, ») space)

1 (min {0L, (3, ,1)/OX, 0})?
sup 2 (£, (9) — £,(0,0,1)) = — su
52, 2 (Ln(9) = Ln(0,0, 1)) = 2, oup V (5, )

+ 0p(1).

Step 1

Lemma 2 Let R%(n,7,m) = LR (n,7,m) — LM%(n,7,m). For all sequences of (1,,, Tn,Mn) €
D' and n, 2,0, we have that

Rflz(nna Ty M) = 0p (nn%) .

Proof. Let 0,, = 0(7n, mp), kn = K(Tns Mn)s An = A0, Tn, My ). First we show that 1— X\, 0.
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Recall that 7, = max{‘g)—%éi — 1k2|,|36nkn|} (1 — An), whence either (1 —\,) < /7, or

1 1
max{ %(ﬁ — gﬁ%

1
,'2(5,1&” } < /M- (63)

Under (63), we have

1 1.,\? 1 1 2 1.,\? 1 1
2n > <365i - 8/@%) + Ot = <366i§> + <8mi> + J0nmn (1 = 365,%> . (64)

It is then easy to verify that given (63), 1 — %5% > 0 with probability approaching 1. Therefore,

1 2 1,)\2
o > [ —o? ~ K2

=10,| < 2578303, |k, | < 2744,

(64) implies that

and also, that 1 — A\, < max{|0,|,|kn|} < max{25/8\/§77,1/8, 27/47771/4} because of the restriction

on P,. In sum, it holds that
1 - An < max {25/8\/377}/8, 27/4pL/4 77,1/2} LN}
Second, a third-order Taylor expansion gives

1
iLRgz(nm Tn, mn) :LZ(%, Tn, mn) - Li(oy Tn, mn)

:Ln(5n7 Rn, )\n) - Ln((sn; Rn, 1)
102 Ln(6, s 1)

_ OLp(0n, kn, 1) 2
1 33Ly (O, by An) 5
3! N3 (An = 1)%
The first term is
0Ly, (0py Ky 1) 1 1 0Ly(6p, kin, 1)
o D= Ve =)

= Qg(Tn,mn)\/ﬁTn()\n —1).
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In turn, the second term will be

2
} 18 Ln(5na Rn, 1) )\ o 1
2 n 22

{E [82 (On, fon, 1 } +0, <\T/%> } n( Ay — 1)2 (65)

1
T2
% [a : %Hm ] n(An = 1)? + Op[v/nra (A — 1)%]
— L [T 2‘9 l 5’“ ik )] 7% (A — 1) + O [V/ir (A — 1)7]
(66)
- _évd(Tmmn)nT?z()\n - 1)2 + Op[\/ﬁTﬂ()‘n - 1)]? (67)

where (65) follows from Lemma 10(10.1); and (66) to (67) follow from the information matrix
equality.

Let us now turn to the third term. By Lemmas 10(10.2) and 10(10.5), we have

1 1 O3L(0n, Kny An) 1 | 0Py By An) 1
- Z NI Ty T p | _
nTn N3 Tn N O\ 7
1
= O(Tn) + Op (\/ﬁ) s

whence

1 63L 5n,/€n,5\n 1
n(mg)nw ~1)° = [OW O (\/ﬁﬂ n7 (A — 1) = oplnr (An — 1)?).

In sum, we have LR(0y,, fin, An) = LM (6p, Ky An) + 0p (nn%) O
Step 2

Lemma 3 For (7,m) € DL, G4(1,m) = G4(r,m), where G4(7,m) is a Gaussian process with

mean 0 and covariance kernel

Kl(rm), (', m")] 1 {Bl[é(r,m),n(r,m),l] al[é(r’,m’),n(r’,m’),l]}. (68)

(3D ’ (D)
Proof. Here we follow Andrews (2001). By Theorem 10.2 of Pollard (1990), G4(-) = G%(-)
if (i) the domain of (7,m) is totally bounded, (i) the finite dimensional distributions of G%()
converge to those of G4(-), (iii) {gd in > 1} is stochastically equicontinuous.

(i) is satisfied because (1,m) C [0, o'+ R2 4 3,‘.;] x [0, 1].
1 9l (6(T,m),Kk(1,m),1)
T oA

(ii) The process is 4id with mean 0.
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Moreover,

1 1 1 1
gl s [0 m). s m), >’ B . oo, v, >u .
(r,m)eDL,, IT 2 16]<8, 1| <R2,62+K2>0 (6, k) OA
(69)
To prove (69), consider the fifth-order Taylor expansion of % around (0, ) = (0,0) given
by
., 'j' (9)\8518 J L= _qljl ONDS OKI
i+j= i+j=>5
1 1 0%(0,0,1)
=hy (6 ) + h3 5/€+ Z ﬁ(iij)éz/#
ssisjazis1 o1 0 ONDO'OK
9% (0,7,1 %1 (9,7,1
1 s vy L. s Py
2 u(zj) R +3<A655) ’ (70)
itjmsis1 o1 P OADO'OK
(21000 Freon PR )
ONOK3 ONOKA ONOKD ’
Consequently
1 OL(d,k,1 0%1(0,0,1)] 2 —1_._
6, k) (a; )' < lhal sl D axf(%ia J’) TR
T, K 4>i45>3,i>1,j>1 S
(8], (3, m1)] g
+ e N A At sup (71)
_ {OKJ s s | ONDS® 7(0, K)
it o1 Bl<8 r<r |1 OADE Ok 1518, RI<F )
L (]2*10.0.1)|  {8°1(0.0.1) A+ su 0l (Mal) 2|
NI ONOK Glesmien|  OADR (0, )
It is then easy to check that
1 ]0%1(0,0,1) 0*1(0,0,1) 9°1(0,0,1)
|ha| + [ha| + Z T P 3 1 < oo, (72)
it i ONOSG ORI ONOK ONOK
and 3
851 (5, R, 1)
i+j=5,i>0,j>0 8|<6,|&|<FR OADO' 0K/

For 6% 4+ k% > 0, if k = 0, v 64—7»@2],\%6;{\} = 0, otherwise

2 5 52 1
7(0, k) - 16262 1 s = 1L 712 58 <1 (74)
max{ 36 12 8l QE‘} 3162% 2 %‘ = |%_%’ 7 K2 = 32



Finally,

54_@2 EQ _ _ 2
§6< 07— R ><5<1+25+77> (75)

65
— -
max {|350" — §r2[, |30k]}  max {|350" — g2, |30k}

T

In sum, (69) follows from (71) - (75). But given (69), the martingale difference central limit the-
orem of Billingsley (1968, Theorem 3.1) implies that each of the finite dimensional distributions
of G4(-) converges in distribution to a multivariate normal distribution with covariance given by
(68).

(iii) The process G¢(7,m) is stochastically equicontinuous if for all € > 0, there exists ¢ > 0

such that
lim sup P sup G411, m1) — g;‘f(m,mQ)) >e| <e.
n—00 l(r1,m1)—=(r2,m2)|<c, (T1,m1),(12,m2)€DL,,

In the rest of this section, we keep the restriction (71,m1), (T2, m2) € DL, implicit to simplify

notation. First note that for 0 < ¢ < ¢,

sup
l(T1,m1)—(T2,m2)||<c

<max sup
[(T1,m1)—(r2,m2)||<c;|T1],|T2|<2e1

Gd(ry,my) — gg(727m2))},

Gi(1,m1) = Gil(ra,ma)| (76)

Gi(t1,m1) — Gl (T2, m2)

I

sup
“(Tlvml)_(7_27m2)”§67|7_1 ‘7'7-2'261

whence
P sup Qg(7'1,m1)—gg(7'27m2)‘ > €
[(T1,m1)—(T2,m2)|<c
<P su Gl(1,m1) —Qﬁ(Tzam)‘ >e
l(T1,m1)—(T2,m2)||<c,|71],|72|<2c1
U sup gﬁ(Thml) —92(7277712)’ > €
[|(T1,m1)—(T2,m2)||<c,|T1],|T2|>c1
<P sup gg(ﬁ,mﬂ — gg(727m2)‘ >e (77)
[(T1,m1)—(T2,m2)||<c,|T1],|T2| <2e1
+ P sup g;‘f(n,ml) —Q;‘f(m,mz)) >e€] . (78)
|(T1,m1)—(T2,m2)||<c,|T1],|72|>c1

For the first term in (77), we show that for all € > 0, there exist ¢; > ¢z > 0 such that

P

sup
[l(T1,m1)—(T2,m2)||<e2,|T1];|72|<2e1

Do ™

Ga(ry,m1) — 95(7277”2)‘ > 5] <
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Given (70), we will have that

gi(rmy <3 =5 Hapdn g~ L1 0L (0.0.1) 3
\/ﬁ T vnoT i T ilJl/n ONOS ORI T
R CLD P

N T

i+j=5

where |0] < |8], |&| < ||, and 0, &, 6, & are functions of (7,m) even though we have omitted

these arguments. Therefore,

1 2
o7 |G m) = Glra,my)|

< () Gt oot) - Gt -39} ™

H 1 2
+<\/%> {27'1 d1K1 — 27'2152/12} (80)
L1 aGLn(()vO?l) 2 —1 2
to (17 ) (ot = rstaiel) (81)
1 1 0Ly (9,5, 1) ’ 252 2j 2
+¢+JZ:55|3861,1|E|3@ <i!j!\/ﬁmw> {Tl OT Ry + 73708 s }» (82)

where 01 = 0(71,m1), k1 = k(T1,m1), 02 and k2 are defined in the same way. First, we can

(%) ()

. <1186Ln(0,0,1)>2 _E(1861(0,0,1)>2
iljlv/n ONDS Ok O \dlg! OGS Ok

by the 7id assumption and the zero expectation of these terms. Second, for the terms (79)-

easily check that

E =FE[hf] <oo, E = F[h3] < o0

(82), we can show that the non-random coefficients in {} converge to zero as ¢,c¢; — 0, using

arguments in (74), (75) and Lemma 11. To be more specific, for (7,m) € B!, we have

1 1
4 2) _ -1 41,2\ 11—
i (365 8 1> T2 (365 8" ) 0

1
-1 -1
=71 (51/4,1 — §T2 (52/’%2 =

5 = (m1 —ma)

2

L R
=m18 )T — madh 1/<;j2

R
=T “1_72

15 150 ifi>1
15 -7 2” )
! 2 27 (/ﬁ:l-i-fﬁg) ifi=0
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and the same applies to 71_25%%? . Together with Lemma 10(10.3), which implies that

1 9L, (6,5,1)\> y 2
E sup ( M) — E | sup <Q[Z’ﬂ(5, /@)) < 00,
6]<5,|K|<R \/ﬁ ONO Ok |8],] =]
we can find ¢; > ¢ > 0 such that
d d 2 e’
E sup (gn(Tl,m1) — gn(7'2,’m2)> < OR (83)
[[(T1,m1)—(T2,m2)||<c2,71,72<2¢1
Then Chebychev’s inequality implies that
P sup Qi(ﬁ,ml)—gi(mmz)’ > £
|(T1,m1)—(r2,m2)||<e,|71],| 72| <2¢1
1 d d 2
< —<F sup (gn(Tl,ml)_gn(T2;m2)> <e.
& II(Tl7m1)_(7_27m2)”§07|7—1‘7'7-2‘§2C1
Next, consider (78). Given ¢, we need to find ¢ such that ¢; > ¢ > 0 and
d d €
P sup Go(rt1,my) — gn(727m2)‘ >¢e| < 3 (84)
[(T1,m1)—(r2,m2)||<c,|T1],|m2|>c1

First, we change (7,m) to (8, ) for simplicity. For (7,m) € D, it holds that

1 1 1
— 0> 6t — —kP=1(6,K) > ¢1,0 >0,
36 36 8

1
which implies 6 > \@cf. Moreover, for all ¢ > 0, there exists a cg > 0 such that

T1,M1,T2,M2 m rm - II\T1,M1) — (T2, M2)|| ~C,T1,T2 = C1
( ) € By, x Bl I ) —( )< >

1
C {(Tl,ml,TQ,TTLQ) € Bim X B,}m : H((Sl,/ﬂ) — ((52,%2)” < 03,51,52 > \/écf} (85)

because {(r,m) € DL, :7>c1} is a compact set, and 7(d,x) and m(d,x) are continuous on
this set. Therefore, it suffices to find c¢p such that {gn(5, K):|d] > \/601/4, (0,r) € A%K} is
stochastically equicontinuous. To do so, we use Theorem 1 of Andrews (1994). Specifically, we

use the notation f for G, (0, k) = = > [ (y;,0,k) and show that f belongs to the type II class

n

of functions defined in Andrews (1994, p.2270). This is the class of Lipschitz functions in (4, k),
which is such that

’f ('adlv"il) - f('757 H)’ < M() (|51 - 52‘ + ’Hl - "{'2‘)

for all (51,#1), (2, k) € AL, |61],162] > V6ey .
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Note that

1 0l 1 0l
7'715(7—177711) - 7'725(7277”2) = y2 [D1(7—1751”€1) - D1(7—2’52”€2)]

+y [D2(71,01, k1) — Da(T2, 62, K2)]

+ [D3(71,01, k1) — D3(72, 02, K2)]

- g2
- Tllexp —63’12_&1 (61+9)* + %yQ + %5“{ - %m
1 : 663%_”2 1 1 1
e =Gty gyt G0E - ok
where
Dy(7,6,k) = %T_le“_§ + ;i_z, Dy(7,6,k) = —g,

1 -1 nfﬁ 2
Ds(1,0,k) = —37 e"E =0

so that Dy, Dy and Dj are all Lipschitz in (6, «) for (§,x) € A} and 7 = 7(d,). And for the

last term in (86), the mean value theorem implies that

52 T
es M 1 1 1
= o 5 2 =2 752_7
TleXp 5 (01 +v) +2?J +61 51
1 : % 2 1 1 :
es F
- o (5 2 -2 752_7
+72exp 5 (2+y)+2y +62 512

+ L [1 _ R+ y)ﬂ (k1 — “2)}-

In addition,

1 1 1 1
|71 — 72| = ‘365‘11 - gm% — %5‘21 + gng

= |316 ((5% + (5%) ((51 -+ (52)((51 — 52) - é ("ﬂ + 52) (’%1 - HQ)

- K
< 53\51—52|+Z!/€1—H2!-

O~
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Moreover

1, 1., 1 .
(5‘1‘3/)2‘1‘5?]2"‘652—55 < 9" (), (89)

where
—R

“(y) = exp = (28[y| + 42) + 21 + 282 + LR
g(y)—exp( OB+ 9%) 4 5y 8 SR
Combining (86), (87), (88) and (89), we will have
1 0l 1 0l

;15(71,7711) - ?25(72,7”2) <(g*() + 1) {c1 + calyl + c39?} (161 — 2| + |1 — ral) -

But since

E[(g*(y) + 1) {c1 + ealy| + c39*}] < oo,

f will be Lipschitz with M (y) = (¢*(y) + 1) (c1 + c2|y| + c3y®) for some constants ¢, ¢z and cs.
To apply Theorem 1 of Andrews (1994), we need to check Assumptions A, B, and C. Assumption
A: the class of functions f satisfies Pollard’s entropy condition with some envelope M. This is
satisfied with M = 1V sup|f| V M(.) by Theorem 2 of Andrews (1994) because f is Lipschitz.

In turn, Assumption B:

I -
lim sup — ZEM2+“ (yi) < oo for some v > 0,

n—oo T~
i=1

is also satisfied because y; is a standard normal r.v. Finally, Assumption C: {y;} is an m-
dependent triangular array of r.v’s holds because {y;} is iid. Stochastic equicontinuity of f
follows from Theorem 1 of Andrews (1994). Thus, for given ¢ > 0, we can find c¢p such that (84)
holds.

In sum, we have

limsup P sup Qﬁ(ﬂ,ml) - gg(m,mg)’ > €
n—0o0 [[(T1,m1)—(T2,m2)||<c
<limsup P sup gg(ﬁ,ml) — gﬁ(rz,mQ)’ > ¢
n—00 [I(71,m1)—(T2,m2)[|<c2, |T1],|72|<2¢1
+ limsup P sup Qﬁ(n,ml)—Gﬁ(mmz)’ > €
n—oo [(T1,m1)=(T2,m2)||<e, |T1];|72|>c1
e ¢
<-4 = <g¢,
S;ts s
as desired. OJ
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Step 3

gg T,m 2
Lemma 4 supyep1 LRE(d) = supyepi LMZ(d) + 0,(1) = SUP(r myen?, % +0p(1).

Proof. Since

sup LRZ(d) — sup LMg(d)' < sup sup LRZ(U,T,m) - sup LMg(n, T,m)|,
deD! deD!? (r,m)eDY, . |n:(n,7,m)eD! n:(n,7,m)eD!
it suffices to show that
sup LR?L(U, T,m) = sup LMg(n, 7,m) + op(1). (90)
n:(n,7,;m)eD? n:(n,7,m)eD?

Expression (90) follows from Andrews (2001). To see this, we need to check his assumptions.
Let
14(n, 7,m) = 1(8(r,m), k(T,m), \(n, T,m))

denote the log-likelihood of y; written in d € D'. The null hypothesis is Hg : = 0 and (7,m)

is the nuisance parameter that only appears under the alternative. Let

LRz(ﬁTm, T,m) = sup LRfL(n, T, m).
n:(n,7,m)eD?

To verify Assumption 1, namely 7),,,, = 0prm(1), let Id(d) = E [I%(1, 7,m)]. Invoking Lemma

8, we have
1 1
suppept |~ Ln(d) — zg(o,T,m)‘ < supgee | Ln(0) - zo(e)‘ 20 (91)
(i.e. uniform convergence). Moreover, for all € > 0,
1§(d) > sup, > qea(sn o (d) (92)

(i.e. well separated maximum), which follows from the fact that 7 = 1 is the unique maximizer
(note that (1 — \) < max{|d|,||}), 14(d) is continuous and cl(D') is compact. As a result,
Lemma Al in Andrews (1993) implies that we have 7)., = 0p rm(1).

Assumption 2* holds with By = /n, see Lemma 2. Assumption 3* holds by Lemma 3.
Assumption 4 is implied by Assumptions 1, 2* and 3. Assumption 5 is satisfied for B,, = b, = \/n
and A = R™. Assumption 6 holds because R™ is convex. Assumptions 7 and 8 hold with Ag = R~
and with the fact that 6 and 1 are absent in our setting. Assumptions 9 and 10 are satisfied.
Assumptions 1o and 4o hold trivially because the restricted estimator is 7 = 0 and therefore not
random.

By Theorem 4 and the remark at the bottom of p. 719 of Andrews (2001), it follows that
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(90) holds. O
Step 4
In this step, we show that

1 (min {0L,(8,5,1)/0A,0})?
sup 2[L,(9¥) — L£,(0,0,1)] = —  sup
9co’ Ln(®) ( ) N 9o\ (0,0,1) V (6, »)

+ OP(1)7

where we use the notation L, for the log-likelihood indexed by V, whereas L,, is the log-likelihood
indexed by 6. First, by the results in Step 3, we have

1G(r.m)|?

sup LRL(b) =  sup + op(1).
beBF (rmenk, VT,m) '
Noticing also that
gg T’m ? n 57 2
sup LR%(b) = sup LR,(f) and sup w = sup M,
beBE fe Ak (rmyepr, Vi(T,m) @ ryeak, V(9 K)
we will have that
I.gTL((Sv ’%)J2—
LR,(0) = LR (b) = A 1
o PO} = g e PO =g e Ve W
(Gn (0, 5)]2
= sup —————— + 0,(1).
6.x):01)ep,  V(0,K) P
Therefore,
5, k))>
sup 2 (L,(9) — £,(0,0,1)) = sup LR,(0) = sup (90, %) + 0p(1)
YeP] 0P, (6,k):(8,K,1)EP, V((Sv H)
1Gn(5,50))2

= sup
(0,%):(8,¢,1)€P, V(57 %)

Proof of Proposition 5

To show (8), note that for k; € R,

2 2
, { Gnl(e, kie) J 1 [4k1Hs, — k$Hyp |~
lim | ——% = —
e—0 n

V'V (e, kie) 16k2V3 + kiVy

o1



HinVs which is well defined with probability one. Then, we can write

In addition, let k1 = —4H3,nv4’
Hy V2 H?? HZ ’
— 73 = -
{ 16 HE ,,Va ( T )J

2
(93) . 1 L4k1H3,n - k%H4,nJ7 . 1
on 16kIVa+ KV n L2 Vs (H3. | Hi.
v\ T
1 (HE, HE,
= = : — | 1[Hyn > 0].
n ( ‘/*3 + *‘/4 [ 4,n ]

On the other hand, for ks € R,

Gn(e, B26%)

O Ve, Bae3)

. Hy,V: .
Letting ko = H;"”Vz, we can write
,n

2
H3,7LV4
| Hapn + F27Hy |

(04) = 1| Han+koHzn]Z 1 1
on Va+kVs n HE Vi n yz [(HZ, HZ,
2 Vit gtz Vs yrrwll B vl e
1 (HE, HZ,
= — : — | 1|Hy, <0].
TL( ‘/73 + ‘/4 [ 4,n ]

Then, it is easy to show that with probability 1,

Gn (6, ) 2 Gnl(e, ki) ? Gnle, B26%)
161<3,|k—32/3|<52,|r],5]>0 0

V (9, ») e=0 | \/V (e, ki) Ve, %53)

1 H%,n+HZ,n
o\ v )

In turn, to show (9), note that

Gu(0, ) = jﬁ 21; [(e" = 1) — 1) +2 — 23 (0 7 =)]

1 2v2e " —1
—e+2e“—62"—3>,

V(O’ﬂ):2< er —2

with
gn<07/i) o _H4,n

B Vo Vv
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As a consequence,

2 2 2
sup \‘ gn(707 KI))J > \‘ _H4n J 547711 [H4,n > 0] )

|| <3¢,|k|>0

as desired. OJ

Proof of Proposition 6

(a) By LeCam’s first lemma (see Lemma 6.4 of van der Vaart (1998)), contiguity holds if
dPs , /dPy % U under Py with E (U)=1.
Let L, (8, A) denote the joint likelihood of y1, ..., y, for a given § and A. By the mean value

theorem, we have

18L (m)
3 IN?

aLn (57 )‘0)

2
8)\ (>\n )\0) 9

where X is between Ao and \,. Replacing A\g by 1 and using Andrews (2001), we have

62L 187
Ln(BA) = Lu(B,1)— a(f’ )\/ﬁ;(;)/;

1 0L, 1 1
= Lo(a.) - I a6 ()6 o (1),
Therefore, under Hy,
dP 1 9L, (8, 1
%70’\" = exp { 7 8(5 )p — §var[G (5)]p2} + 0,5 (1)

L. exp{—mmp—;var[GwW}.

Using the expression of the moment generating function of a normal distribution, we have
E (U) =1 and hence (a) holds.
(b) Using the results from (a), the joint distribution of

HB,n H4,n LaLn (ﬂa 1) In dpﬁ,/\n '
i veox U\ TR

converges under Hy to a Gaussian process such that

Vi
0 Va4 .
N 0 ’ c3 cq var([G (B)] : %)
—2var[G (B)]p? —c3p —cap —var[G(B)lp war[G (8)]p
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Let w = x — 62/3 and consider

c3 = covlhs;, 0l; (8,1) /ON] = E[hs;0l; (8,1) /O]
RN A |

which follows because hg; is orthogonal to both hi; = y; and ho; = yiQ—l. Under Hy, y; ~ N (0,1),

it follows that

o{i-menf} - 2]} - A 10w ool 25

_ @/[( ewu—5)3—3( ewu—a)} \/%e%du
= Vew (=6 - 35e* + 30)

if we use the change of variable u = (y + 9) /vev.
Hence, we have cov[hs;, dl; (5,1) /ON] = 8 + 35 (e¥ — 1), and also

__ b o 1[5 (wi+0)?
= \/eTJE (yi 6y; +3) exp{2 {yi =

= —[3¢™ +6¢96% + 0* — 6 (¢ + 6°) + 3]

= 662(1—e”) =0t —3(1—ev)?

by the orthogonality of the Hermite polynomials and the same change of variable as before.

Then, if we denote by (T, In(U)) the limiting joint distribution given in (95), it follows from

H3,n H4,n LaLn(ﬁvl)
Jn JnYmn 0x

in distribution under Hi, to a normal distribution with mean FE(T')+ cov[T,In(U)] and the same

LeCam’s third Lemma (see van der Vaart (1998)) that T,, = ( ) converges

variance V' (T') as under Hy, which proves result (b).

Part (c) then follows from the joint distribution of (If%‘, %) under Hy,, derived in (b).
Finally, the limiting distribution of LM b1 test in part (d) follows from the continuous map-

ping theorem. O
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Proof of Proposition 7

H47n LaLn(671)
Vi Jn oA

To establish the result, we need first to look at the joint distribution of If%l ,

and In fl];f)z under Pp,. It is easy to see that

H3,n
NG 0 V3 .
H4,n
Vn d N 0 0 V4 .
LaLn(Bvl) - () ’
VoA c3 ca  war[G(B)]
2 2
1 3?3” —V32wl — V42w2 V3w1 V4w2 C3W1 + C4wo V3w% + V4w%
0

under Py,. It then follows from Le Cam’s third lemma (see van der Vaart (1998)) that

H3,n

NG Vawy | Z3 3

Ea LN Viws d o v e
ﬁaL%&&l) c3w1 + cqwa c3 ¢ wvar|G ()]

under Fy, . Therefore,

2 2
H3,n H4,n

d
= v Ty e (Vi Vaws).

LM,

as desired. O

Proof of Proposition 8
Constant 1 and o2

We first consider the simple case in which we estimate both the unconditional mean and
variance parameters, say j and o2, respectively, under the additional assumption that they are
constants. Specifically, letting y = Vo2z + p and z ~ MixN(0, 1), we have that the pdf of y is

given simply by

fr(y) = \/10—2fz (y\/g) ;

so that the contribution of observation y; to the log-likelihood, £(u, 02,4, 5, A;y), will be given
by

k— togo? +1 A Lo(v=r )
— —logo“+logd —exp |———= | =—F= —
9 g g ()’TQ p 20_1<2 \/on 1251

where k is an integration constant and

H1 = y Mo = —mﬂl
14+ A1 — N)6?
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*2

1
032 2 = exp(x)0}l.

S NI pr A= Neotg M 7

Subtest in P, We consider the reparametrization in (3) and define

n

1
L, 28 k) ==Y 2 5. kA
(H)O- 9 7’€7 ) n Zz; (,U’a g bl 7’43, )7

with 1; (i1, 02,6, k6, A) = €(pt, 02,6,k — (2X — 1)62/3, X; 5.
To shorten notation, let p = (¢,0) with ¢ = (u,0?) and 0 = (5, k, ). Next, define

LR, (p, 0%, 8,k,)) =2 [Ln(/,L, 02,8, K, \) — Ly (g, 02,0,0, )\)} (96)

and

pEF = argmax  LR(p), pT = argmaxLR(p)
pEPx{0}2x[4,1] pEDPX P

where P can be replaced by P, 1, P, 2, P, 3 as needed, and @ denotes the feasible parameter space

of (11,0%). Then, it is easy to verify that pﬁf = (¢p5 0,0, Anr) with

n

1~ 1
¢n,r = (/‘Ln,r’ O-gz,r) = [n Zyi’ ﬁ Z(yl - :U’n,r)2] ’
i=1

=1

which provide the restricted MLEs of ¢.

Let
1 H 1 H-
by o [ - Hln _ o _—_2n 2 2
EM0(0) =2 (o T ) Vil — o) +2 (o3 ) Vite® = o} (97)
1 2 1 2 2\ 2
—;%W(M—Mo) —mn(a —Uo) )
where

n n
Yi — Ko
Hy, = hi; = Z )
Hyp = Zh% = Z W7
i=1 0

i=1

so that LM(6; ¢,) coincides with (10) if we replace y; with (y; — p)//02. As in the proof of

Proposition 1, we have the following five steps:
1. For all sequences of p,, = (¢,,, 0, Kn, An) With (¢,,, 0, Kn) LN (¢9,0,0), we have that

LRy(pn) = LMy (62) + LM% (6,,) + 0p[h5,(60)] + 0p [ (7)),
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where hf(¢) = max {L.n(u— po)*,n(0? — 08)?} and

h2(0) = max {1,n(1 — A\)26%, n(1 — X)26%k%, n(1 — N)?k*} .

2. For ¢, = (utM,o2lM) € argmaxseq LME?(¢), we have that ¢EM = ¢, + op(1) and
R (GEMY = O,(1); and also define LM = (§EM LM NLMY ¢ aromaxgee LME(6), we

have that (65M kEM) = 0,(1) and R (0LM) = O,(1).

’1 N

3. For pTLLﬁ = (¢EB GLE (LR \LIY ¢ arg maxgeay p LRy (p), we have that

n,u “n,u Ynau nyu

($LR — g, 6LR kERY 2y

and h(pLE) = 0,(1).

4. Then, we prove that LRy, (pil) — LR, (pL%) = LME(OEMY + 0,(1).

5. Finally, show that the test is the same as before, but replace y; by Z—=nr

On,r

Before going into the details of these steps, let us emphasize that the main difference is in
Step 1, which shows that in the Taylor expansion the cross terms (73 defined below) of ¢ and 6
are negligible, and thus we can consider the two parts separately. Step 2-4 are almost the same
as before.

Step 1: Consider a sequence p,, = (¢, Ons Fin, An) With (¢,,,0n, kin) = (¢,0,0). Let

L[klvk%k&kﬂ _ 1 8k1+k2+k3+k4Ln(p)
" kllkg‘kg‘]ﬁ;‘ aﬂk‘l (80-2)k2 857938/1134

n,0
where pn,(] = (¢07 07 07 )‘n) and
A[khkz,k&kd _ 1 8k1+k2+k1+k4Ln(p) B W’
n Y
kalkolkslky! | 9 (902)k2 96%3 9k G i) 961 9rck2

with (@,,, 0, Rn) between (¢, 0,0) and (¢,,, 0y, kn). Consider the following eighth-order Taylor

expansion,

1
§LRn(pn) :Ln(IU’O + Hop s 0(2) + 0'31, 6717 Kn, )\n) - Ln(#o» 0-(2)7 07 07 )‘n)

=T1(0n; $0) + Ton(Pi Bo) + Tan(pni bos 08) + Ap,
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where

Tln( n7¢0 Z L00k3’k4]6k3 k4

k3+ks<8
[k1,k2,0,0 k 2 2\ k2
T2n ¢n7¢0 Z L L ] - MO) ! (Un - UO) )
k1+ko<8
. _ k1,ko,k3.k ki (-2 2\ k2 cks kK
T3n(pn7¢0) - Z LLl 23 4](:un - /~L0) ! (Un - UO) 5n3’%n4)
ki1+ko+k3+ks<8
k1+ka>1, kz+ka>1
_ K1,k ks k k 2 NnNk2 cks k
An - Z A'Ezl 2,ka k) (Mn - :U’O) ! (Jn - UO) 5713’%714

k1+ko+k3z+ks=8

First, we will show that T3, (p,; ¢o) = 0p[h%(0,)] + op[hﬂ(cf)n)]. Specifically, for (ki,k2) €
{(1,0),(0,1)} and (ks, k4) € {(k,0) : E < 4}U{(0,k) : £ <2}U{(1,1)}, we can easily check that

E[ilkrkaskskal (5] = 0 and E{[1lFvk2kskl(p0))2) < oo,

which means that

— 0,(1). (98)

Therefore, we will have that the (ki, ko, k3, k4) term is such that

\/ﬁ 8/‘61 +ko+k3+ka L, (P)
N Guks (9a2)" 9k rka

\/ﬁ 8/€1+/€2+k3+k4Ln (p)
o ouk (902)"2 9t dnhs |

< [V (= )" (02 ao)’”} ok ek
= Op[h¢(¢n)]7

k1.k2 ks k] Kk 2\k2 cks K
L%l 2,k3 4]/‘Ln1 (Un) 5713"4’714

where the last equality follows from (98) and the fact that 6% k¥4 = 0,(1). As for the remaining

terms in T3,, we have either: a) k1 4+ k2 > 2 so that

k:
n (= o)™ (07 — 09)™ SRkt = 0,[h%(8,)], (99)
or b) (ks,kq) € {(k,0): k >4} U{(0,k) : k > 2} U{(k, k') : k, k' > 1}, so that
plvkekabal (4 — ) (02 — o2)* shagks = (i Zg(yi)) n (1 — o) (02 — 02)"

X (1 — Ay )0k ke
= 0ph’(6n)),
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[k1,k2,k3.k4]
where g(y) = W is square integrable. In this case, the last equality follows from

gkt (02)" (1= 2n) 65 k5 = v/ (1, — o)™ (02 = 02)"™ V(1= A\)85 Kk = 0, [h(6,,)]. (100)

Secondly, we have to show that Th, = LM (d,; o) + 0,[h?(¢,,)]. Invoking Rotnitzky et al
(2000), we will have that

1
n 20 n " 40 n

Therefore

k k k
2 Y L0002 o) =2 Y L““””’OO] (tn — 110)™ (07 — 08)"™

k1 +ha =2 butke= "
Vi 2 W2 2
= =5ty = 10)” = 7m0 (00 = 90)” + 0p[h? ()]
of 90

For ki + ko > 2, we have %L,[fl’kz’o’o] = 0,(1) and nuk (o )k2 = o, [?(9,,)]-
Third, we have to show that Ty, = LM, (0,) + 0,[h?(6,,)]. But since this is the same as we
did in proof of Proposition 1, we can omit it.

Alrkskal (R (02 — 02)*2 sk ke = 0,(1) for

The last part requires to prove that -

k1 + ko + k3 + k4 = 8, which is entirely analogous to the proof of Proposition 1.

Step 2: This step is trivial since maxgeg LM ?(¢) has a closed-form solution with probability
approaching one. The asymptotic properties of QﬁM

Step 3: Following the proof of Proposition 1, we can first show that pL? 2 0. Next, we can
also show that hY(0L%) = O,(1) and R (pER) = Op(1) (similar to Lemma 3 in Amengual, Bei
and Sentana (2020)).

Step 4: Similarly, it follows from the same argument as in the corresponding proof of
Proposition 1.

Step 5: Simplify LM?(#EM) is as in the proof of Proposition 1. Then by the stochastic

equicontinuity of the test statistic in ¢, we can replace ¢ by ¢, ,.

Subtest in P, In terms of Andrews (2001) notation, we have

Bl =T = (T,m),ﬂ) = (M?oj)'

We show that we do not need to adjust for parameter uncertainty by verifying Assumption 7

of Andrews (2001), which guarantees that there is no cross term of ¢ and 7 in the quadratic
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approximation. Let

LRZ(;L,O‘2,’I7,T,TTL) :LRn[u,az,5(T,m),/<o(7',m),)\(n,7',m)],
LM (p,0°,m,7,m) =2G, (1, m)v/nn — V(r,m)nn® + LMZ (),

erz(u7 0-27 n) T? m) :LRZ(N) 0-2777’ T? m) - LMg(M? 0-27,’77 T’ m)7

where LR (u,0%,m,7,m) is defined in (96) and LM (¢) in (97). We need to show that for all

sequences (L, 02, My, Try My) With (1, — pig, 02 — 03,7,) = 0, it holds that

Rn(/ﬁn; O'i, Mns Tns mn) = 0p {max[nniv ’)’L(/Ln - IU’O)? n(ai - 03)2]} : (101)

To see this, we can modify the proof of Proposition 1. Let p, = (i,,02,0n, fn, An) with

On = 0(Tn, mp), kn = K(Tn, my) and A, = X(n,,, Tn, My). A third-order Taylor expansion gives

Ld(un, a%, Ny Ty M) — Ld(uo,ag, 0, Tn, mpn) = L, a% + J%, Ons Kny An) — L(O’%, Oy Kn,y 1)
- Tln(pn; ¢O) + T2n(pn; ¢0)

+ T?m(pn; ¢O) + T4n(pn§ ¢0>7

where

8L(pnO) 182[’([)710) 183L(ﬁn)

Tin(pni 00) = =53~ (A = Dt 5= 357 (An = D+ 5 n 1)%.
1 0" L(p, ; . 1 &L(p, . ,
Ton(pp; o) = Z i!ﬂalﬂ-a((gg)%)(un—ﬂo) (07 -0 + Z MWEUQ;]-(I%—MO) (07 —05),

i+5<2 i+j=3

oy _ 07 Lpno) 92L(pno) .
Tsn(pns 90) _W(An = Dpn = 10) + 51575 (A = Do = 0p)
1 83L(ﬁn) 9 1 83L(ﬁn) . )
5 6A28M (An B 1) (Mn B MO) T ﬁ 6/\260'2 ()\” B 1) (Un - 00)7

_ 1 (1 0°L(p,) j2 PN
Tyn = Z j‘k' {na)\auﬂﬁ(a?)k}n(un_’%) (Un_UO) (An_1)7
Jjt+k=2

with p,, = (fiy, 52, 0ns Fin, An) between (p,,, 02 + 02, 0p, fin, An) and prg = (g, 02, Ons ki, 1). We

can show that

2T1n(pn§ Qb[)) = 2gn(7n; mn)\/ﬁnn - V(Tna mn)nni + Op(mﬁz) (102)
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using the same argument as in Proposition 1. Hence, it is straightforward to show that

L0 (63 60) = LM(,) + 0p [ (02)” +np2 (103)

We can also show that

Tantpi0) = { =20 [y~ )] O =)
{2 (o3 - )] (- 1)
# 5 {amnt Tram nt, = o O~ 1)
1 {2 TEB (oo — o] -
o o 4 (02— 3 ] 04

where the first equality follows from 7,, = (A, —1)7, and the second one follows from Lemma 10
and )\, 2 1. The last part is easy, as n(u, — o)’ (02 — 03)* = O [nu% +n (0%)2} and A, — 1,
so that

Tupn, = 0p {n (02)2 + n/ﬁi} . (105)

Combining the results in (102), (103), (104) and (105), we finally prove (101).

General p and o2

Let us now consider the general case in which the conditional mean and variance are para-
metric functions of another observable vector X.

In this context, let Wy = (Y3, X;) and assume that

1 fr Y — by (; ¢)
o3 (x;9) o3 (x5 ¢)

fm(xt,wtfl)(ymawt_l) = fn|Xt(y|$) =

As a consequence, the (conditional) log-likelihood can be written as
gp(gi)) 57 , >‘a }/ta Xt) - E(N’Y(Xt; ¢)’ O-%/(Xt, ¢)7 57 , )‘7 Yt)

the subscript p is for “parametric” and ¢ was defined in the previous section. Accordingly, we
denote the likelihood after reparametrization as l,,(¢, 6, k, m; Yy, X¢).
For P, part, we only need to check the argument in Step 1 since Steps 2 to 4 are the same.

First, notice that for every vector k —with the same dimension as ¢— such that |k| = 1 and
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(ko,k3) € {(k,0) : E <4} U{(0,k) : k <2} U{(1,1)},

. 2 .
) = 00 ) FLEE) o1l ) 23 200,

Therefore, by the law of iterated expectations, we will have
E[iffr+2 ksl (pg)] = E{B[I)f**2 58] (py) | X]}
Opy (Xi; ¢ o3 (Xp; ¢
=B {’gqﬁ,f)E[lLl’o’kz”“S] (PO)|Xt]} +E {WE[ZLO’L’”M (po)| X¢]
=0

because E[l([;l’o’kg’kg] (po)| Xt] = E[ZLO’I’k2’k3] (po)|Xt] = 0. Hence, if Assumptions 1 and 2 hold,
the same arguments in Step 1 applies. Analogous arguments apply for the P, part too, which

completes the proof. O

Lemmas

Lemma 5 Fork=1,...,16, let
DF = {(n, 7,m) : there exists 0 € A¥ such that (60)-(62) holds} .

Then, (i) for all 6 € AF, there exists a unique d € D¥ such (60) - (62) holds; (ii) for all d € D¥,
there exists a unique @ € AF such that (60) - (62) holds.

Proof. (i) is straightforward. As for (ii), we show it for £ = 1 since the proof for k = 2,...,16 is
similar. We only need to show the uniqueness of 6, as the existence follows from the construction

of D'. Note that 7 > 0 for all § € A, thus A =1 — 2. With the restrictions of Al it holds that

1 1 1
%(54 - §/<52 =7, that is, §5f<c =mr. (106)
Hence, we can easily write
2, Ar2m?

Since the left hand side of (107) is strictly increasing in 6%, we can get unique . Finally, we get

 from (106). O
Lemma 6 ) )
‘wlLéV[‘ Z M7 n 2H3,7’l < M1 7 n 2H47n < M1 _ @
Vs V3V3 Va 3Vy
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where

7 (+%)
M=—(1+—].
Va V3
Proof. It suffices to show that when
n~2Hs, M n"2H,, M
< and : )
Vs V3V3 Vy 3Vy

sup LM, () < LM,(0,0,\) =0.

06®,|w1\2M
But
sup LM, (0)
0€0,|wi|>M
_1 2 2 _1 2 2
n~ 2Hs, Hs, n 2Hy, Hy,
= sup V3w — ’ +—— -Vi|lwy———" | +—+
0€0,|wy|>M ( V3 ) nV3 Vy nVy
[ 1 2 2 2
n-2Hs, H3n H4n
< sup |=Vz|w— ’ +—+—
lwi|>M ( V3 ) nVs — nVj
: S, )| 2Mm2
n_2
< sup |-Vi|w — —=2n + =1 (108)
|w1|>M V3 3
2M?
<— ME+ 31 < 0= LM,(0,0,)), (109)

which is a contradiction. Notice that from (108) to (109) we used the fact that when

1
My 1 n~2Hs, My
wi|>M=——11+—] and : ,
fr] 2 Vs ( ﬁ) Vs 313
we have
1 2
n_§H37n S %12
Y Vs
as desired. (]
Lemma 7 If
2(1 — Ay + A2
(a) V(1 = A)Surin = Op(1) and (b) V(1 = Ay) [ﬁg S i)~ o),

where A, € [1/2,1], then we have /n(1 — \,)k2 = Op(1) and v/n(1 — \p)da = O,(1).

Proof. From (b) we have
2
Vn(l = M)k = gL =+ A2)V/n(1 = \,)ok + 0,(1).
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But if v/n(1 — \,)d% = O,(1), then we can trivially show that v/n(1 — \,)k2 = Op(1) because

n

1—A,+A2 € [3,1]. The rest of the proof is by contradiction. Let us assume that /n(1—\,)d, #
O,(1), in other words, that there exists an e > 0 such that VM

Pr(nz (1 — Ay)0% > M) > e i.o. (110)

Next, given that v/n(1 — Ay)k2 — 2(1— Ay + A2) /(1 — A\p)d3 = Op(1), there exists an My such

that
Pr <

for all n. Consider M’ > max{Ma, %} and let My = 6 M’ +6Ms. In view of (110), we have that

VAl = A2 — 3(1 A A2)W(1 = A

€

Pr(n2 (1 — Ay)d% > 6M' + 6Ma) > ¢ i.o.
Let
Ap = {n2(1 = \,)6% > 6M' + 6]}

and

Bo = {IV(1~ A2 — 2(1 = Ao+ NV~ M54 < M),

Since Pr(A,) > e i.o. and Pr(B,) > 1 — § Vn, we will also have

Pr(A, N B,) > Pr(4,) + Pr(B,) — 1 > % i.o.

Let us now consider the set A, N B,,. We can prove that

AL = An)P0%% = V(1 = A8 4 2 (L= A+ A2)VR(L = )3
b VA= A2 = 50 = 4 ARV - 203 |
> V(= A2 {3(1 O A2)(1 — Ao — M% (111)
> V(1= 28 (G~ wst - o) (112)
> V(1 - Anwgi‘;’ (113)
> vn( ; An)o > M + My > M/, (114)

where (111) uses the definition of By, (112) uses 1 — A, + A2 > 2, (113) combines the definition
of A, with §2 < 5%, and (114) uses the definitions of M’ and A,. Hence, A, N B,, C {n(1 —
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An)20%K2 > M'}, which implies that for all M,

Pr(n(l — \,)?6%6% > M') > — i.o.

N o

which is a contradiction to (a). Thus, we have proved that \/n(1 — A, )x2 = Op(1) and /n(1 —
)6t = 0,(1), as desired. O

Lemma 8 Assume the data is iid, L,(0) is continuous at Y0 € © with probability 1, and © is

compact. Then,

SUPpco

]LM@—mwﬂ&o

n

Proof. Let 52 = % = 2exp(%) be an upper bound for max(ci?, 0%2), % = e 2% /(1 + %52)

a lower bound for min(o%2, 032), and i = 0 an upper bound for both |u}| and |u%|. Then, we

have

1 (x — pp)? 1 (z — p3)?
—log 4 A s VA RS _\w )
1(0) = log { = exp [ 2072 + ( ) = exp 207
1 (z — pp)? 1 (z — p3)?
> )1 _ = 1—-—)N1 _ =
> Alog { o exp [ 2072 + ( ) log = exp 207

Az —p1)* + (1= Nz — p3)?
202

1
> b log(52) -

Lo o (2l +p)?
> —5108;(0' ) — Tog2

where the first inequality follows from the concavity of the logarithm, the second one from the

definitions of &2 and ¢?, and the last one from the definition of i. As a consequence,
1 (xﬁf] 1 [(wﬁf}
1(0) =logs \—=exp |————— |+ (1 —N)—=exp | ——F5—
1 1 1
<lg [ A—4+1-N)—|=log| —= | .
g[ AR ] g(W)

(|| + @)
202

Next, letting

d(x) = + }log(a_Z)’ +

I

()

it is straightforward to see that |[(#)| < d(z) and E[|d(z)|] < co. Thus, by Lemma 2.4 in Newey

and McFadden (1994),
1

SUPgco n

L,(0) ~ 1) 2 0,
as desired. O
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Lemma 9 If there exist an My > 0 and a § < 1 such that |Hs,/v/n| < My, |Hypn//n| < My,
lwi| > My /€, Jwi] > |wal|, rn(0) /w3 < &, then LR, (6) < 0.

Proof. We have that

H3,n H4,n
LR, (0) =2 NG wy + 2%11)2 — Vaw? — Vaws + r,,(6),
so that
LR, (0 Hsz, 1 H 2 (KA
R2( ) _ofan 1, 4’”%—1@,—V4w—§+”7§)
w? Vn owi Vnow? w? w?
<2422 Vi
w1
<5 —V3
<0
because V3 = E[h3] = 6, which proves the result. O

Lemma 10 Donsker property

2 T, m),k\T,m), — 2 T,m),k(T,m),
(10.1) Vi (Lr 1 EEOCmstimll) _ |-t HEmgEm ) [) — 0, (1),

3 T,M),kK(T,M T,m — 3 T,M),kK(T,M T,m
(102) \/ﬁ(%Tfla L(é( ) )78()\1’% )7)‘(777 ) )) _E |:7. 10 l(é( ) )7 é)\’?) )7)‘(777 ) )):|> — Op,(‘l',m)(l)'

(10.8) L= ZEnCml) — Glidl(6, k) fori+j = 5.

4 T,M),k(T,Mm T,m
(104) %Tfla L(é( > )78()\21 )7)‘(7]7 > )) — Op,(T,m)(l)'

3 T,Mm),K(T,M T,Mm
(]05) 7_72E |:a 1(5( s )9 éAv?’ ):)\(T): ) ))] — O(’T,m)<1)

(10.6) With ;1 and 0, 0w — 0,(1) and L 2Hew) — 0,1).

(10.7) With 1 and o2, {%Tgl%(gz)} = 0p(1) and {%7’51%?;\%5%2)} = 0p(1).

Proof. The proof of (10.1) and (10.2) is similar to the proof of Proposition 1. Therefore, we

(67“{71) 83[( 7“{71)
onz— and =253

omit the detailed steps. Specifically, fifth-order Taylor expansions yield

U6,k 1) 4 (14 1,
T—h (96 —1/4/ +h36/€
102T0(8,k,1) 1 0% (6, k1)
Z'T (2’,? )5”' Z il 2 (z‘,ﬁ;‘ )5%]
v OX06 itjesis1 1 T OO0k
245 (5. o
> LEGE
ilj! X205 OKI

to justify the normalization 71, but

2
only give the Taylor expansion of al

i+j=5

66



3-+i 4 3-Fi+j o

8 l((5 : 1) _8h464 Z '8 Z(S(S IiZ 1)(5 + Z "1"8 . l(?7ﬂ7'1)61/§,~7
OA ON"04 itjesinl 1 T ONOO'OR

1 O35, k1)

2. aA?’a((sié:;‘ Yo

i+j=5 "’

The proof of (10.3) is similar but much simpler, as it is not normalized by 7. To prove (10.4),
it suffices to apply the uniform law of large numbers (see Lemma 2.4 of Newey and McFadden

(1994)) and use
1 0%1(6(T,m),k(T,m),\(n,7,m))

()M, it T #0,

-1 *1(5(r,m),k(T, m) A(n,7,m)) 4 - _
o =24h* if T =0.

g(r,m)=1q
lim, o7

To see (10.5)

3
E [g)\f,)] = —89606% — 54k* — 3662k2 + o(72).

As for (10.7), we can also show that evaluated at p

1 9L, 32 40 2 4
= = 25 Hs + SKPH,
n N2y 35 3+&/<c 3+ 0p(7),
1 9L, 16 1 » 11 314
= = —Hy0* ——H 74{
00 = 3o2 el 4K 553 3+ op(7),
where
Hy =i} —
i
Hi=) 3}~
i
X Yi — b
Yi = Z lT?
i
whence we prove the desired result. O

Lemma 11 ’%54 — %RQ‘ — 0 and ‘%6&‘ — 0 implies 6 — 0 and k — 0.

Proof. Once again, we prove this by contradiction. If the lemma does not hold, then one of the
following statement must be true:

(i) there exist sequences 6y, K, such that }3664 — = 2‘ — 0 and ‘ 1) Iﬂln‘ — 0 but §, — 0" #0,

or

(ii) there exist sequences d,, Kk, such that ‘%5% — %n%! — 0 and |%5nf@n} — 0 but k, — k* #0.
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Consider (i ! 1) /ﬁn} — 0 and §,, — 0" # 0 implies k,, — 0, thus

- 5*4

1

36"

which is a contradiction to ‘3—16& - %/{%’ — 0. Similarly, for (ii), ‘%&Lmn’ —0and Kk, — kK*#0

implies 6, — 0, thus
2
n

1 1,
'366i gk ‘8””2 # 0,

as desired. O
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Table 3: Application to Mincer equations

Specification (1) (2) (3)

n 534 245 289
Skewness -0.08 0.49 -0.56
Kurtosis 4.72 4.68 4.70

Testing procedures

statistic  p-value statistic  p-value statistic  p-value
6, LM, 751.0 .00 522.3 .00 1,234.5 .00
JB 61.9 .00 34.2 .00 45.0 .00
LRy 10.7 .01 10.0 .01 11.1 .01
O, LM, 534.1 .00 468.9 .00 963.8 .00
LM, 0.6 .62 8.8 .00 13.7 .00
LMy o 534.1 .00 468.9 .00 963.8 .00
LRs 5.2 .07 6.2 .05 7.1 .03
O3 LM; 714.1 .00 207.9 .00 464.1 .00
LM, 3 61.3 .00 25.5 .00 31.3 .00
LRs 10.6 .00 5.0 .00 5.4 .00
JB skew 0.6 44 8.8 .00 13.7 .00
JB kurt 61.3 .00 25.5 .00 31.3 .00
KS 0.2 .66 0.4 .36 0.5 .05
ACS -0.6 .19 -0.9 .48 -0.5 13

Notes: CPS85 dataset provided by the Berndt (1981). (1) refers to women and men, (2) refers to men
only, and (3) women only. For both, the score-type tests and the likelihood ratio test, the three different
parameter spaces are

O] = [-0,0] x [, 5] x [1/2,1], ©4 =[-6,d] x {0} x [1/2,1], and O} = {0} x [—3, 3] x [1/2,1].

JB skew (JB kurt) refers to the Jarque-Bera skewness (kurtosis) component of the Jarque-Bera (1980)
test. KS denotes the Kolmogorov-Smirnov test and ACS the CGMM test proposed in Amengual, Carrasco
and Sentana (2020) with Tikhonov regularization parameter o =.01 and scale parameter w? = 1. LM’s
and LR’s are defined in Section 3.
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