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Models and Priors for

Multivariate Stochastic Volatility%

Éric Jacquier , Nicholas G. Polson , Peter Rossi� � �

Abstract / Résumé

Discrete time stochastic volatility models (hereafter SVOL) are noticeably harder to estimate than

the successful ARCH family of models. In this paper, we develop methods for finite sample inference,

smoothing, and prediction for a number of univariate and multivariate SVOL models. Specifically, we

model fat-tailed and skewed conditional distributions, correlated errors distributions (leverage effect),

and two multivariate models, a stochastic factor structure model and a stochastic discount dynamic

model. We specify the models as a hierarchy of conditional probability distributions: p(data|volatilities),

p(volatilities| parameters) and p(parameters). This hierarchy provides a natural environment for the

construction of stochastic volatility models that depart from standard distributional assumptions. Given

a model and the data, inference and prediction are based on the joint posterior distribution of the

volatilities and the parameters which we simulate via Markov chain Monte Carlo (MCMC) methods.

Our approach also provides a sensitivity analysis for parameter inference and an outlier diagnostic.

Our framework, therefore, provides a general perspective on specification and implementation of

stochastic volatility models. We apply various extensions of the basic SVOL model to many financial

time series. We find strong evidence of non-normal conditional distributions for stock returns and

exchange rates. We also find some evidence of correlated errors for stock returns. These departures

from the basic model affect persistence and therefore should be incorporated if the model is used for

variance prediction.

Les modèles de volatilité stochastique (ci-après) SVOL sont singulièrement plus difficiles à estimer que
les modèles de type ARCH qui connaissent un grand succès. Dans cet article, nous développons des
méthodes en échantillons finis pour l�inférence et la prédiction, ceci pour un nombre de modèles SVOL
univariés et multivariés. Plus précisément nous modélisons des distributions conditionnelles non-normales,
des modèles avec effets de levier, et deux modèles multivariés; un modèle a structure de facteurs et un
modèle d�escompte dynamique. Nous spécifions les modèles par une hiérarchie de distributions
conditionnelles : p(données|volatilités), p(volatilités|paramètres), et p(paramètres). Cette hiérarchie fournit
un environnement naturel pour l�élaboration de modèles de volatilité stochastique plus généraux que le
modèle de base. Pour un modèle et un échantillon, l�inférence et la prédiction sont fondées sur la
distribution postérieure jointe des volatilités et des paramètres que nous simulons avec des méthodes de
Chaînes de Markov et de Monte Carlo (MCMC). Notre approche fournit aussi une analyse de sensitivité
pour les paramètres et une analyse pour les outliers. Le cadre d�estimation fournit donc une perspective
générale sur la spécification et l�implémentation des modèles de volatilité stochastique. Nous appliquons
plusieurs extensions dumodèle SVOL de base à de nombreuses séries financières. Il y a une forte évidence
de non-normalité des distributions conditionnelles. Il y aussi une certaine évidence de corrélation des
erreurs pour les retours sur actions. Ces élaborations du modèle de base ont une influence sur la persistance
et devraient être incorporées en vue de prédictions de volatilité.

Some key words: stochastic volatility, forecasting and smoothing, Metropolis algorithm.



1 Introduction

Time varying volatility is a characteristic of many �nancial series. A natural alternative to

the popular ARCH framework is a SVOL model which allows both the conditional mean and

variance to be driven by separate stochastic processes. Likelihood-based analysis of SVOL models

is notoriously di�cult and until recently there have been few implementations of such models.

Jacquier, Polson and Rossi (1994), (JPR, henceforth), introduced MCMC techniques for the

analysis of a univariate stochastic volatility model with a normal conditional distribution for

the observations. Previous research had relied on non likelihood-based estimation techniques

like the Method of Moments (MM) or Quasi Maximum Likelihood (QML), e.g., Melino and

Turnbull (1990) and Harvey, Ruiz, and Shephard (1993). JPR document the e�ciency gains

of the MCMC technique over the QML and the method of moments, casting doubt on their

reliability at conventional sample sizes. Danielsson (1994) considers a simulation based method

for computing maximum likelihood estimates of the parameters of a basic SVOL model. This

procedure relies on asymptotic approximations and does not solve the smoothing and prediction

problem.

Following the ARCH literature, see Bollerslev, Chou, and Kroner (1992), it may be natural to

investigate whether the conditional distribution is normal. Indeed, the results in Gallant, Hsieh,

and Tauchen (1994) show that the conditional distribution is non normal for stock returns. One

can also use the SVOL model to produce the so-called leverage e�ect where price decreases are

associated with volatility increases as in the EGARCH model of Nelson (1991). Introducing a

negative correlation between the errors of the variance and the observables, e.g., stock returns,

produces this leverage e�ect. There is clearly a need for multivariate models, for example in

portfolio and asset pricing applications. Mueller and Pole (1994) discuss inference issues for mul-

tivariate ARCH-style models. Our focus is to develop MCMC algorithms for the implementation

of stochastic volatility models that allow for: fat tailed and skewed conditional errors, correlated

errors, and multivariate stochastic volatility structures. Our methodology allows the implementa-

tion of dynamic time series models with stochastic discount factors (see West and Harrison (1989)

for a variety of applications). One attractive feature of our modelling approach is the substantial
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commonality among the algorithms for di�erent model speci�cations. For example, the univariate

algorithm developed in JPR forms the basis for many of the extensions considered here. We show

how this commonality arises and how the hierarchical structure can be used to develop further

generalizations.

The need for implementing SVOL models with these extensions of the basic model is clear. It

is con�rmed by our empirical �ndings in section 4. The relatively poor performance of approxi-

mate methods documented in JPR and Andersen and S�rensen (1994) for the basic model casts

a doubt on their ability to handle these extensions well. A problem with the QML algorithm

is that it approximates the logarithm of the squared conditional error, i.e., of a �2 in the basic

model, to a normal distribution. Kim and Shephard (1994) show that the log(�2) can be well

approximated by a discrete mixture of normals. Mahieu and Schotman (1994) consider a discrete

mixture of normals with unknown parameters which allows for a 
exible distribution for the log

of the squared conditional error. One disadvantage of the mixture of normals framework is that it

does not extend naturally to provide approximations in the correlated errors or multivariate cases.

Our inference is based on the exact joint posterior distribution of the unobserved volatility se-

quence and parameters of the volatility process. MCMC algorithms allow us to simulate from this

joint posterior distribution without resorting to model approximations. Moreover, our approach

simultaneously addresses the problems of smoothing, prediction and parameter estimation under

the non-standard distributional assumptions described above. This 
exibility is crucial for �nance

applications which requires not only parameter inference but prediction of future volatilities as in

option pricing.

We employ a three stage hierarchical model. The hierarchical model is composed of the condi-

tional probability distributions: p(datajvolatilities), p(volatilitiesjparameters) and p(parameters).

The �rst stage distribution, p(datajvolatilities), models the distribution of the data given the

volatilities. In the basic SVOL model, this latter distribution is normal, but not in the extensions

discussed above. We will show that non-normality and correlations are fairly straightforward to

implement in our framework. For all but one of our �nancial series we �nd evidence that the

data favour a fat-tailed distribution over the generally assumed normal distribution. We also �nd
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some evidence of negative correlation. The second stage distribution, p(volatilitiesjparameters),

models prior beliefs about the stochastic evolution of the volatility sequence. For example, it

is generally assumed that the logarithm of conditional volatility follows an AR (1) process. See

Jacquier, Polson, and Rossi (1994b) for a discussion of models in the level of volatility. We

�nd that the degree of persistence of the AR(1) changes when non-normality is allowed in the

�rst stage distribution. Therefore, the proper modelling of the �rst stage distribution a�ects the

quality of prediction, and is of paramount concern for many uses of the model. We extend the

second stage distribution to a multivariate setup. We describe two multivariate hierarchical mod-

els for p(volatilitiesjparameters): a stochastic factor structure model and a stochastic discount

dynamic model. The third stage distribution, p(parameters) re
ects beliefs about the parameters

of the volatility process. Typically, this stage employs a di�use distribution that constrains the

parameters of the volatility process to the region of stationarity. But tighter priors are easily incor-

porated. We also examine the e�ects of distributional assumptions on the posterior distributions

of the parameters of the volatility process. Thus, hierarchical models will prove extremely useful

for researchers concerned with the in
uence of distributional assumptions on resulting inferences.

The advantage of our MCMC estimation methodology is that it simultaneously produces the

exact posterior distributions of the parameters and of each of the unobservable variances, as well

as the predictive density of future volatilities. The explicit joint estimation of both parameters

and volatilities is more appealing than the ad hoc combinations of approaches found in other

procedures. For example, point estimates from the method of moments have to be substituted

into an approximate Kalman �lter to obtain smoothed estimates of volatilities. The problems due

to the ine�ciency of the parameter estimation is compounded by the approximation in the Kalman

�lter. For example the uncertainty around the estimates becomes di�cult to characterize. Also,

further approximation is required to produce inference for nonlinear functions of the parameters.

Exact inference for nonlinear functions of the parameters or variances is straightforward for our

simulation based estimator because a draw of the joint distribution of the parameters produces a

draw of the desired function by direct computation. MCMC procedures use a Markov chain to

simulate draws from the joint posterior p(volatilities; parametersjdata). Marginal distributions,
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for example p(volatilitiesjdata), are computed by simply averaging the appropriate conditional

distributions over the simulated draws.

The paper is organized as follows. Section 2 describes our hierarchical modelling framework

for the proposed models. Section 3 develops the speci�c MCMC algorithms to implement the

models. Finally, Section 4 considers empirical applications.

2 Extending the Basic Univariate SVOL Model

JPR develops a Metropolis algorithm for computing the joint posterior distribution in a univariate

stochastic volatility model with normal errors. Although it is not presented as a hierarchical

model, it is a particular example of the general framework discussed here. In that model, the �rst

stage assumes normality, the second stage distribution speci�es a smooth mean reversion for the

volatility sequence where p(volatilitiesjparameters) is speci�ed by a log AR(1) process and the

third stage assumes a di�use distribution for p(!) restricted to the region of stationarity of the

volatility process. The model for the observations yt and the volatilities ht is given by

yt = h
1

2

t �t; (1)

log ht = � + � log ht�1 + �vvt; t = 1; : : : ; T

(�t; vt) � N2(0; I) ; (�; �; �v) � p(�; �; �v)

Here the parameter vector ! = (�; �; �v) consists of a location �, a volatility persistence � and a

volatility of the volatility �v. We denote this standard model by SVOL(h; !).

The major assumption relaxed in this paper is that of the standard uncorrelated bivariate

normal distribution for �t and vt. The natural directions for an extension of the model are for ex-

ample; fat-tailed error distributions; skewed error distributions; correlated errors. Straightforward

alternative speci�cations not considered here include regressors in the mean/volatility equations;

`jumps' in the volatility process as in McCulloch and Tsay (1993). We also describe two mul-

tivariate hierarchical models for stochastic volatility, a stochastic discount factor model and a

stochastic factor structure model. Finally, we address the issue of sensitivity analysis available in

our approach.
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2.1 Fat-tailed Departures from Normality

One of the conclusions of the literature on the estimation of ARCH models to �nancial time

series (see Bollerslev, Chou, and Kroner (1992) ) is that the conditional errors are not normally

distributed but have a fat tail. To perform a similar diagnostic with the stochastic volatility

model, it is necessary to extend the model to allow for fat tails in the error of the mean equation.

In the simple stochastic volatility model de�ned in equation (1) �t is modelled as a standard

normal. In order to fatten the tail of this distribution whilst keeping symmetry, we model the

distribution p(�t) as a scale mixture of normals, a special case of which is the student-t distribution.

Consider the stochastic volatility model de�ned by the conditionals

yt = h
1

2

t �t; �t �
Z
N(0; �t)p(�t)d�t (2)

log ht = � + � log ht�1 + �vvt; t = 1; : : : ; T

(�; �; �v) � p(�; �; �v)

where the distribution p(�t) is chosen to re
ect the appropriate fat-tailness required in the dis-

tribution p(�t). By varying p(�t) the distribution p(�t) can exhibit a wide range of fat-tailed

behaviour ranging from the double exponential, exponential power, stable, logistic, or t-family of

distributions (see Carlin and Polson (1991), for details). Within the hierachical framework it is

also straightforward to model heavy-tailed errors for vt in the variance equation. Apply the same

scale mixture of normals idea and adapt the modelling of section 3.3.

A natural choice is to model the distribution p(�t) as a t� -distribution with � degrees of

freedom. The appropriate choice of p(�t) for this speci�cation is an inverse gamma distribution,

speci�cally �=�t � �2� for a hyperparameter �. Given a �xed �, this extends the basic model and

can be thought of as an outlier robusti�cation. Fixing � at small values will downweight ouliers

in the estimation of stochastic volatility parameters. Posterior inferences about �t can be used

as an outlier diagnostic. The scale mixture model accomodates an outlier at time t by increasing

the scale. Observations with marginal posteriors centered on large values of �t are candidates for

outliers.
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The hierarchical structure allows us to go one step further and model � with a distribution

p(�). It is then possible to let the data infer about the severity of the departure from normality

through the marginal posterior distribution p(�jy).

In Section 3 we describe how to construct a MCMC algorithm to implement this model. It

will be useful to re-write the model as

yt = h
1

2

t �
1

2

t zt; (3)

log ht = � + � log ht�1 + �vvt; t = 1; : : : ; T

(�; �; �v; �) � p(�; �; �v)p(�)

(zt; vt) � N2(0; I)

where p(�) =
QT

t=1 p(�t). We will use the vector of latent variables � to construct an algorithm

to simulate from the joint posterior �(h; !; �jy). The posterior distribution of interest �(h; !jy)

is then a marginal distribution from this joint distribution. See Section 3.2 for further details.

2.2 Skewed Departures from Normality

One simple way of introducing an asymmetric skewed distribution for �t is to consider a contami-

nated normal mixture of the form �tj�; �; � � (1��)N(���; 1)+�N(�; �2) for parameters (�; �; �).

We chose � = �=(1 � �) to force the mean of the conditional error �t to be zero. Note that the

framework here can extend beyond the modelling of conditional skewness. For example, when

� = 0 we have a symmetrical fat-tailed mixture distribution. The conditional variance of returns

is multiplied by �2 with probability �. This is similar to the regime switching model used by

Hamilton and Susmel (1994) for ARCH models. The di�erence is in the formulation of transition

probabilities. Our main goal is to model skewness, so we introduce one probability of being in

state 1 or 2, � and 1��. Hamilton and Susmel think of regimes and model two transition probabil-

ities from state 1 to state 2, and from state 2 to state 1. With � = 0, our model is easily extended

to accommodate this regime switching framework which appears to be a successful extension of

the basic ARCH framework.
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The parameter � is used to re
ect asymmetrical departures in the error distribution. The

parameter � helps model a probability of each observation being an \outlier". Heuristically,

� governs skewness and � in
uences the kurtosis of the error distribution. In our hierarchical

framework, these parameters can themselves be modelled with a distribution p(�; �; �). The

model is speci�ed as

yt = h
1

2

t �t; �t � (1� �)N(���; 1)+ �N(�; �2) (4)

log ht = � + � log ht�1 + �vvt; t = 1; : : : ; T

(�; �; �v; �; �; �) � p(�; �; �v)p(�)p(�; �)

A standard approach to re-writing the �rst stage of the hierarchy that allows easy implementation

of MCMC methods is to use a set of unobserved indicator variables I = fItg. Each error term

�t has an indicator variable It with conditional distribution �tjIt = 0; �; �; � � N(���; 1) and

�tjIt = 1; �; �; � � N(�; �2) where p(It = 1j�) = �. Under these conditionals we get the appropriate

marginal mixture distribution for �tj�; �; � � (1� �)N(���; 1)+ �N(�; �2). The third stage prior

distribution for the vector of indicator variables is given by p(Ij�) = QT
t=1 p(Itj�). This allows the

�rst stage of the model in (4) to be re-written as

h
�

1

2

t yt � (��)1�It�

� It
= zt ; zt � N(0; 1)

p(Ij�) =
TY
t=1

p(Itj�)

One of the important features of our analysis is that we can use the data to learn about the

parameters (�; �; �). In particular, given the data, we can compute marginal posteriors for the

(�; �; �) parameters. For example; the posterior distribution p(�jy) can be used to assess the

severity of the departure from symmetry whilst p(�jy) and p(� jy) can be used to assess the

proportion of outliers and fat-tailedness, respectively.

2.3 Correlated Errors Model

The �nal extension of the univariate SVOL model which we consider is a correlation between the

two errors �t and vt. This may be particularly important for stock returns. For example, with a
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negative correlation, a decrease in price, i.e. a negative return �t is likely to be associated with a

positive variance shock vt, therefore producing the behavior referred to as the leverage e�ect. As

a hierarchical model we have

yt = h
1

2

t �t;

log ht = � + � log ht�1 + �vvt; t = 1; : : : ; T

(�; �; �v; �) � p(�; �; �v; �)

(�t; vt) � N

0
B@0;

0
B@ 1 �

� 1

1
CA
1
CA

The ex post analysis of this model now requires simulation from the joint posterior distribution

�(h; !; �jy). Two di�culties arise. First one needs to specify an appropriate joint prior distri-

bution for the correlation � and the volatility of volatility �v . Second the algorithm needs to be

modi�ed to accommodate the correlation �. We address these problems by reparameterising the

model in terms of (�; �;��), where �� and the joint distribution of the data and the volatilities

are given by

p(y;hj�; �;��) =
TY
t=1

h
�

3

2

t p(h
�

1

2

t yt; loghtjht�1; �; �;��)

�� =

0
B@ 1 ��v

��v �2v

1
CA

It is algebraically easier to rewrite this joint distribution in terms of the residuals (rt; ut) where

rt = (h
�

1

2

t yt; ut) and ut = log ht � �� � log ht�1 for 1 � t � T . The joint distribution of the data

and the volatilities is now

p(y;hjA;��) =
TY
t=1

h
�

3

2

t j��j� 1

2 exp

�
�1

2
tr(���1A)

�

where A =
P

t rtr
0

t is the residual matrix. In Section 3 we use this likelihood function to develop

an MCMC algorithm for the analysis of the posterior distribution.

The di�culty in specifying a prior p(��) on �� is that the top left element is equal to one.

Unfortunately, we cannot use the standard conjugate the inverse Wishart family as it is impossible

to model beliefs where some elements of the matrix are known and others are not. We rewrite

8



the covariance matrix with a hierarchical structure to the probability distribution. Let  =

��v;
 = �2v(1 � �2) with inverse transformation �2v = 
 +  2 and � =  =
p

+  2. We elicit

the prior distribution on �� in a conditional fashion via p(��) = p( j
)p(
). The intuition of

this reparameterization is straightforward: we reformulate the covariance matrix of rt and ut in

terms of the linear regression of ut on rt. The new parameters are the slope coe�cient and the

variance of the noise for which a normal-gamma prior is natural. We report quantiles of the exact

posterior distribution of � to document its uncertainty. Our empirical results will show that the

posterior for � is relatively di�use although its mass is concentrated primarily on negative values.

Given this and the bounded nature of the parameter, it is all the more important to make �nite

sample inferences without resorting to asymptotic methods.

2.4 A Stochastic Discount Factor Model

In the multivariate case the data vector yt is a q�1 vector of (excess) asset returns. The stochastic

discount factor model is de�ned by

yt = h
1

2

t �
1

2 �t;

log ht = �+ � log ht�1 + �vvt; t = 1; : : : ; T

(�; �; �v;�) � p(�; �; �v)p(�)

where (�t; vt) is typically modelled as a standard q + 1 multivariate normal. Extensions to fat-

tailed distributions or a vector of correlations between �t and vt can be made easily by adapting

the models in Sections 2.1 and 2.3. This model is a stochastic generalisation of the discount

dynamic model using extensively in Bayesian forecasting (see Harrison and Stevens (1976), and

West and Harrison (1989)). Quintana and West (1989) provide an application of discount dynamic

models to exchange rate data. An implication of this model however is that asset returns cross-

correlations are non stochastic. On the other hand the covariance matrix � is formulated in full

generality with no simplifying assumption.

2.5 Factor Structure Multivariate Stochastic Volatility Model

An alternative to the previous speci�cation is to specify a factor structure for the variance covari-

ance matrix, in which the factors possess stochastic volatility. This allows the cross-correlations
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to be stochastic. The factor structure, widely hypothesized in asset pricing, helps reduce the di-

mensionality of the parameter space. See Engle, Ng, and Rothschild (1990) for an incorporation

of the factor structure into the ARCH framework. This type of speci�cation is needed in the study

of large cross-sections of assets when dynamic factors are hypothesized to be priced. Consider q

assets with returns yt = (y1t; : : : ; yqt)0 where 1 � t � T . Suppose that there are k underlying

time varying factors Ft = (F1t; : : : ; Fkt)0 that generate the returns according to

yt = �Ft + 
�
1

2 �t;

Ft � Nk(0;Ht)

log hit = �i + �i log hi;t�1 + �ivvt;

p(�;
; !) = p(
)
kY

i=1

p(�i)p(!i)

where Ht = diag(hit), � = (�1; : : : ;�k) is a matrix of factor loadings, and �t � N(0; Iq). Let

� = (�1; : : : ; �k) be the vector of persistence parameters for the volatilities of each factor and

�v = diag(�iv) the matrix of volatilities. Then, this model assumes that the k underlying factors

are independent of each other and follow a simple univariate stochastic volatility model as in JPR.

Under these assumptions we have a time-varying factor structure to the evolution of the variance

of the observations V ar(yt) = �Ht�
0 + 
. We do not necessarily assume that 
 is diagonal.

That is the k factors are introduced to model the stochastic variation in the covariance matrix

of yt. If one wants to assume that the factors also explain the non-diagonality of this covariance

matrix, then 
 can be assumed to be diagonal.

The advantage of this speci�cation of the multivariate evolution of the covariance matrices is

that the posterior distribution �(F;�; !jy) can be broken into conditionals �(Fj jF(�j);�; !;y)

(1 � j � k) and �(�; !jF;y) where the �rst set of conditionals can be simulated via a simple

transformation of the JPR Metropolis algorithm used in the univariate model (see section 3.7 for

details).

2.6 Parameter Estimation and Sensitivity Analysis

Given a model and the data y, inference about the volatilities h and parameters ! is given by the

joint distribution �(h; !jy). In the univariate volatility case, the posterior distribution �(h; !jy)

10



is known up to proportionality and is given by

�(h; !jy)/
TY
t=1

p(ytjht)
TY
t=1

p(htjht�1; !)p(!)

Parameter inference is based on the marginal posterior distribution p(!jy). JPR (1994) provide

a number of examples for stocks, stock indices and exchange rates. The empirical evidence shows

that the posterior distribution for the persistence parameter p(� j y) is concentrated away from

the random walk case (� = 1) but exhibits strong skewness. This renders standard classical

asymptotics inappropriate. For asymptotic methods, the use of asymptotic standard errors and

the normality assumption may result in signi�cant probabilities of explosive behavior or negative

standard deviation. A similar problem is reported by Harvey and Shephard (1993) with respect

to the coe�cient �. The QML standard errors often imply probabilities of values outside [-1,1].

The simulation based estimator allows us to obtain quantiles of the exact posterior distribution

of the parameters or variances.

In the fat-tailed error model we can address a number of inference problems as well as sen-

sitivity issues. For example, consider the model in section 2.1. Sensitivity of inference for � to

the normal error distribution is conducted using the conditional posterior distribution p(�j�;y)

for which we have draws. Outliers are pinpointed using the draws of the posterior distribution of

the latent scale variable �t. In our empirical examples, we compare the posterior mean E(�tjy)

with the 95 % quantiles of the prior distribution p(�t) for each observation. In the hierarchical

framework it is also possible to conduct inference about the size of departure from normality

in the error distribution. The degrees of freedom parameter � is modelled with a distribution

p(�) and the data infer about the severity of the departure from normality through the marginal

posterior distribution p(�jy). In all but one of our series we �nd evidence for non-normality.

There is a number of other advantages to using our approach to inference. Aside from the

unifying perspective on implementing these models, inference for nonlinear functions of the param-

eters or variances is straightforward. Prediction for unobservables like future average volatility,

needed in option pricing is easy (see Jacquier, Polson, and Rossi (1994b)). Typical nonlinear

parameters of interest can be the half-life of a shock to volatility log(:5)= log �, or the coe�cient

of variation of the volatility sequence exp
�
�2v=1� �2

�
� 1. JPR provide a number of examples

11



for stocks, stock indices and exchange rates. Our simulation based approach therefore provides

an exact �nite sample inference with no need to appeal to delta-method asymptotics. JPR show

that this hierarchical approach provides estimators with substantial e�ciency gains over other

competing methods even in the standard normal errors model.

3 Implementation of SVOL models via MCMC Algorithms

To construct a Markov chain Monte Carlo algorithm for simulating draws from a stochastic

volatility model it is usual to consider the following conditional posterior distributions �(hj!;y)

and �(!jh;y). Whilst the latter distribution is available for direct simulation, the former is

not. Under the normal assumption, a number of solutions have been proposed. JPR (1994)

decompose �(hj!;y) further by considering the one dimensional conditionals �(htjh(�t); !;y)

where h�t = (h1; : : : ; ht�1; ht+1; : : : ; hT ). A Metropolis algorithm is used to perform this step of

the algorithm.

For the models that depart from the normal assumptions, we simulate from the joint posterior

distribution of all the volatilities, the parameters and additional state variables. For example, in

the fat-tailed model the state space x = (h; !; �) where � is the vector of scale parameters, and in

the skewed departures x = (h; !; I) where I is the vector of indicators. A MCMC algorithm spec-

i�es an irreducible and aperiodic Markov chain, see Tierney (1991), with stationary distribution

given by the desired joint distribution. There is a variety of choices for the underlying Markov

chain. The Hastings-Metropolis algorithms (Hastings (1970) ) provide a family of algorithms that

can be de�ned using only local movements in the parameter space and knowledge of the joint

posterior only up to proportionality. To simulate elements from the posterior distribution we

proceed by picking an initial state, possibly at random, and then simulating transitions of the

chain. The draws of the simulated distribution converge to draws of the stationary distribution

namely the required joint posterior.

3.1 Metropolis algorithm

A Metropolis algorithm requires the speci�cation of a Markov transition kernel, Q, density ratio

�(y)=�(x) and state space for the chain. The researcher then runs the Markov chain based on
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Q and 'adjusts' its movements using the density ratio as follows: suppose the chain is at x,

generate a candidate point y from Q(x;y). If �(y)Q(y;x) � �(x)Q(x;y), the chain goes to y.

If �(y)Q(y;x)< �(x)Q(x;y), accept the new draw y with probability �(y)Q(y;x)=�(x)Q(x;y),

otherwise repeat the last draw x. This new process is a Markov chain that is time reversible with

respect to � and therefore � is its stationary distribution. The acceptance probability of a new

draw is related to the transition kernel and the density ratio by:

�(x;y) = min

�
�(y)Q(y;x)

�(x)Q(x;y)
; 1

�

Tierney (1991) and M�uller (1991) describe extensions and implementations of Metropolis-type

algorithms. Note how this algorithm nests the cases when we can make direct draws from �.

Then, Q(x;y) / �(y), the acceptance probability is one, and we are back to a standard Gibbs

sampling framework.

3.2 JPR univariate Metropolis algorithm

In the univariate stochastic volatility model with posterior �(h; !jy), JPR (1994) use a product

form for the Metropolis algorithm of the form

Q(x;y) = Q!(x;y)
TY
t=1

Qht(x;y)

Here the su�x is used to indicate which component of x = (h; !) gets updated conditional

on the rest of the variables. The one dimensional blanket Qht(x;y) is speci�ed to mimic the

conditional �(htjh(�t); !;y). Speci�cally Qht(�; �) is an inverse gamma density ht � 1=Z where

Z � Gamma(�; 1= t) with parameters

 t = (�� 1)e�t+:5�2 + :5y2t (5)

� =
1� 2e�

2

1� e�
2
+ :5

with �t and � are given in JPR. The blanket Q!(x;y) which updates the parameter vector given

the volatility sequence can be set equal to the conditional posterior �(!jh;y) since the latter is

available from standard linear models methodology.

13



3.3 Fat-tailed Departures from Normality

For latent variable modelling we augment the posterior distribution with the vector of unobserved

latent variables �. A MCMC algorithm needs to be constructed for the full posterior �(h; !; � j y).

This is done by decomposing the distribution in terms of the conditionals

�(h; ! j �;y)

�(� j h; !;y)

We can now construct an algorithm to simulate from the joint posterior �(h; !; �jy). Notice that

we can simulate from �(h; !j�;y) using the original algorithm with yt replaced by �
�

1

2

t yt. As for

�(� j h; !;y), it can be simulated using results from Carlin and Polson (1991).

To draw from the conditional �(� j h; !;y; �) notice that �(� j h; !;y; �) = Q
p(�tjh; !;y; �)

where

p(�tjyt; ht; �) � p(�t j h�1=2t yt; �) / p(h
�1=2
t yt j �t; �)p(�t j �) (6)

The form of the conditional posterior therefore depends on the choice of prior p(�t j �). Two

useful fat-tailed distributions are given by the following priors and conditional posteriors

� If p(�t) � t� then �=�t � �2� and �tjyt; ht � IG

�
1
2(� + 1); 2

�
y2
t

ht
+ �

�
�1
�

� If p(�t) � DE(0; 1) then �t � Exp(2) and �tjyt; ht � GIG
�
1
2 ; 1;

y2
t

ht

�

where DE denotes the double exponential distribution and GIG the generalized inverse gaussian

distribution. To let the data gauge the severity of the departure from normality we can extend the

hierarchical model by letting � have a prior distribution p(�). This adds a conditional distribution

to our simulation procedure, namely p(�j�;h; !;y)� p(�j�). By Bayes theorem,

p(�j�;h; !;y)/ p(�)
TY
t=1

p(�tj�)

Therefore,

p(�j�;h; !;y)/ 1

(
Q

t �t)
�+1

exp

 
��
2

X
t

1

�2t

!
��=2

�(�=2)
p(�)

The prior distribution of � is a simple discrete distribution on an integer interval such as [1,60]

or [1,30]. Simulations from this one dimensional distribution can be handled directly.
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3.4 Skewed Departures from Normality

Instead of exploring possible fat-tailed departures from the standard normal assumption we can

model skewness and fat-tails directly by taking �t to be a contaminated normal mixture. Specif-

ically, we take �tj�; �; � � (1� �)N(���; 1)+ �N(�; �2) for parameters (�; �; �). These hyperpa-

rameters can themselves be modelled with a distribution p(�; �; �). The hierarchical speci�cation

of this model is

h
�

1

2

t yt � (��)1�It�

� It
= zt ; zt � N(0; 1)

log ht = � + � log ht�1 + �vvt; t = 1; : : : ; T

(�; �; �v; I; �; �; �)� p(!) p(Ij�) p(�) p(�; �)

where p(Ij�) =
QT

t=1 p(Itj�) with p(It = 1j�) = �. We now construct a MCMC algorithm to

simulate from the joint posterior p(h; !; I; �; �; � j y) where we have augmented the state space with

the unobserved indicator variables. We can simulate from this joint distribution by cycling through

the conditionals p(h; ! j I; �; �; �;y), p(Ijh; �; �; �;y), p(�; � j h; I; �;y) and p(� j �; �h; I;y). Let

us now consider each of these conditionals. To simulate from the conditional p(h; !jI; �; �; �;y)

notice that given I; �; �; �, the random variables fztg are N(0; 1). As in the basic algorithm, this

conditional is simulated by cycling through p(! j h; �) and p(h j !; �). The distribution of ! given

h is identical to that of the simple model. The distribution of h given ! is broken down into

univariate distributions p(ht j h�t; �) given by

p(htjht�1; ht+1; !; I; �; �; �;y)/ h
�

3

2

t exp

8><
>:�

1

2

0
@h�

1

2

t yt � (��)1�It�

� It

1
A
2
9>=
>; exp

(
�(log ht � �t)2

2�2

)

where (�t; �) are given in JPR. We can use the same blanketing density as in (5) but with y2t

transformed to y2t =�
2It . This accounts for the extra variation � in the skewed distribution. The

remaining term exp((��)1�It�yt=h
1

2

t �) accounts for the location shift �. We partially incorporate

it into the blanketing density by expanding it around the
p
1=ht. The remainder term in the

expansion appears is accomodated via the acceptance probability. As we iterate between this

step and the indicators and hyperparameters we have a di�erent data sequence for the volatilies
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each time. In fact, one can see how the hyperparameters a�ect the weighting of each observation

in the conditional posterior of the volatility sequence.

The conditional posterior p(I j h; �; �; �;y) is a product of independent univariate distributions

p(It j ht; �; �; �; yt), each of which is a simple binary draw where

p(It = 1 j ht; �; �; �; yt) /
�

� It
exp

0
@�1

2

(h
�

1

2

t yt � (��)1�It�)2

�2It

1
A (7)

Now consider the conditional posterior distribution of the parameters p(�; � jh; I; �;y). It is known

up to porportionality as

p(�; � j I;h; �;y)/ 1

�
P

t
It
exp

0
@�1

2

X
t

(h
�

1

2

t yt � (��)1�It�)2

�2It

1
A p(�; �)

where p(�; �) is the third stage prior for the parameter. If we assume a normal/inverse gamma

prior p(�; �) we can simulate directly from the conditional posteriors

p(� j �; I;h; �;y)/ 1

�
P

t
It
exp

0
@�1

2

X
t:It=1

(h
�

1

2

t yt � (��)1�It�)2

�2It

1
A p(�)

p(�j�; I;h; �;y)/ exp

0
@�1

2

X
t

(h
�

1

2

t yt � (��)1�It�)2

�2It

1
A p(�j�)

Notice that this di�ers from the standard conjugate implementation of the normal/inverse gamma

prior where the joint posterior is directly available.

Finally, we need the conditional distribution of the outlier probability �. We take � to have a

Beta prior distribution with hyperparameters �1 and �2. The Beta distribution is very 
exible and

can include a 
at prior as a special case. However a 
at prior is not appropriate for, presumably,

we do not expect a large amount of outliers. For example, a prior mean of � equal to 0.05,

and P (� < 0:5) = 0:99, can be modelled by the hyperparameters �1 = 0:2 and �2 = 3:5. The

conditional posterior distribution of � is

p(� j �; �; I;h;y) / p(�) p(�; �; I;h;y j �)

/ p(�) p(I j �) p(y j �; �; I;h; �)

where we have used the fact that p(h; �; �) = p(h; �; � j�; I). This is because � and I carry no

information on h; �; � in the absence of the data. Under the Beta prior assumption, we can
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combine the product p(�) p(I j �) by noting that p(I j �) corresponds to a Binomial experiment

with t1 successes, where t1 is the number of It's equal to one. We have

p(� j �; �; I;h;y)/ Beta(�1 + t1; �2 + T � t1) p(y j �; �; I;h; �) (8)

The second term in this conditional is given by

p(y j �; �; I;h; �)/ exp

0
@�1

2

X
t

(h
�

1

2

t yt � (��)1�It�)2

�2It

1
A (9)

where � = �=(1��). Although simulation from the conditional distribution of � in (8) is not direct

it is only one dimensional. We use accept/reject by simulating from the Beta(�1 + t1; �2+T � t1)

distribution and using (9) as an acceptance probability.

3.5 Correlated Errors Model

When the observation equation and the variance equation errors are correlated the joint posterior

�(h;��; �; �jy) is given by

�(h;��; �; �jy)/ p(��) p(�; �)
TY
t=1

h
�

3

2

t j��j� 1

2 exp

�
�1

2
tr(���1A)

�

where A =
P

t rtr
0

t is the residual matrix with rt = (h
�

1

2

t yt; loght � � � � log ht�1). Under the

reparameterisation of �� in terms of  = ��v;
 = �2v(1 � �2) we have a prior distribution on

�� given by p(��) = p( j
)p(
). It is natural to take a conditionally conjugate prior where

 j
 � N( 0;

�1��10 ) and 
 � IG(�0; �0) for speci�ed hyperparameters (�0; �0;  0; �0).

The analysis of the posterior distribution �(h; �; �;��jy) is performed by cycling through the

three conditionals

�(hj ;
; �; �;y)

p( ;
j�; �;h;y)

p(�; �; j ;
;h;y)

The latter conditional is a normal distribution. The conditional p( ;
j�; �;h;y) is dealt with as

follows:

p( ;
j�; �;h;y)/ 1


T=2
exp

�

�1tr(CA)

�
p( ;
)

17



C =

0
B@  2 � 

� 1

1
CA

Expanding the term tr(CA) we have tr(CA) = A22:1 + ( �  ̂)0A11( �  ̂) where  ̂ = A�1
11 A12.

By conjugacy of the prior p( ;
) we can use standard linear bayes methodology to simulate the

joint conditional posterior of ( ;
) with the conditionals

p( j
; �; �;h;y)� N
�
~ ; (A11+ �0)

�1
�

p(
j�; �;h;y)� IG

�
�0 +

T

2
; �0 +

1

2
A22:1

�

where ~ = (A11 + �0)
�1(A11 ̂ + �0 0). Finally, we need to consider the conditional distribu-

tion �(hj ;
; �; �;y). As usual we cycle through the one dimensional conditional distributions

�(htjht�1; ht+1;��; �; �;y). By Bayes theorem,

�(htjht�1; ht+1;��; �; �;y)/ h
�

3

2

t exp

�
�1

2
tr(���1

rtr
0

t)�
1

2
tr(���1

rt+1r
0

t+1)

�

We can now rewrite this in terms of ( ;
) to get a conditional posterior

�(htjht�1; ht+1;  ;
;y)/ h
�

3

2

t exp

 
� y2t
2ht

 
1 +

 2


2

!
� u2t

2

� u2t+1

2

+
 ytut



p
ht

+
 yt+1ut+1



p
ht+1

!

As in JPR we use an inverse gamma blanketing density which is calculated by collecting together

the terms in h�1t and the log-normal terms (see the uncorrelated case in section 3.1). The blanket

Qht(�; �) is given by a IG(�t; �t) distribution where

�t =
1� 2 exp(�2)

1� exp(�2)
+ :5 +

 �yt+1p
ht+1

(10)

�t = (�t � 1) exp(�t + :5�2) +
1

2

 
1 +

 2


2

!
y2t

and �2 = 
=(1 + �2). The parameters of the inverse gamma have therefore been modi�ed to

account for the correlation parameter. The remaining term exp( ytut=

p
ht) is left in the accep-

tance probability of the Metropolis step.
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3.6 Stochastic Discount Model

In the multivariate stochastic discount model we have a time varying covariance matrix of the

form ht� for the q � 1 observation vector yt. The discount factor ht follows a standard log

AR(1) volatility model and it is natural to model � with a standard inverse Wishart distribution.

The analysis of the posterior distribution �(h; !;�jy) is performed by breaking it into the three

conditionals

�(hj!;�;y)

p(!j�;h;y)

p(�j!;h;y)

The last two conditionals follow directly from standard linear Bayes methodology: the posterior

p(!j�;h;y) � p(!jh) is the same as in the basic univariate case. p(�j!;h;y) is an inverse

Wishart with updated parameters due to the conjugacy. We now show that the �rst conditional

can be dealt with by using a simple transformation of the univariate JPR algorithm. The desired

conditional �(hj!;�;y) is given up to proportionality as

�(hj!;�;y)/
TY
t=1

h
�

1

2

t j�j� 1

2 exp

�
�1

2
y
0

t�
�1
yt

�
p(hj!)

It is equivalent to the posterior of the univariate case but with y2t replaced by y
0

t�
�1
yt. Conditional

on � we can therefore use the univariate JPR algorithm to generate the h sequence.

3.7 Stochastic Factor Structure Model

The stochastic factor structure model is speci�ed by the sequence of conditionals

yt = �Ft + 
�
1

2 �t;

Ft � Nk(0;Ht)

log hit = �i + �i log hi;t�1 + �ivvt; 1 � i � k

p(�;
; !) = p(
)
kY

i=1

p(�j)p(!j)
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where Ht = diag(hit) and �v = diag(�iv). The joint posterior �(H; !;�;
jF;y) is then given by

�(H; !;�;
jF;y)/ j
j�T

2 exp

 
�1

2
tr

 

�1

X
t

(yt ��Ft)
0(yt ��Ft)

!!
p(Hj!)p(!)p(�;
)

where p(Hj!) is the product of independent log AR(1) volatilies and �;
 has a standard matrix

normal/inverse Wishart prior distribution given by

p(�j
) / j
j� k

2 exp

�
�1

2
tr
�

�1(���0)A0(���0)

��

p(
) / j
j�
�0

2 exp

�
�1

2
tr
�

�1B0

��

for speci�ed hyperparameters (A0; B0; �0).

We consider two cases. First, the underlying factors are observed as in the case of factor

mimicking portfolios or economic variables. Second, the factors are unobserved. The �rst case

is straightforward under independence of the factors as the joint posterior of the volatilities and

parameters, �(�;H; ! j F;y) decomposes as a product

�(�;
;H; !jF;y) = �(�;
jF;y)
kY

i=1

�(hi; !ijF)

The individual terms �(hi; !ijF) can be generated using the univariate algorithm of JPR (1994)

and the term �(�;
jF;y) follows from standard conjugate multivariate analysis.

When F is unobserved we need to simulate from the joint posterior �(�;
;H; !;Fjy). This

can be broken into into conditionals

�(�;
;H; !jF;y)

�(Fj�;
;H; !;y)

The �rst distribution is conditional on F. It reduces to the case described above where F is

known. The second conditional can be decomposed as

�(Fj�;
;H; !;y)/ p(F jH) p(y j F;�;
) = p(FjH)
TY
t=1

p(yt j Ft;�;
)

That is

�(Fj�;
;H; !;y)/ j
j�T

2 exp

�
�1

2
tr
�

�1(y��F)0(y��F)

��
exp

�
�1

2
tr
�
F
0

HF
��

where F = fFtg. This is a standard matrix normal multivariate distribution from which we can

make direct draws.
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4 Empirical Applications

4.1 Fat-tailed Errors

In this section, we report the results of our analysis of weekly and daily series using a heavy-tailed

t� -distribution for the mean equation as outlined in section 3.3. � is also modelled as random

which provides the bene�t of inferring about the severity of the departure from normality. We also

provide a set of outlier diagnostics by computing the posterior distribution of the scale parameters

�t for each observation.

Table 1 reports summary statistics for the posterior distribution of the model parameters

for weekly returns on the equal-weighted and value-weighted CRSP stock indices, while table 2

provides information on the posterior of the daily S&P500 series for the 80s, and three exchange

rate series, Canadian $, UK $, and Deutsch Mark. The posteriors of the persistence parameters

and volatility equation variances resemble those found in JPR. The most striking �nding is that

the posterior of � { the scale mixture parameter { is centered at fairly low values (low teens for

most series). Figure 1 shows the posterior distribution of � for each of the six series. We employ

a uniform prior for � on the range [1,60]. With the sole exception of the Canadian $ exchange

rate, all series put substantial posterior mass on values of � which represent a departure from

normality.

A closer examination of the posterior distributions of � shows that while there is considerable

evidence of non-normality, it is di�cult to infer precisely about the values of �. The relatively

spread-out distribution of �, especially for the weekly series, might cause estimation di�culties for

a maximization approach to estimation (see Gallant, Hsieh and Tauchen (1994) for a discussion of

these problems). However, the MCMC estimator does not get stuck on a 
at area of the likelihood

surface. Instead, it simply navigates across the 
at and provides an accurate representation of

the posterior uncertainty.

While the data provide fairly strong evidence against normality, they do not support a very

low degree of freedom t distribution such as those found necessary in the ARCH literature. This

is because stochastic volatility models possess an extra level of mixing through the variance

equation that is not present in the ARCH-style models. Our results show that this mixing does
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result in a somewhat less fat-tailed conditional distribution than the ARCH models, but in no

ways eliminates the need to model the fat-tailness of this conditional distribution.

Some would argue that the real problem with these time series is the presence of extreme

outliers which cannot be accommodated by t-distribution with 10 or 15 degrees of freedom. We

address this question by conducting two methods for outlier analysis. The �rst method is an

outlier sensitivity analysis. As � varies, the relative weight accorded to outlying observations is

changed. For example, for very large values of � we are very close to the normal case and outliers

receive very high weight in posterior inference about the persistence and �v parameters. On the

other hand if � is very low, outliers receive little or no weight. We �x � at 5, 10, 15 and 30

and compute the posterior distribution of other model parameters conditional on �. Figures 2

and 3 present the results of this outlier sensitivity analysis. For both the equal-weighted weekly

return (�gure 2) and daily S&P 500 index (�gure 3), the weighting method has a strong e�ect on

the posterior distributions of � and �v . As outliers are downweighted (� declines), the posterior

distribution of delta shifts to higher values representing greater persistence. As expected, �v

declines so that the marginal variance of log(ht) remains roughly the same �2v
1��2

. This �nding is

consistent with a view that the bulk of the data are generated from a model with higher persistence

than the outlying observations. This result has important implications for prediction as the basic

model will produce predictions with an underestimated persistence.

A unique feature of our analysis is the ability to infer about the draws of the scale-mixing

parameter �t, for each observation in the time series. This is the second method of outlier

analysis which we document. If a particular observation is outlying, our model will attempt to

accommodate it with a posterior of �t centered at a large value. This will reweight the outlier

and bring it more in line with the rest of the observations. We can use the joint posterior

distribution of (�1; :::; �T) to identify outliers by looking at each marginal posteriors p(�tjy). One

attractive feature of this approach is that it avoids the masking e�ect that plagues standard

outlier diagnostic procedures. The time-varying volatility feature of our model complicates the

detection of outliers. Obviously, October 17, 1987 is easily detected by a mere time series plot

of the series. Other observations which are outlying in terms of the pattern of returns around a
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given time period may be more di�cult to detect.

The top panel of Figure 4 shows the daily S&P 500 index returns (�ltered to remove calendar

e�ects as in Gallant, Rossi, and Tauchen (1992)), from 1/2/80-12/30/87, T = 2023. In the bottom

panel, we plot the posterior means of each of the �t's. This estimation is carried out conditional

on a �xed � equal to 5. This implies a very di�use prior for each of the scale parameters,

�t �Inverted Gamma(�,1). We plot the 75th and 95th quantiles of this prior distribution as

horizontal lines on the bottom panel. A number of observations are 
agged as outlying according

to this diagnostic. These are observations that even a t distribution with 5 degrees of freedoms

has di�culty accommodating. For reference there are 12 outliers. The posterior means of �t,

observation number and date are given in the table below.

E(�t j D) Observation Date

5.44 1972 87/10/19 �

3.5 1693 87/09/11 �

2.5 1257 84/12/18

2.47 1974 87/10/21

2.36 664 82/08/17 �

2.35 1279 85/01/21

2.28 1522 86/01/08 �

2.18 1977 87/10/26

2.17 78 80/04/22

2.15 1215 84/10/18

2.14 525 82/01/28

2.10 1646 86/07/07 �

It is interesting to compare this diagnostic with that of Nelson (1991). Nelson uses an expected

frequency criterion, in essence computing the expected number of appearances of a given (abso-

lute) value at least as large as the one observed in the sample. The basis for his computation is the

actual return Rt standardized by the MLE point estimate of �t. The largest outliers he identi�es

are by order of decreasing size on the dates: 87/10/19 , 87/9/11 , 82/8/17 , 86/1/8, and 86/7/7.

The �'s in the above table are the Nelson outliers which we also identify as outliers. However we
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also locate other outliers at least as severe which are not spotted by the Nelson analysis.

We then provide a diagnostic of the ability of the SVOL model to capture the marginal

distribution of the data for the S&P 500 daily series. We simulate from the model with parameters

equal to the estimated posterior means. We then make a Quantile-Quantile plot of the simulated

data against the actual data distribution. Alternatively, one could have used the predictive density

of the data by simulating multiple series for each draw of the parameters. We have omitted the

day or week of Oct 17, 1987 in order to make the Q-Q plot more informative. Granted that none

of these models �ts that week very well, a Q-Q plot including it prevents us from seeing how

well the rest of the distribution is �tted. Note that the discrete mixture model of section 2.2 can

easily be combined with the fat-tailed model if one wanted to see if the two models together can

accomodate even an exceptional outlier like October 17. The top panel of �gure 5 shows the Q-Q

plot of the actual returns with data simulated for �=30 (normal case), the middle for �=posterior

mean, and the bottom panel for �=5. As might be expected, the middle panel shows the closest

correspondence in the distributions. There appears to be a very close correspondence between

the marginal distribution implied by the SVOL model and the marginal distribution of the data.

4.2 Correlated Fat-tailed Errors

We now implement a SVOL model that simultaneously allows for correlation and fat tails. In

our error speci�cation we have �t = �
1=2
t zt with (vt; zt) distributed as a correlated bivariate

normal and �t as an independent inverted gamma distribution. Clearly there is going to be a

posterior correlation between the correlation parameter � and the heavy-tail parameter �. The

large negative returns will have greatest in
uence in determining the posterior for �.

As in Section 3.5, we model the parameters (�, �v) with a normal, inverted gamma natural

conjugate prior on ( , 
). The advantage of this prior is that it facilitates a direct draw of both

 and 
 given the other model parameters and the data. We now show that we can elicit a prior

that is reasonable for the more interpretable (�, �v) parameterization.

Figure 6 shows the implied prior distribution of � and �v for a particular set of prior hyperpa-

rameters, chosen so that the implied priors are very di�use. The left panel shows that the prior

on � is very nearly uniform in the interval (-.95, .95). The right panel shows a very di�use prior
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on �v which puts most mass in the (0, .5) range encountered in most data analysis. We should

note that it is possible to place an improper di�use prior on these parameters as well. We believe

that proper but very di�use priors are more reasonable in applied work.

In addition to introducing correlation into the basic model, we also use the scale mixture

strategy outlined in section 3.3 to simultaneously introduce fat-tailed error densities. Table 3

provides summary statistics of the posterior calculated for the correlated case for three CRSP

series - weekly equal and value weighted returns and daily value-weighted returns. The daily

CRSP value-weighted is exactly the same series used in Nelson's seminal (1991) paper in which

he introduces the EGARCH model with asymmetric conditional variance functions.

As in the uncorrelated case, table 3 shows a high level of persistence in the volatility equation

(.97 to .99 for the CRSP daily index). The distribution of � is not a�ected by the introduction of

the correlation parameter. It is important to note that while the posterior distribution of delta

is massed at a high value near 1, there is little evidence of unit roots in the volatility equation.

The posteriors damp down near 1 so that no appreciable mass is put on the region over .99. This

occurs in spite of a prior which is locally uniform around 1.0 (a di�use normal prior truncated at

1.) The introduction of the correlation does not appreciably a�ect the level of persistence.

There are two striking features of the posteriors shown in table 3. First, the posterior distri-

bution of � is massed around fairly low values. Figure 7 graphs the posteriors for � for each of the

three datasets. For the EW and VW series, the posterior distribution is massed around -.3 with

about .9 posterior probability of negative correlation. Even with 6000 plus observations in the

Nelson/CRSP daily dataset, the posterior of � still has a large standard deviation of .16 and there

is a 5% probability of � > 0. Second, table 3 shows that the posterior mean of �, the scale mixture

parameter is relatively high. For all three series, it hovers around 25 degrees of freedom. This is

in contrast to the results reported in section 4.1 for the uncorrelated case, where the posteriors of

� put substantial mass on values from 10 to 15. This results suggest a rather subtle interaction

between the correlation and scale mixture parameters in the model. It is possible that the fat-tail

results with no correlation are simply an artefact of model misspeci�cation.

Nelson (1991) estimates an exponential power density with a coe�cient of 1.5. This is far from
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the low degree of freedom t found in our analysis without correlation and it is more consistent

with the higher degrees of freedom found when we introduce correlation into the model. However,

it is di�cult to make exact parallels between the fat-tailness of the errors in the EGARCH and the

SVOL models. The magnitude of the conditional variance asymmetry found here deserves further

comment. It is di�cult to compare the asymmetry parameter of Nelson's EGARCH model with

the SVOL correlation parameter. We need a measure of asymmetry that is independent of model

parameters. We consider the di�erential e�ect of a one � rise or fall in the mean equation error,

i.e. �t, on log-volatility. Consider for the EGARCH model the quantity

�e = (ln ht+1j ln ht; �t = �1)� (ln ht+1j ln ht; �t = +1)

Given Nelson's (1991) notation, we have � = �2�. For the SVOL model, the quantity

�s = (ln htj lnht�1; �t+1 = �1)� (ln htj ln ht�1; �t = +1)

is equal to �2���v . We are interested in standard deviations
p
ht rather than log volatilities. We

translate � into a percentage di�erential between the response to negative and positive shocks

by considering the quantity exp �
2 � 1. Using Nelson's parameter estimates � = �0:12, for the

CRSP daily series we �nd that the EGARCH implies a 13 per cent larger increase in volatility

for a negative than for a positive shock. Using the SVOL estimates from the same dataset and

period, we �nd a 3 per cent asymmetry. With the QML method, Harvey and Shephard (1993)

�nd a � value of -.66 which implies a 7% asymmetry. But, even with the largest SVOL correlation

estimate, the asymmetries in the conditional variance function are smaller than those reported

by Nelson.

Finally, we report some diagnostics on the convergence and information content of our chain.

Kim and Shephard (1994) in a discussion of JPR (see also Carter and Kohn (1994) and Shep-

hard (1994)) make a case for the use of an approximate "multi-move" sampler as opposed to the

"single-move" sampler used in JPR; it should be noted that, as proposed, the Kim and Shephard

algorithm can not be extended to the correlated case. They argue that the convergence rate of

the single-move samplers may be slow, especially near the limiting case of a unit root coupled

with �v = 0. If we were near this limiting case, we should see slow dissipation of initial conditions
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and high autocorrelation in the chain draws. For the CRSP daily return, we made 15000 draws

of �. Figure 8 shows the acf of the last 10000 draws of �, and one boxplot for the distribution of

each subsequence of 3000 draws. For daily CRSP data the posterior distribution of � is high. It

is primarily the correlation in the draws of the volatility sequence which will induce correlation

in the � draws. The acf shown in �gure 8 does show reasonably high dependence (ACF1 = .7)

but this does not suggest that we are at all close to the singularity which would occur if we

approached a unit root as �v declines to zero. This limiting case is the constant variance model

so often rejected in the extensive ARCH/stochastic volatility literature and therefore of limited

practical relevance. The bottom plot of �gure 8 shows that, after the �rst 3000 draws which

exhibit higher variance, the distribution of the draw sequence stabilizes and remains unchanged.
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Table 1

Posterior Analysis for Selected Weekly Series

Parameter EW VW

� -0.33 -0.31

(0.12 ) ( 0.11 )

[-0.63, -0.15 ] [-0.56,0.14]

� 0.960 0.961

( 0.015 ) ( 0.013 )

[0.92,0.98 ] [0.93,0.98 ]

�v 0.211 0.197

( 0.038 ) ( 0.036 )

[0.15, 0.30 ] [0.14,0.28 ]

Vh
=E2

h

0.86 0.74

( 0.30 ) ( 0.29 )

[0.46,1.56 ] [0.4,1.35 ]

� 15 25

( 7.5 ) ( 13.7 )

[8,13,37 ] [10,20,57 ]

aThe �rst number is the posterior mean. The number between parentheses is the posterior standard
deviation. The two numbers between brackets indicate the 95% posterior credibility interval. For � we also

give the posterior median. � is �xed at 0. EW � Equal-weighted NYSE; VW � Value-weighted NYSE;

weekly returns , 7/62-12/91. T = 1539. Returns are pre�ltered to remove AR(1) and monthly seasonals
from the mean equation.
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Table 2

Posterior Analysis for Selected Daily Financial Series

Parameter SP500 U.K.$ DM CD$

� -0.0034 -0.21 -0.32 -0.53

(0.003 ) ( 0.066 ) ( 0.08 ) 0.11

[-0.01,0.0015 ] [-0.35,-0.09 ] [-0.50,-0.18 ] [-0.75,-0.34 ]

� 0.986 0.98 0.969 0.958

(0.007 ) ( 0.006 ) ( 0.008 ) 0.009

[0.969, 0.996 ] [0.966,0.990 ] [0.952,0.983 ] [0.94,0.972 ]

�v 0.099 0.11 0.157 0.24

(0.021 ) ( 0.017 ) ( 0.023 ) 0.023

[0.07, 0.15 ] [0.086,15.1 ] [0.12,0.20 ] [0.20,0.29 ]

Vh
E2

h

0.60 0.42 0.52 1.07

(2.5 ) ( 0.16 ) ( 0.14 ) 0.24

[0.24, 1.49 ] [0.24,0.78 ] [0.30,0.86 ] [0.72,1.63 ]

� 11 10 11 47

(2.6 ) ( 2 ) ( 3 ) 9

[7,10,17 ] [7,10,15 ] [8,10,19 ] [28,49,60 ]

aThe �rst number is the posterior mean. The number between parentheses is the posterior standard
deviation. The two numbers between brackets indicate the 95% posterior credibility interval. For � we also

give the posterior median. � is �xed at 0. The S&P500-daily change in log of the index, �ltered to remove

calendar e�ects as in Gallant, Rossi, and Tauchen (1992);1/2/80-12/30/87; T=2023. UK $ and DM/$ daily
noon spot rates (log change) from the board of Governors of the Federal Reserve System, supplied by David

Hsieh; 1/2/80-5/31/90;T=2614. CD$ daily noon interbank market spot rates from Bank of Canada supplied

by Melino and Turnbull (1990); 1/2/75-12/10/86; T=3001
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Table 3

Posterior Analysis for Selected Financial Series - � estimated

Parameter EW VW CRSP Daily

� -.217 -.215 -.071

(.064) (.065) (.019)

� .971 .973 .99

(.0082) (.0084) (.0019)

[.954,.987] [.954,.987] [.989,.996]

�v .17 .16 .10

(.020) (.020) (.010)

Vh
E2

h

.86 .76 1.2

(1.63) (1.34) (1.3)

Half-life 27.2 27.7 103.0

(10.3) (10.8) (33.0)

� 24.5 25.5 28

(4.4) (3.8) (1.9)

[15,30] [16,30] [23,30]

� -.33 -.31 -.30

(.20) (.22) (.16)

[-.66,.13] [-.66,17] [-.58,.06]

Pr(� <0) .93 .90 .95

aThe �rst number is the posterior mean. The number between parentheses is the posterior standard

deviation. When applicable, the two numbers between brackets indicate the 95% posterior credibility in-

terval. For �, we also indicate the probability of � being negative. EW � Equal-weighted NYSE; VW �

Value-weighted NYSE; weekly returns , 7/62-12/91. T = 1539. EW and VW Returns are pre�ltered to

remove AR(1) and monthly seasonals from the mean equation. The CRSP Daily returns are from 07/03/62

to 87/12/31; T=6409.
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Figure 5.  Quantile-Quantile Plots:  SP&500 Daily Returns 
vs Data Simulated from SVOL Model
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Figure 6. Implied Prior Distribution for RHO and SIGMA_V
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Figure 7. Posterior Distribution of RHO for 3 Series
(Vertical line: 90% quantile)
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Figure 8. ACF and Distribution of RHO draws 


