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Abstract/Résumé 
 
This study investigates the potential of machine learning (ML) methods to enhance the 
estimation of the gravity model, a cornerstone of international trade analysis that explains trade 
flows based on economic size and distance. Traditionally estimated using methods such as the 
Poisson Pseudo Maximum Likelihood (PPML) approach, gravity models often struggle to fully 
capture nonlinear relationships and intricate interactions among variables. Leveraging data from 
Canada and the US, one of the largest bilateral trading relationships in the world, this paper 
conducts a comparative analysis of traditional and ML approaches. The findings reveal that ML 
methods can significantly outperform traditional approaches in predicting trade flows, offering a 
robust alternative for capturing the complexities of global trade dynamics. These results 
underscore the value of integrating ML techniques into trade policy analysis, providing 
policymakers and economists with improved tools for decision-making. 
 

-------------------------------------------- 
 
Cette étude examine le potentiel des méthodes d'apprentissage automatique (ML) pour 
améliorer l'estimation du modèle de gravité, une méthode clé de l'analyse du commerce 
international qui explique les flux commerciaux en fonction de la taille de l'économie et de la 
distance. Traditionnellement estimés à l'aide de méthodes telles que l'approche du pseudo-
maximum de vraisemblance de Poisson (PPML), les modèles de gravité ont souvent du mal à 
saisir pleinement les relations non linéaires et les interactions complexes entre les variables. En 
s'appuyant sur les données du Canada et des États-Unis, l'une des relations commerciales 
bilatérales les plus importantes au monde, cet article effectue une analyse comparative des 
approches traditionnelles et des approches par apprentissage automatique. Les résultats 
révèlent que les méthodes de ML peuvent être nettement plus performantes que les approches 
traditionnelles pour prédire les flux commerciaux, offrant ainsi une alternative robuste pour saisir 
les complexités de la dynamique du commerce mondial. Ces résultats soulignent la valeur de 
l'intégration des techniques de ML dans l'analyse de la politique commerciale, fournissant aux 
décideurs politiques et aux économistes des outils améliorés pour la prise de décision. 
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            Introduction 

The gravity model has long occupied a central position in the analysis of international trade, 
offering a systematic framework that links trade flows between two regions to their respective 
economic sizes and the geographic distance separating them. Building on analogies to Newtonian 
physics, this conceptual framework posits that larger economies trade more intensively, while 
distance and other trade barriers exert dampening effects on the intensity of bilateral exchanges. 
Over the decades, this model has been refined to account for a host of additional factors, including 
border effects (McCallum, 1995), multilateral resistance terms (Anderson & Van Wincoop, 2003), 
and more complex specifications that incorporate unobserved heterogeneity (Silva & Tenreyro, 
2006). Despite these advances, considerable methodological challenges remain. Traditional 
estimation techniques such as Ordinary Least Squares (OLS) and Poisson Pseudo Maximum 
Likelihood (PPML) often struggle with nonlinearities, zero trade flows, and the growing 
dimensionality of modern datasets. 

These challenges have prompted researchers to explore alternative methods that may 
capture the intricate dynamics of trade relationships more effectively. Recent literature has begun 
to investigate whether machine learning (ML) approaches, renowned for their predictive power in 
large and complex datasets, can enrich gravity model estimations by uncovering patterns that elude 
standard econometric procedures. The proliferation of high-frequency and granular trade data—
coupled with ongoing enhancements in computational capacity—presents a clear opportunity to 
integrate ML-based techniques into trade modeling. Yet the adoption of such methods remains 
comparatively limited in mainstream trade analysis, in part because conventional estimators 
maintain an advantage in terms of coefficient interpretability (Santos Silva & Tenreyro, 2022). 

This study addresses the following overarching research question: to what extent can 
machine learning methods improve the predictive accuracy of gravity models in explaining 
bilateral trade flows, including those involving zero observations, when compared to more 
traditional estimation approaches such as OLS, PPML, Gamma Pseudo Maximum Likelihood 
(GPML), and Negative Binomial Pseudo Maximum Likelihood (NBPML)? To investigate this 
question, we employ a comprehensive dataset covering trade between Canadian provinces and 
U.S. states, capturing one of the world’s largest bilateral trading relationships. By examining both 
scenarios in which zero trade flows are included and excluded from the estimation process, we aim 
to clarify how distinct methodologies manage sparse or zero-inflated data. In doing so, we evaluate 
the trade-offs among predictive accuracy, robustness to zero flows, and interpretability across a 
range of estimation procedures.  

Our inquiry is motivated by dual objectives. First, we seek to determine whether modern 
ML techniques—specifically Random Forest, XGBoost, and Neural Networks—deliver 
meaningful improvements over econometric estimators that have become standard in the literature 
following the work of (Silva & Tenreyro, 2006). Second, by comparing predictive performance 
against interpretative clarity, we aim to offer guidance on the conditions under which each class of 
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methods may be optimally employed. This is of particular relevance for policymakers and 
economists who rely on trade flow projections to inform decisions relating to tariff policies, 
regional integration agreements, and other macroeconomic interventions. By examining a rich 
empirical setting and systematically comparing methods, this study contributes to the evolving 
discourse on quantitative trade modeling and illuminates the potential value of machine learning 
in addressing the methodological shortcomings that have historically complicated the gravity 
model’s application. 

 

1. Literature Review 
 

1.1.  Historical Foundations 

The gravity model has established itself as a pivotal framework in the analysis of trade and 
spatial flows, drawing its conceptual foundation from Newtonian physics, where trade interactions 
are treated analogously to gravitational forces. The seminal work of Anderson & Van Wincoop 
(2003) significantly advanced the theoretical framework of the gravity model by introducing 
multilateral resistance terms, which account for the relative trade costs faced by countries in a 
network of trade relationships. 

This theoretical enhancement has been crucial in refining the understanding of how trade 
flows are influenced not only by the economic size of trading partners but also by the distance 
between them and the trade barriers they face (Anderson, 2011). In the empirical realm, the gravity 
model has undergone substantial refinement, particularly with the introduction of the Poisson 
pseudo-maximum likelihood (PPML) estimator by Silva & Tenreyro (2006). 

This methodological advancement addresses critical issues such as zero trade flows and 
heteroskedasticity, which have historically plagued trade data analysis. The PPML estimator has 
been widely adopted in various studies, demonstrating its effectiveness in providing robust 
estimates of trade flows (Akhvlediani & Śledziewska, 2017). For instance, Karemera et al. (2009) 
Karemera et al. (2009) highlighted the empirical success of gravity models in capturing the 
complexities of bilateral trade flows, emphasizing their log-linear relationship with economic size 
and transaction costs (Karemera et al., 2009). 

Over the last two decades, the gravity model has become the dominant analytical tool for 
assessing the impacts of trade agreements, tariffs, and other policy interventions. Its robustness 
and flexibility have facilitated extensive research across various domains, including trade, 
migration, and investment. Studies such as those by  Masudur Rahman & Kim (2012) and Akhtar 
& Ghani (2010) illustrate the model's adaptability in different contexts, demonstrating its utility in 
evaluating trade potential and the effects of regional integration (Masudur Rahman & Kim, 2012; 
Akhtar & Ghani, 2010). 
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Furthermore, the gravity model's application has extended beyond traditional trade analysis to 
encompass agricultural trade, as evidenced by Muganyi & Chen (2016) exploration of China's 
agricultural trade flows, which underscores the model's versatility (Muganyi & Chen, 2016). The 
gravity model's empirical robustness is further supported by its historical application, tracing back 
to the pioneering works of Tinbergen (1962) and Poyhonen (1963), who laid the groundwork for 
estimating trade volumes based on economic size and distance (Esmaeili & Pourebrahim, 2011). 

This foundational work has been built upon by numerous scholars, leading to a rich body 
of literature that continues to evolve. Recent studies, such as those by Beenstock et al. (2015) and 
Elshehawy et al. (2014), have employed the gravity model to analyze immigration flows and 
export determinants, respectively, showcasing its broad applicability across various economic 
phenomena (Beenstock et al., 2015; Elshehawy et al., 2014). 

 

1.2.  Key Methodological Developments 

The methodological sophistication of gravity models has evolved significantly, driven by 
advancements in both econometrics and computational tools. This evolution has expanded the 
scope and applicability of the model in several key areas:  

• Heterogeneity and Weighting: Traditional gravity models often assume homogeneity in 
coefficients across observations, which can lead to biased estimates when this assumption does not 
hold. Recent studies, such as those by Breinlich et al. (2024), emphasize the importance of 
explicitly modeling heterogeneity. These works demonstrate that estimators like Poisson pseudo-
maximum likelihood (PPML) assign greater weight to larger trade flows, which can skew results 
if heterogeneity is unmodeled. By incorporating varying coefficients or using techniques such as 
quantile regression, researchers can better capture the diversity in trade relationships across 
different contexts and countries (Anderson, 2011). 

• Dynamic and Spatial Dimensions: The incorporation of dynamic panel data models and 
spatial econometric techniques has significantly enhanced the gravity model’s ability to capture 
temporal and spatial dependencies. Dynamic models allow for the analysis of trade persistence, 
reflecting how past trade flows influence current trade patterns. Spatial econometrics, on the other 
hand, accounts for the interconnectedness of global markets by considering spatial autocorrelation 
and spillover effects. This methodological advancement is particularly relevant for understanding 
how trade relationships evolve over time and how regional dynamics can influence bilateral trade 
flows (Akhvlediani & Śledziewska, 2017). 

• Dealing with Zeroes and Small Flows: While PPML effectively addresses zero trade flows, 
recent advancements have sought to refine these methods further. Techniques such as Gamma PML 
and multinomial PML have been proposed as alternatives, offering nuanced approaches to handle 
small or zero flows. These methods allow researchers to model the distribution of trade flows more 
accurately, accommodating the prevalence of zero and small trade values in many datasets. This is 
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crucial for ensuring that estimates reflect the underlying economic realities without being distorted 
by the peculiarities of the data (Karemera et al., 2009). 

• Econometric Tools for Causal Inference: The integration of instrumental variables, 
synthetic control methods, and causal machine learning into gravity model estimation has become 
increasingly prevalent. These tools enable researchers to disentangle causal relationships in 
complex settings, addressing issues of endogeneity that can arise in observational data. For 
instance, using instrumental variables can help identify the causal impact of trade policies on trade 
flows, while synthetic control methods allow for the comparison of treated and untreated units in 
a quasi-experimental framework (Masudur Rahman & Kim, 2012). 

2. Study Design 

This study employs a multi-stage methodological framework that combines both traditional 
econometric methods and advanced machine learning techniques to estimate gravity models of 
trade. The approach entails specifying two alternative versions of the gravity equation, drawing 
respectively on McCallum (1995) and Anderson & Van Wincoop (2003), and then applying a series 
of estimation procedures to gauge each method’s predictive performance. The data selection and 
processing strategies are designed to systematically compare the capabilities of these different 
estimators under conditions that commonly arise in trade analysis, including the presence of zero 
trade flows and the need for robust yet interpretable coefficient estimates. 

The core dataset consists of trade flows between Canada’s ten provinces and between 
Canadian provinces and fifty U.S. states, resulting in a cross-sectional sample for a single reference 
year. These data are retrieved from Statistics Canada’s publicly available trade databases, ensuring 
consistency in measurement and reporting standards. The dependent variable is bilateral trade 
value, while the explanatory variables include GDP of the exporting and importing regions, 
geographical distance measured by centroid-to-centroid calculations, and a border indicator 
distinguishing intra-Canadian provincial trade from cross-border provincial-state trade. 
Supplementary data checks are conducted by comparing centroid distances with alternative 
distance measures such as capital-to-capital distances, though the centroid-based approach is 
maintained in the main results for consistency and ease of replication. 

Two sets of estimations are carried out. In the first set, all trade flows are included, 
including zero observations, to assess the performance of each estimator in managing sparse or 
zero-inflated data. In the second set, zero flows are excluded, providing a comparative benchmark 
that highlights the sensitivity of results to the presence or absence of these often-problematic 
observations. For both sets, the sample is split into training and test partitions. The models are 
fitted using the training partition, and their performance is subsequently evaluated using 
observations in the test partition. Root Mean Square Error (RMSE) and R-square constitute the 
principal metrics for measuring predictive accuracy. In addition, Mean Absolute Error (MAE) is 
reported in order to capture the average magnitude of the errors in a more direct manner. 
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Within each estimation exercise, four econometric techniques—Ordinary Least Squares 
(OLS), Poisson Pseudo Maximum Likelihood (PPML), Gamma Pseudo Maximum Likelihood 
(GPML), and Negative Binomial Pseudo Maximum Likelihood (NBPML)—are systematically 
compared. These traditional methods serve as a benchmark for model interpretability and 
coefficient stability, particularly in the context of zero trade flows. Alongside these methods, three 
machine learning algorithms—Random Forest, XGBoost, and Neural Networks—are employed to 
capture potential nonlinearities and interactions in the determinants of bilateral trade. The machine 
learning approaches are tested both on level-transformed and log-transformed versions of the data, 
in order to ascertain whether log-transformations enhance predictive accuracy by mitigating the 
influence of large outliers in trade flows. 

This experimental design makes it possible to assess each estimator’s strengths and 
limitations. Traditional approaches, known for their well-established theoretical underpinnings and 
interpretability, can be benchmarked against machine learning methods, which often excel in 
predictive tasks but may be less transparent in their coefficient estimates. By applying these 
methods to two canonical versions of the gravity equation (Anderson & Van Wincoop, 2003; 
McCallum, 1995) and systematically including or excluding zero trade flows, the study generates 
insights into how methodological choices affect both predictive accuracy and interpretative clarity. 
The following sections detail the estimation results and highlight the context in which each class 
of models may be most suitable for empirical trade analysis. 

 

2.1.  Selection of gravity equations estimated 
 

The traditional form of gravity model is inspired by Newton law of gravitation states as 
follows: 𝐹!" = 𝐺 #!#"

$!"
# , where the force 𝐹 between two bodies 𝑖	and 𝑗	 with 𝑖 ≠ 	𝑗	 is proportional 

to the masses 𝑀	 of theses bodies and inversely proportional to the square of the distance between 
their centers. 𝐺	 is the gravitational constant.  

In international trade, this model is adapted as follows: 

𝑋!" = 𝐺
𝑌!
%$𝑌"

%#

𝐷!"
%%

 

Where 𝑋, the trade flow is explained by 𝑌! and 𝑌" that represents the masses of the exporting and 
importing countries/ regions. Generally, we approximate these masses by GDP of each 
country/region.  𝐷!" is the distance between the countries/regions. 

To incorporate additional variables that influence trade flows, 𝐷!"  is replaced with 𝑡!", 
representing transaction costs, including distance. This yields the following equation:  
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                                                           𝑋!" = 𝐺
&!
&$&"

&#

'!"
&%                                                                     (1) 

The straightforward way to estimate (1) is by applying log transformation and use standard 
estimation methods such as OLS.  

In McCallum (1995), investigating the effects of national borders on trades between the 
US and Canada, he define trade cost as 𝑡!" = 𝐷!"𝑒𝑥𝑝(δ𝑖𝑗) with δ!" takes 1 if the exporting and 
importing region are Canadian provinces and 0 if there state-provinces regions. 

Anderson & Van Wincoop  (2003) suggest that the estimates from McCallum (1995) are 
biased, and one needs to account for multilateral resistance to identify the national border effect. 
Thus, trade cost expression in that case could be approximated as follows: 𝑡!" =
𝐷!"𝑒𝑥𝑝3δ!" + 𝜂! + 𝜂"6, with η! and η" are exporter and importer fixed effects.  

In this project we are interested in comparing the predictions power of gravity models’ 
estimation methods. We compare traditional methods of estimation and machine learning methods 
of McCallum (1995) equations (2) and Anderson & Van Wincoop  (2003) (3) state as follows:  

 

                                                       𝑋!" = 𝐺
&!
'$&"

'#

$!"
(()*+,-!"./

)                                                             (2) 

 

                                               𝑋!" = 𝐺
&!
'$&"

'#
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+#                                   (3) 

 

 

2.2.  Selection of estimation methods 

 

Traditional methods of estimation 

Equations (2) and (3) was estimated by traditional methods as Ordinary Least Squares 
(OLS), respectively in McCallum (1995) and Anderson & Van Wincoop  (2003). However, these 
traditional methods of estimating the gravity equation, particularly OLS have faced criticism for 
their biases and inefficiencies, particularly in the presence of zero trade flows and unobserved 
heterogeneity. Recent literature has increasingly favored the Poisson Pseudo Maximum Likelihood 
(PPML) estimator as a more robust alternative. Silva and Tenreyro argue that the PPML estimator 
is exceptionally well-suited for gravity equation estimation, as it effectively addresses the issues 
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of heteroskedasticity and zero trade flows that plague OLS estimates (Santos Silva & Tenreyro, 
2022). This sentiment is echoed by Breinlich et al., who demonstrate that PPML provides superior 
estimates even when disaggregated data is available, highlighting its robustness across different 
data scenarios (Breinlich et al., 2024). Other estimators, such as Gamma Pseudo Maximum 
Likelihood (GPML) and Negative Binomial Pseudo Maximum Likelihood (NBPML), have also 
gained attention for their robustness in handling trade data with a high incidence of zeros. 

The GPML estimator is particularly noted for its ability to manage overdispersion in count 
data, which is often a characteristic of trade flow datasets. Silva & Tenreyro (2011) emphasize that 
GPML can provide consistent estimates even when the dependent variable contains a significant 
number of zeros, similar to the PPML. They argue that when both PPML and GPML yield similar 
coefficients, it indicates that the model is appropriately specified and that heteroskedasticity is 
effectively managed. This is further supported by findings from Gregori and Michela (Gregori & 
Nardo, 2021), who note that GPML performs well in contexts where the dependent variable is 
subject to a high number of zeros, reinforcing the robustness of this estimator in empirical 
applications. 

On the other hand, the NBPML estimator is particularly useful when dealing with over-
dispersed count data, as it allows for the modeling of variance that exceeds the mean. Ghazalian 
(2019) discusses the application of NBPML in estimating gravity models, highlighting its 
effectiveness alongside PPML and GPML in capturing the structural relationships inherent in trade 
data. This is crucial for ensuring that the estimates are not only statistically significant but also 
economically interpretable. The work of D’Ambrosio & Montresor (2022) further supports the 
preference for NBPML over OLS, particularly when analyzing datasets with significant zero trade 
flows, as it provides a more nuanced understanding of the underlying trade dynamics. 

In summary, concerning point estimation of the equations (1) and (2) we compare OLS, 
PPML, GPML, and NBPML methods with some machine learning techniques of estimation.  

 

Machine learning techniques of estimation 

 

The application of machine learning techniques has gained traction in recent years. The 
estimation of traditional gravity models, which relate trade flows to economic size and distance 
between trading partners, could be enhanced through the integration of advanced machine learning 
methods such as Random Forests, XGBoost, and Neural Networks. 

Random Forests (RF) is a powerful ensemble learning method that constructs multiple 
decision trees during training and outputs the mode of the classes for classification or mean 
prediction for regression. This technique is particularly advantageous due to its ability to handle 
large datasets with numerous variables without overfitting, making it suitable for complex trade 
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data (Mangalathu & Jeon, 2019). The flexibility and intuitive nature of RF allow it to capture 
nonlinear relationships and interactions between variables, which are often present in economic 
data (Mangalathu & Jeon, 2019). Moreover, RF has been successfully applied in various fields, 
demonstrating its robustness and effectiveness in predictive modeling. 

XGBoost, or Extreme Gradient Boosting, is another machine learning technique that show 
promise in improving the predictive power of gravity models. XGBoost is an optimized 
implementation of gradient boosting that is designed for speed and performance. It excels in 
handling sparse data and can effectively manage missing values, which are common in trade 
datasets (Gopinath et al., 2021). The method's ability to incorporate regularization helps prevent 
overfitting, making it a strong candidate for estimating gravity models where the relationships 
between variables may be complex and nonlinear (Gopinath et al., 2021). Recent studies have 
highlighted the effectiveness of XGBoost in forecasting trade flows, showcasing its superior 
performance compared to traditional econometric methods (Park et al., 2024). 

Neural Networks (NN), particularly deep learning architectures, have also been employed 
to enhance gravity model estimations. The Deep Gravity model proposed by Simini et al., (2022) 
illustrates how deep neural networks can be utilized to improve the predictive performance of 
traditional gravity models by incorporating non-linearity and additional geographical features. 
This model treats the gravity equation as a baseline and enhances it with hidden layers, allowing 
for more complex interactions among variables (Simini et al., 2022). The flexibility of neural 
networks enables them to learn intricate patterns in data, making them particularly suitable for 
high-dimensional datasets typical in trade analysis. Furthermore, the integration of geographic 
information into neural network models has been shown to significantly enhance the accuracy of 
predictions related to mobility and trade flows (Simini et al., 2022). 

In this paper, we perform those three machines learning estimation methods (RF, XGBoost, 
and NN) and compare them with point estimation methods (OLS, PPML, GPML, and NBML). 
These methods are performed on equations (1) and (2) using Canadian interprovincial trade flow 
and province state trade flow between the US and Canada following McCallum (1995) and 
Anderson & Van Wincoop  (2003). 

 

2.3.  Data Description 

This study draws on trade flow data obtained from Statistics Canada to capture transactions 
within and across Canadian regions. First, interprovincial trade flows are derived from the 
Interprovincial and International Trade Flows datasets, covering commerce among Canada’s ten 
provinces and yielding 90 observations. Second, trade flows between Canada’s ten provinces and 
50 US states are taken from the Canadian International Merchandise Trade dataset, resulting in 
1,000 observations. Together, these sources yield a comprehensive dataset of 1,090 observations 
for the year 2021. A number of these observations feature zero trade values, primarily reflecting 
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pairs of regions that do not engage in any recorded exchange; analyses are therefore conducted 
both with and without these zero observations to assess the robustness of the results under varying 
data conditions.   

Distances between regions are computed using centroid-based measurements, although 
alternative methods, such as distances between provincial or state capitals, are also explored as a 
robustness check. In order to evaluate the performance of each estimation method for Equations 
(2) and (3), the dataset is partitioned into training and test subsets. Models are fitted using the 
training portion and subsequently evaluated based on their predictive accuracy in the test sample. 
The primary metrics for comparing predictive performance are the Root Mean Square Error 
(RMSE) and R-squared, with lower values of RMSE and higher values of R-squared indicative of 
superior explanatory power. 

 

3. Results 

 

3.1.  Estimation of Equation (2) 

Estimation of equation (2) without zero trade flows 

Table 1 presents the estimated coefficients and statistical significance for equation (2) using 
four traditional econometric methods: OLS, PPML, GPML, and NBPML. The results show that 
the size of the origin and destination economies measured by their GDP has a positive and 
statistically significant effect on trade flows, confirming the fundamental intuition of the gravity 
model—larger economies trade more. Distance has a negative coefficient across all methods, 
indicating that trade decreases as geographic separation increases. The border variable is positive 
and significant, suggesting that interprovincial trade is higher than province-state trade. This result 
suggests that border significantly harms trade. Compared to the other methods, PPML produces 
lower coefficient estimates, likely due to its ability to handle zero trade flows and account for 
heteroskedasticity. The R-square values indicate that OLS and GPML fit the data better than 
PPML, while NBPML performs similarly to GPML. 

 

Table 1: Traditional Models performance of equation (2) 

Model Performance Comparison  
OLS PPML GPML NBPML 

Origin size 1.09*** 0.89*** 0.90*** 1.00***  
(0.05) (0.05) (0.05) (0.001) 

Destination size 1.64*** 0.97*** 0.98*** 0.92***  
(0.06) (0.05) (0.05) (0.001) 

Distance -1.89*** -1.67*** -1.72*** -1.15*** 
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(0.14) (0.13) (0.13) (0.002) 

Border 3.25*** 2.08*** 2.10*** 1.91***  
(0.26) (0.24) (0.24) (0.003) 

Constant -14.67*** -4.49*** -4.47*** -9.24***  
(1.43) (1.32) (1.32) (0.03) 

R-square 0.70 0.65 0.65 0.17 
MAE 1.29 596.24 636.39 895.38 
RMSE 1.87 3053.94 3340.50 4228.45 
Observations 846 846 846 846 

Note: This table presents estimated coefficients for equation (2) using OLS, PPML, GPML, and 
NBPML. Origine size and Destination size are approximate by GDP of regions; Distance is the 
distance between centroids of regions, and Border is dummy variable taking 1 if the trading regions 
are in the same country. R-square is computed on test dataset of 218 observations. Coefficients 
significance: *p<0.1; **p<0.05; ***p<0.01. 

 

In Table 2 we report the performance metrics—Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), and R-square —for machine learning models estimating equation (2). 
Among the models tested, XGBoost outperforms both Random Forest and Neural Networks, 
achieving the lowest RMSE and highest R-square, indicating superior predictive accuracy. The 
results also show that applying a logarithmic transformation to the variables improves model 
performance across all three machine learning methods. This suggests that log transformations 
help mitigate the impact of outliers and nonlinear relationships. Neural Networks perform the 
worst in both levels and logs, potentially due to data size constraints or hyperparameter tuning 
limitations. 

 

 

Table 2: Machine Learning Models Performance of equation (2) 

Model Performance Comparison  
 Variables in Level Variables in Log 

 Random 
Forest  

XGBoost  Neural 
Network  

Random 
Forest  

XGBoost  Neural 
Network  

RMSE 2,914.70 2,552.32 3,570.10 1.49 1.33 1.83 
MAE 624.79 565.73 973.49 1.05 0.94 1.20 
R-square 0.59 0.65 0.27 0.81 0.85 0.73 

Note: This table presents performance metrics (RMSE, MAE, and R-square) for machine learning 
models estimating equation (2). The models evaluated include Random Forest, XGBoost, and 
Neural Networks, with results reported for both level and log-transformed variables. Lower RMSE 
and MAE indicate better predictive accuracy, while higher R-square suggests better model fit. 
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Table 3 compares the predictive accuracy of traditional econometric models with machine 
learning methods for equation (2). Traditional methods such as OLS, PPML, GPML, and NBPML 
produce lower R-square values compared to the best-performing machine learning models. 
XGBoost and Random Forest, particularly when applied to log-transformed variables, achieve 
significantly higher R-square values, indicating their superior ability to capture complex trade flow 
patterns. R-square, reinforcing its primary role as a robust estimator for handling zero trade flows 
rather than maximizing predictive accuracy. 

 

Table 3: Traditional vs Machine Learning Models Performance of equation (2) 

Model Performance Comparison 
  Performance Metrics 

Estimation 
Methods 

Model Type RMSE MAE R-square 

Regression OLS 1.87 1.29 0.70 
 PPML 4228.45 895.38 0.17 
 GPML 3053.94 596.24 0.65 
 NBPML 3340.50 636.39 0.65 
Machine 
Learning 

Random Forest 1.49 1.05 0.81 

 XGBoost 1.33 0.94 0.85 
 Neural Network 1.83 1.20 0.73 

Note: This table compares the predictive performance of traditional econometric estimators 
(OLS, PPML, GPML, and NBPML) with machine learning models (Random Forest, XGBoost, 
and Neural Networks) for equation (2). Performance is evaluated using RMSE, MAE, and R-
square, with results reported for both level and log-transformed variables. 

 

Estimation of equation (2) with zero trade flows 

 

The estimates for equation (2) when zero trade flows are included in the dataset, using 
PPML and NBPML are presented in Table 4 . The results show that PPML and NBPML yield 
significantly different coefficient magnitudes, reflecting their distinct ways of handling zero trade 
flows. NBPML achieves a much higher R-square (0.802) compared to PPML (0.217), suggesting 
that NBPML provides a better fit when modeling sparse trade data. The signs of all predictors 
estimates are what expected and consistent with empiric results in literature of gravity models. 
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Table 4: Traditional Models Performance of equation (2) with zeros trade flows 

Model Performance Comparison  
PPML NBPML 

Distance -1.22*** -1.73***  
(0.002) (0.15) 

Origin size 0.97*** 0.99***  
(0.001) (0.06) 

Destination size 0.95*** 1.07***  
(0.001) (0.06) 

Border 1.79*** 2.05***  
(0.003) (0.28) 

Constant -8.71*** -6.65***  
(0.03) (1.50) 

R-square 0.22 0.82 
MAE 930.28 852.79 
RMSE 3974.63 4661.11 
Observations 872 872 

Note: This table presents estimated coefficients for equation (2) using PPML and NBPML when 
zero trade flows are included in the dataset. Origin size and Destination size are approximated by 
GDP, Distance represents centroid-based regional distances, and Border is a dummy variable 
taking 1 if the trading regions are in the same country. R-square is computed on test dataset of 
218 observations. Coefficients significance: *p<0.1; **p<0.05; ***p<0.01. 

 

Table 5 includes the performance of machine learning models when zero trade flows are 
included. Compared to Table 2, the overall model performance declines, as evidenced by higher 
RMSE values and lower R-square scores. Random Forest maintains the highest R-square among 
the three models, but XGBoost exhibits a lower RMSE, indicating a slightly better predictive fit. 
Neural Networks continue to perform worse than tree-based models, further suggesting that their 
application in gravity models may require additional fine-tuning or larger datasets. 

The comparison of traditional and machine learning models when zero trade flows are also 
included in Table 5. NBPML achieves the highest R-square (0.80), surpassing both PPML and 
machine learning models, reinforcing its suitability for handling trade datasets with a significant 
number of zero observations. Machine learning models, particularly Random Forest and XGBoost, 
experience a decline in predictive accuracy, emphasizing the challenges of modeling sparse data 
with nonparametric approaches. 

 

Table 5:Traditional vs Machine Learning Models Performance of equation (2) with zeros trade 
flows 

Model Performance Comparison 
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  Performance Metrics 
Estimation 
Methods 

Model Type RMSE MAE R-square 

Regression PPML 3974.63 930.28 0.22 
 NBPML 4661.11 852.79 0.82 
Machine 
Learning 

Random Forest 2678.07 689.71 0.53 

 XGBoost 2190.64 748.74 0.68 
 Neural Network 3120.31 864.29 0.40 

Note: This table compares traditional econometric models (PPML and NBPML) with machine 
learning models (Random Forest, XGBoost, and Neural Networks) in estimating equation (2) 
with zero trade flows. Performance is evaluated using RMSE, MAE, and R-square, highlighting 
differences in model suitability for handling sparse trade data. 

 

3.2.  Estimation of Equation (3) 
 

Estimation of equation (3) without zero trade flows 

The results of equation (3) using traditional econometric methods are presented in Table 6. 
The findings are largely consistent with those from equation (2), with positive coefficients for 
origin and destination size, negative coefficients for distance, and a strong positive border effect. 
However, R-square values are slightly lower than in equation (2), suggesting that equation (3) 
introduces additional complexity in explaining trade flows. 

 

Table 6: Traditional Models Performance of equation (3) 

Model Performance Comparison   
OLS PPML GPML NBPML 

Origin size 1.52*** 1.53*** 1.66*** 1.47***  
(0.39) (0.04) (0.31) (0.31) 

Destination size 2.15*** 0.58*** 1.59*** 1.46***  
(0.38) (0.02) (0.31) (0.30) 

Distance -2.07*** -1.01*** -2.15*** -2.07***  
(0.13) (0.003) (0.10) (0.10) 

Border 4.28*** 1.88*** 4.22*** 3.65***  
(0.47) (0.02) (0.38) (0.36) 

Constant -23.52*** -12.94*** -17.59*** -14.51***  
(6.36) (0.50) (5.14) (4.99) 

R-square 0.83 0.20 0.53 0.53 
MAE 1.05 1032.07 8377.11 4955.34 
RMSE 1.47 4271.08 84051.74 49478.33 
Observations 846 846 846 846 
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Note: This table presents estimated coefficients for equation (3) using OLS, PPML, GPML, and 
NBPML. Origin size and Destination size are approximated by GDP, Distance represents 
centroid-based distances between trading regions, and Border is a dummy variable taking 1 if the 
trading regions are in the same country. R-square is computed on test dataset of 218 
observations. Coefficients significance: *p<0.1; **p<0.05; ***p<0.01. 

 

Table 7 applies machine learning techniques to equation (3) and compares the 
performances. As observed earlier (in Table 2), XGBoost performs the best, with the lowest RMSE 
and highest R-square. Random Forest follows closely behind, while Neural Networks continue to 
struggle in predictive accuracy. Again, log transformations improve model performance, 
highlighting their importance in reducing variability and improving fit in machine learning 
applications to trade models. 

 

Table 7: Machine Learning Models Performance of equation (3) 

Model Performance Comparison  
 Variables in Level Variables in Log 

 Random 
Forest  

XGBoost  Neural 
Network  

Random 
Forest  

XGBoost  Neural 
Network  

RMSE 2,600.13 2,161.52 3,313.21 1.32 1.27 1.33 
MAE 656.73 744.23 992.63 0.91 0.88 0.91 
R-square 0.71 0.77 0.46 0.86 0.87 0.86 

Note: This table presents performance metrics (RMSE, MAE, and R-square) for machine 
learning models estimating equation (3). Random Forest, XGBoost, and Neural Networks are 
evaluated using both level and log-transformed variables. Lower RMSE and MAE indicate better 
predictive accuracy, while higher R-square suggests better model fit. 

 

Table 8 compares the predictive accuracy of traditional and machine learning models for 
equation (3). Traditional methods, particularly OLS and GPML, have lower predictive 
performance than ML methods. The best-performing models remain XGBoost and Random Forest 
with log-transformed variables, reinforcing the effectiveness of tree-based models in capturing 
trade flow determinants. 
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Table 8: Traditional vs Machine Learning Models Performance of equation (3) 

Model Performance Comparison 
  Performance Metrics 

Estimation Methods Model Type RMSE MAE R-square 
Regression OLS 1.47 1.05 0.83 
 PPML 4271.08 1032.07 0.20 
 GPML 84051.74 8377.11 0.53 
 NBPML 49478.33 4955.34 0.53 
ML (Log transformation)  Random Forest 1.32 0.91 0.86 
 XGBoost 1.27 0.88 0.87 
 Neural Network 1.33 0.91 0.86 
Note: This table compares traditional econometric estimators (OLS, PPML, GPML, and NBPML) 
with machine learning models (Random Forest, XGBoost, and Neural Networks) for equation (3). 
Performance is evaluated using RMSE, MAE, and R-square, with results reported for both level 
and log-transformed variables. 

 

Estimation of equation (3) with zero trade flows 

 

The estimation results for equation (3) when zero trade flows are included is presented in 
Table 9. PPML and NBPML again show different coefficient magnitudes, with NBPML producing 
slightly higher R-square values. The overall fit remains lower than in equation (2), suggesting that 
equation (3) is more sensitive to the presence of zero trade flows. 

 

Table 9: Traditional Models Performance of equation (3) with zeros trade flows 

Model Performance Comparison  
PPML NBPML 

Distance -0.91*** -2.10***  
(0.003) (0.10) 

Origin size 1.60*** 1.58***  
(0.04) (0.34) 

Destination size 0.56*** 1.57***  
(0.02) (0.35) 
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Border 1.99*** 3.80***  
(0.02) (0.42) 

Constant -14.26*** -16.79***  
(0.52) (5.72) 

R-square 0.18 0.68 
MAE 1072.20 5462.12 
RMSE 3972.85 30867.10 
Observations 872 872 

Note: This table presents estimated coefficients for equation (3) using PPML and NBPML when 
zero trade flows are included. GDP approximates Origin size and Destination size, Distance 
represents centroid-based regional distances, and Border taking 1 if the trading regions are in the 
same country. R-square is computed on test dataset of 218 observations. Coefficients significance: 
*p<0.1; **p<0.05; ***p<0.01. 

 

Table 10 assesses how well machine learning models handle equation (3) in the presence 
of zero trade flows. Compared to Table 8, all models show lower performance, with increased 
RMSE values and decreased scores. Random Forest achieves the R-square, though its predictive 
power is still reduced relative to scenarios without zero trade flows. 

 

 

Table 10 provides also a final comparison of traditional and machine learning models under 
equation (3) with zero trade flows. NBPML marginally outperforms PPML, though both methods 
struggle to fully capture the effects of zero trade flows. Machine learning models again experience 
a decline in performance, further highlighting the challenges of applying ML methods to sparse 
trade data. 

 

Table 10: Traditional vs Machine Learning Models Performance of equation (3) with zeros trade 
flows 

Comparison of Estimation Methods  
  Performance Metrics 

Estimation 
Methods 

Model Type RMSE MAE R-square 

Regression PPML 3972.85 1072.20 0.18 
 NBPML 30867.10 5462.12 0.68 
Machine Learning Random Forest 2624.04 730.89 0.54 
 XGBoost 2169.56 714.91 0.70 
 Neural Network 3033.20 869.84 0.43 
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Note: This table compares traditional econometric models (PPML and NBPML) with machine 
learning models (Random Forest, XGBoost, and Neural Networks) in estimating equation (3) with 
zero trade flows. Performance is evaluated using RMSE, MAE, and R-square, highlighting 
differences in model suitability for handling sparse trade data. 

 

3.3. Synthesis 

The comparative results presented in Tables 1 through 12 offer a clear lens through which 
to assess the central research question: namely, the extent to which machine learning methods can 
enhance predictive accuracy for gravity models of trade, and how they measure up against more 
traditional econometric approaches—especially when zero trade flows are taken into account. 
Across both equation specifications (McCallum’s and Anderson and Van Wincoop’s) and both data 
conditions (zero flows excluded vs. included), the findings consistently indicate that tree-based 
ML models (Random Forest and XGBoost) tend to yield higher R-squared values and lower RMSE 
under most settings without zero flows, thus providing stronger predictive performance than 
traditional estimators such as OLS, PPML, GPML, and NBPML. Neural Networks generally trail 
behind tree-based algorithms, highlighting that not all ML methods perform equally in a trade-
flow context, especially in smaller or moderately sized datasets. 

Yet, when zero trade flows are introduced into the analysis, PPML and NBPML often 
exhibit advantages in handling the resulting sparsity, sometimes matching or even surpassing ML 
algorithms in terms of R-squared. This pattern underscores that while ML can excel in capturing 
nonlinearity and complex interactions, traditional estimators retain an edge in zero-inflated 
environments, owing to their well-established theoretical properties and capacity to accommodate 
the discrete nature of trade data. In short, the tables demonstrate that ML can indeed improve 
gravity model predictions in many situations but that traditional estimators remain valuable for 
scenarios characterized by numerous zero trade values. These observations answer the research 
question by highlighting that the choice between ML methods and traditional approaches depends 
on the research objective—predictive accuracy versus robustness to zeros—and the empirical 
context in which the gravity model is applied. 

 

4. Conclusion 

 

In conclusion, the comparative analysis of traditional econometric methods and machine 
learning approaches for estimating gravity models demonstrates both the promise and limitations 
of each class of estimators. On the one hand, tree-based algorithms such as XGBoost and Random 
Forest consistently show superior predictive performance in terms of RMSE and R-squared, 
particularly when zero trade flows are excluded, and the data contain sufficient variation to capture 
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nonlinearities and intricate interactions. These findings support the notion that advanced 
computational tools can reveal latent patterns in high-dimensional datasets that conventional linear 
or pseudo-maximum likelihood estimations may overlook. On the other hand, the robustness of 
PPML and NBPML in handling zero-inflated trade data remains a crucial advantage, underscoring 
the significance of model choice when zero flows constitute an appreciable portion of the dataset. 
In addition, traditional econometric estimators retain their appeal for policy-oriented studies that 
place a premium on coefficient interpretability and well-established theoretical underpinnings. 

Taken together, the results suggest that the selection of an estimation strategy depends 
fundamentally on the research objective. Where predictive accuracy is paramount, and the data are 
rich enough to allow for flexible modeling of complex relationships, machine learning methods 
stand out as effective tools. Conversely, when zero trade values are prominent or when 
interpretative clarity is essential for policy formulation, PPML or NBPML may be more 
appropriate. 

Future work might explore hybrid approaches that integrate the transparency of 
econometric modeling with the predictive strengths of machine learning, as well as investigate 
ways to adapt neural networks or other nonlinear frameworks to the zero-inflated nature of trade 
data. As global trade patterns become increasingly dynamic, the continued refinement of gravity 
model estimation methods—and the ability to synthesize advances in both econometrics and 
computational science—will remain a key priority for scholars and policymakers alike. From a 
methodological standpoint, new sources of trade-relevant data—ranging from satellite imagery to 
real-time shipping and supply chain information—continue to expand the dimensionality and 
complexity of economic datasets. Traditional econometric models, while rigorous and 
interpretable, may not fully exploit these emerging data streams, nor capture intricate patterns like 
nonlinearities and higher-order interactions that often characterize trade flows. Hence, integrating 
ML methods offers a pathway to harness these data more effectively, advancing both the predictive 
and explanatory power of trade models.   

Moreover, the global trade landscape has grown increasingly multifaceted, influenced by 
shifting geopolitical alliances, evolving trade agreements, and unpredictable exogenous shocks. In 
this environment, forecasting precision becomes central to informing trade policy, such as tariff 
setting, multilateral negotiations, and the design of trade facilitation measures. Machine learning 
methods that excel in out-of-sample forecasting can substantially strengthen policy frameworks, 
provided that challenges associated with zero trade flows and interpretability are managed. By 
refining hybrid approaches that merge the clarity of established econometric structures with the 
adaptive capabilities of ML algorithms, future work stands to deliver both methodological 
innovations and practical tools for policymakers.   

Such advancements hold promise for addressing longstanding debates in the trade 
literature. For instance, while extensive research has examined the role of distance, shared borders, 
and GDP in shaping bilateral trade, questions remain regarding how specific or transient factors—
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like commodity-level specialization, supply chain disruptions, or trade policy shocks—manifest 
in disaggregated data. Machine learning can illuminate these nuanced effects by discovering 
patterns that elude conventional estimation. Consequently, continued investigation of ML-based 
gravity models can deepen our theoretical understanding of how trade determinants operate and 
provide more robust policy guidance in an era marked by heightened uncertainty and rapid market 
shifts.   
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