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Résumé / Abstract

Cet article examine les contrats optionnels de type américain lorsque

l�actif sous-jacent paie des dividendes et a une volatilité stochastiques. Nous

présentons une discussion complète des fondations théoriques de l�évaluation des

options américaines et de leurs frontières d�exercice. Nous démontrons leur

dépendance par rapport aux diverses sources d�incertitude qui déterminent le taux

de dividendes et la volatilité, et dérivons les prix d�équilibre des actifs, titres dérivés

ainsi que les politiques optimales d�exercice dans un modèle d�équilibre général.

Les modèles théoriques conduisent à des expressions complexes qui sont difficiles

à estimer. C�est pourquoi nous adoptons une approche non-paramétrique qui permet

d�examiner des formes réduites. Nous utilisons des méthodes non-paramétriques

pour estimer les prix d�options à l�achat et les frontières d�exercice conditionnelles

aux dividendes et à la volatilité. Puisque cette dernière est un processus latent nous

proposons plusieurs approches, fondées en particulier sur des estimateurs-filtres

EGARCH, des volatilités implicites et historiques. L�approche non-paramétrique

nous permet de tester si les prix d�options et les décisions d�exercice sont

principalement déterminés par les dividendes, comme suggéré par Harvey et



Whaley (1992a, b) et Fleming et Whaley (1994) pour le contrat OEX, ou si la

volatilité stochastique complémente l�incertitude sur les dividendes. Nous

établissons que les dividendes seuls ne rendent pas compte de tous les aspects de

l�évaluation de ces options et des décisions d�exercice, ce qui suggère la nécessité

d�inclure la volatilité stochastique.

In this paper, we consider American option contracts when the

underlying asset has stochastic dividends and stochastic volatility. We provide

a full discussion of the theoretical foundations of American option valuation and

exercise boundaries. We show how they depend on the various sources of

uncertainty which drive dividend rates and volatility, and derive equilibrium

asset prices, derivative prices and optimal exercise boundaries in a general

equilibrium model. The theoretical models yield fairly complex expressions

which are difficult to estimate. We therefore adopt a nonparametric approach

which enables us to investigate reduced forms. Indeed, we use nonparametric

methods to estimate call prices and exercise boundaries conditional on dividends

and volatility. Since the latter is a latent process, we propose several

approaches, notably using EGARCH filtered estimates, implied and historical

volatilities. The nonparametric approach allows us to test whether call prices

and exercise decisions are primarily driven by dividends, as has been advocated

by Harvey and Whaley (1992a,b) and Fleming and Whaley (1994) for the OEX

contract, or whether stochastic volatility complements dividend uncertainty. We

find that dividends alone do not account for all aspects of call option pricing and

exercise decisions, suggesting a need to include stochastic volatility.

Mots Clés : Prix d�options, titres dérivés, contrat OEX, estimation par méthode

de noyau

Keywords : Option Pricing, Derivative Securities, OEX Contract, Kernel

Estimation

JEL : C14, C51, D52, G13



1 Introduction

The early exercise feature of American option contracts considerably

complicates their valuation. Even the relatively simple case of an un-

derlying asset with a Geometric Brownian Motion (GBM) price process

and constant dividend rate requires numerical algorithms to value the

option and determine the optimal exercise policy.1

Two critical assumptions, namely (1) a constant dividend rate and

(2) constant volatility, are often cited as restrictive and counter-factual.

For the OEX contract, the most widely traded American-type option

written on the S&P100 Stock Index, Harvey and Whaley (1992a, b) and

Fleming and Whaley (1994) underline the importance of the amount

and the timing of dividends. To account for discrete dividend payments

on the S&P100 index portfolio they use a modi�cation of the Cox, Ross

and Rubinstein (1979) binomial method which reduces the index level by

the discounted 
ow of dividends during the lifetime of the option. Using

this approach they show that ignoring dividends has a signi�cant impact

on pricing errors. The computations are already so demanding in this

simple case with constant volatility that the stochastic volatility case

appears to be beyond reach. It is interesting to note that for European-

type options, like the SPX contract on the S&P500 Stock Index, there

has been far more interest in studying the stochastic volatility case.2

One may therefore wonder whether it is either stochastic volatility, or

stochastic dividends, or both, which determine American as well as Eu-

ropean options. The purpose of our paper is to address this question.

We study the case of American options as it is considerably more di�-

cult than the European-type contract. The approach we take, however,

1A whole range of numerical procedures have been proposed, including �nite dif-
ferences, binomial, multinomial, quasi-analytical, quadratic methods as well as the
method of lines and Richardson extrapolations. A partial list of contributions in-
cludes Brennan and Schwartz (1977), Cox, Ross and Rubinstein (1979), Geske (1979),
Whaley (1981), Geske and Johnson (1984), Barone-Adesi and Whaley (1987), Boyle
(1988), Breen (1991), Yu (1993), Broadie and Detemple (1996) and Carr and Faguet
(1994), among others. For a review of these procedures, see Broadie and Detemple
(1996).

2See for instance Hull and White (1987), Johnson and Shanno (1987), Scott (1987),
Wiggins (1987), Chesney and Scott (1989), Stein and Stein (1991), Heston (1993),
among others.
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readily applies to the SPX or similar contracts. For European options

with stochastic volatility we could recover pricing formula such as those

derived by Hull and White (1987) and others, except that we do not

necessarily impose the speci�c volatility processes they assumed.

We �rst study the theoretical foundations of American option pricing

and characterize the exercise boundary assuming stochastic volatility and

stochastic dividend rate. Then, we test the models empirically and test

whether it is dividends, volatility or both which a�ect the OEX contract.

American option pricing models with stochastic dividends and volatility

are prohibitively complex to conduct a structural econometric analysis.

Fortunately, in testing the impact of dividends and volatility we do not

have to handle a fully speci�ed structural model. Instead, we follow a

di�erent approach which uses market data, both on exercise decisions

and option prices, and relies on nonparametric statistical techniques.

Let us illustrate this intuitively for the case of the exercise boundary.

Suppose that we have observations on the exercise decisions of investors

who own American options, along with the features of the contracts being

exercised.3 The idea is that with enough data, such as ten years of daily

observations, we should be able to gather information about investors'

perceptions of the exercise boundary and their response to volatility and

dividends.4 The computation of exercise boundaries, and in particular

the inclusion of stochastic volatility and dividends in the analysis will

be discussed in detail in the paper. The approach just described for

the exercise boundaries can also be applied to the pricing of the option,

again assuming that we have data on call and put contracts and their

attributes. As noted before, the latter could apply to American as well

as European contracts.

3Such data are available for the S&P100 Index option or OEX contract, as they
are collected by the Option Clearing Corporation (OCC). Option exercise data have
been used in a number of studies, including Ingersoll (1977), Bodurtha and Courta-
don (1986), Overdahl (1988), Dunn and Eades (1989), Gay, Kolb and Yung (1989),
Zivney(1991), French and Maberly (1992) and Diz and Finucane (1993).

4Questions as to whether market participants exercise \optimally", regardless of
what the model or assumptions might be, will not be the main focus of our paper
although several procedures that we suggest would create a natural framework to
address some of these issues. For the most recent work on testing market rationality
using option exercise data and for a review of the related literature, see Diz and
Finucane (1993).
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The idea of applying nonparametric methods to option pricing has

been suggested recently in a number of paper, e.g., Abken et. al. (1996),

A��t-Sahalia (1996), A��t-Sahalia and Lo (1995), Gouri�eroux, Monfort and

Tenreiro (1994), Hutchinson, Lo and Poggio (1994), Jackwerth and Ru-

binstein (1996), Madan and Milne (1994) and Stutzer (1995). As there

are a multitude of nonparametric methods it is no surprise that the afore-

mentioned papers use di�erent methods. Moreover, they do not address

the same topics either. Indeed, some aim for nonparametric corrections

of standard (say Black-Scholes) option pricing formula, others estimate

risk-neutral densities, etc. So far this literature has focused exclusively

on European type options. By studying American options, our paper

models both pricing and exercise strategies via nonparametric methods.

In addition, our analysis features a combination of volatility �ltering

based on EGARCH models and nonparametric analysis hitherto not ex-

plored in the literature.5 This combination has several advantages as it

helps to reduce the high dimensionality of nonparametric methods and

is a relatively simple way to introduce conditional volatility.

In section 2 of the paper, we provide a rigourous theoretical treat-

ment of American option pricing with stochastic volatility and stochastic

dividend. We show how option values and exercise boundaries depend on

the various sources of uncertainty in the model. Section 3 is devoted to

the nonparametric estimation of American options with stochastic divi-

dends and/or volatility. Formal tests for the impact of random volatility

are presented. We use data on call prices as well as exercise decisions

and study the pricing of options and exercise decisions assuming random

dividends and volatility. Section 4 concludes the paper. In Appendix A

we examine the relationship between the aggregate dividend process and

the equilibrium index value, its volatility, the endogenous dividend rate

and equilibrium interest rate in a general framework with state depen-

dent utility.

5In addition to the EGARCH �ltered volatilities we will also consider implied
volatilities and historical volatilities.
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2 American option valuation with stochas-

tic dividends and volatility

Much has been written on the valuation of American options. The

earliest analysis of the subject by McKean (1965) and Van Moerbeke

(1976) formulates the pricing problem as a free boundary problem. A

formal justi�cation based on no-arbitrage arguments for the valuation

of an American contingent claim is provided by Bensoussan (1984) and

Karatzas (1988) in the context of a general market model, in which the

the underlying asset price follows an Itô process. It should not come as

a surprise that the distributional properties of the underlying asset price

determine those of the exercise boundary. However, in such a general

context, analytical closed-form solutions are typically not available. The

standard approach then speci�es a process for the underlying asset price,

generally a Geometric Brownian Motion (GBM), and searches for numer-

ically e�cient algorithms to compute the pricing formula and the exercise

boundary. This particular case is now well understood and its theoretical

properties have been extensively studied by Kim (1990), Jacka (1991),

Carr, Jarrow and Myneni (1992), Myneni (1992) and Broadie and De-

temple (1996).

In this section, we study American options in a more general setting

which allows both for a stochastic dividend yield and stochastic volatility.

We consider a �nancial market in which the stock price S satis�es

dSt = St[�(Yt; Zt; t)� �(Yt; Zt; t)]dt+ St[�1(Yt; Zt; t)dW1t

+�2(Yt; Zt; t)dW2t + �3(Yt; Zt; t)dW3t]; (2.1)

dYt = �Y (Yt; t)dt+ �Y1 (Yt; t)dW1t + �Y2 (Yt; t)dW2t; (2.2)

dZt = �Z(Zt; t)dt+ �Z1 (Zt; t)dW1t + �Z3 (Zt; t)dW3t; (2.3)

for t 2 [0; T ] and where S0; Y0 and Z0 are given. Here �(Yt; Zt; t);

�1(Yt; Zt; t); �2(Yt; Zt; t) and �3(Yt; Zt; t) represent the drift and the

volatility coe�cients of the stock price process and �(Yt; Zt; t) is the div-

idend rate on the stock. These coe�cients depend on time and on the
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current values of the state variables Y and Z which satisfy the stochas-

tic di�erential equations (2.2)-(2.3). Two state variables are required to

model a stochastic dividend yield which is imperfectly correlated with the

volatility coe�cients of the stock price process. We suppose that the co-

e�cients �Y (Yt; t); �
Y
1 (Yt; t) and �

Y
2 (Yt; t); which are functions of (Yt; t);

and �Z(Zt; t); �
Z
1 (Zt; t); �

Z
3 (Zt; t) which are functions of (Zt; t); satisfy

standard Lipschitz and growth conditions: this ensures the existence of

a unique solution to (2.2)-(2.3). The processes W1; W2 and W3 are in-

dependent Brownian motion processes which represent the uncertainty

in the economy. We also suppose that the interest rate r is constant. As

shown in Appendix A, these assumptions can be supported as the equi-

librium outcome in a general economy with stochastic dividend (level)

process and representative agent with state dependent utility function.

In the remainder of this section, we operate in the context of this model.

In this general economy, the equilibrium market prices of W1-, W2- and

W3-risks are functions of both state variables Y and Z

�1t = �1(Yt; Zt; t); (2.4)

�2t = 0; (2.5)

�3t = �3(Yt; Zt; t); (2.6)

which are explicitly related to the characteristics of the underlying div-

idend process (see Theorem A.1, Corollary A.1, and model 1 in Ap-

pendix A). In this economy W1-risk is priced since it a�ects the change

in the dividend (level) process, W2-risk has market price 0 since it is

unrelated to dividend (level) risk, and W3-risk is priced since it af-

fects marginal utility. The risk neutralized processes for the stock price

and the volatility and dividend rate state variables are given by dSt =

St[r � �(Yt; Zt; t)]dt+ St[�1(Yt; Zt; t)dW
�
1t

+�2(Yt; Zt; t)dW
�
2t + �3(Yt; Zt; t)dW

�
3t]; (2.7)

dYt = [�Y (Yt; t)� �1(Yt; Zt; t) �
Y
1 (Yt; t)]dt

+�Y1 (Yt; t)dW
�
1t + �Y2 (Yt; t)dW

�
2t; (2.8)

dZt = [�Z(Zt; t)� �1(Yt; Zt; t) �
Z
1 (Zt; t)� �3(Yt; Zt; t) �

Z
3 (Zt; t)]dt

+�Z1 (Zt; t)dW
�
1t + �Z3 (Zt; t)dW

�
3t; (2.9)
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for t 2 [0; T ]; where S0; Y0 and Z0 are given, and whereW �
1 ; W

�
2 and

W �
3 are Brownian motion processes relative to the equivalent martingale

measure Q (i.e., the risk-neutral measure).

The stock price model with stochastic volatility (2.7)-(2.8) is fairly

general since it allows for arbitrary correlation between the volatility

process and the stock price process as well as for a fairly general structure

of the drift and volatility coe�cients of the state variable processes Y and

Z:We note in particular that the volatility and the dividend innovations

need not be spanned by the stock price innovations, i.e., the basic model

is one in which volatility risk and dividend risk cannot be hedged away

by trading the other securities in the model (the stock and the bond).

In order to price zero net supply contingent claims, we take a general

equilibrium approach [see e.g., Cox, Ingersoll and Ross (1985)] in which

the �nancial market is e�ectively complete. In this context, the value of

any contingent claim is simply given by its shadow price, i.e., the price

at which the representative agent is content to forgo holding the asset.

The equilibrium risk premium on this claim is therefore the sum of the

market prices of W1- and W3-risks, each multiplied by the sensitivity of

the claim to W1- and W3-risk (see Theorem A.2 in appendix A).

Consider now an American call option contract with maturity date

T and payo� (S�K)+ at the exercise time. Let S[t;T ] denote the class of

stopping times taking values in the interval [t; T ]: In our representative

agent economy, the value of this contract Ct is the maximum present

value that can be achieved over this set of stopping times,

Ct = sup
�2S[t;T ]

E
Q
t

h
e�r(��t)(S� �K)+

i
; t 2 [0; T ]; (2.10)

where EQ denotes the expectation under the equivalent martingale mea-

sure Q: Standard transformations also yield the early exercise premium

representation for the American call option:

Ct = CE
t +EQ

t

"Z T

t

e�r(s�t)(�sSs � rK)IIfs=�(s)gds

#
; (2.11)

where IIA denotes the indicator function of the set A; CE
t is the value of

a European call and �(t) is the optimal stopping time in S[t;T ] (i.e., the

6



optimal exercise time) de�ned by

�(t) � inff� 2 [t; T ] : C� = (S� �K)+g: (2.12)

Since the economy under consideration is fully described by the pair of

processes (Y; Z); the optimal exercise time �(t) can also be de�ned by

�(t) � inff� 2 [t; T ] : S� � B(Y� ; Z� ; �)g; (2.13)

where B(Yt; Zt; t) represents the optimal exercise boundary, i.e., the

boundary of the immediate exercise region. The event fs = �(s)g can

then be written as fS� � B(Y� ; Z� ; �)g: Summarizing, we have the fol-

lowing result:

Theorem 2.1 Consider the �nancial market in which the stock price

process is given by (2.1)-(2.3) and the interest rate is constant. In this

economy, the price at date t 2 [0; T ] of an American call option is given

by:

C(St; Yt; Zt; t) = CE(St; Yt; Zt; t) + �
�
St; Yt; Zt; t; B( � )

�
; (2.14)

where CE denotes the value of a European option with maturity date T

and �
�
St; Yt; Zt; t; B( � )

�
denotes the early exercise premium,

�
�
St; Yt; Zt; t; B( � )

�
�

E
Q
t

"Z T

t

e�r(s�t)
�
�(Ys; Zs; s)Ss � rK

�
IIfSs�B(Ys;Zss)gds

#
: (2.15)

The optimal exercise boundary B sati�es the recursive integral equation

B(Yt; Zt; t)�K = CE
t

�
B(Yt; Zt; t); Yt; Zt; t

�

+�
�
B(Yt; Zt; t); Yt; Zt; t; B( � )

�
; t 2 [0; T ]; (2.16)

B(YT ; ZT ; T ) = max

�
r

�(YT ; ZT ; T )
K;K

�
: (2.17)
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It should parenthetically be noted that we supressed K in (2.14) and

all subsequent formulas to simplify the notation. A useful property of

the American option price is given next,

Corollary 2.1 Consider the �nancial market model with stochastic volatil-

ity of Theorem 2.1. The American option valuation formula is homoge-

neous of degree one in the triple (S,B,K),

Ct(S;B;K) = KCt(S=K;B=K; 1); (2.18)

for all t 2 [0; T ] and S 2 IR+:

This property is important for the econometric evaluation of the

model discussed in Section 3. The property states that the ratio of

the option price over the exercise price is independent of the absolute

level of the stock price (equivalently of the absolute level of the exercise

price).

Formulas (2.14)-(2.17) for the American option price can be writ-

ten more explicitely using the structure of the underlying asset price

processes S and Y: Solving equation (2.7) for the stock price gives

S� = St exp

�Z �

t

�
r � �(Ys; Zs; s)�

1
2
�1(Ys; Zs; s)

2 � 1
2
�2(Ys; Zs; s)

2

� 1
2
�3(Ys; Zs; s)

2
�
ds+

Z �

t

�
�1(Ys; Zs; s) dW

�
1s + �2(Ys; Zs; s) dW2s

+�3(Ys; Zs; s) dW
�
3s

��
; (2.19)

for � > t: Substituting this into (2.14)-(2.17) produces a valuation

formula for the American option for a fairly general class of di�usion

volatility processes. Once the optimal exercise boundary has been de-

termined this formula can be computed by simulating the paths of the

Brownian motion processes W �
1 ; W

�
2 and W �

3 :

More can be said for the following model with a single state variable

Y;

dSt = St
�
(r � �)dt+ �1(Yt; t) (�dW

�
t +

p
1� �2 dB�

t

�
(2.20)

dYt =
�
�Y (Yt; t)� �Y (Yt; t)��1(Yt; t)

�
dt+ �Y (Yt; t)dW

�
t ;(2.21)
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where � and � 2 (�1; 1) are constants, and W � and B� are independent

Brownian motion processes under Q:6 Let

at;v �

�Z v

t

�1(Y; u)
2du

�1=2
(2.22)

w1
t;v � (at;v)

�1

�Z v

t

�1(Y; u)dW
�
u

�
(2.23)

and

d0(St; Bv; at;v) �

�
log

�
St

Bv

�
+ (r � �)(v � t) +

1

2
a2t;v

�
1

at;v
(2.24)

d(St; Bv; at;v; �;w
1

t;v) �
1p

1� �2
d0(St; Bv; at;v) +

1p
1� �2

�
�w

1

t;v � �
2
at;v

�
:

(2.25)

With this notation we have

Theorem 2.2 Consider the �nancial market model (2.20)-(2.21). The
price at date t 2 [0; T ] of an American call option is:

Ct(St; Yt; t) = Et

�
C
E
Y (St; K; at;T ; �; w

1

t;T )
�
+Et

�Z T

t

GY (St; Bv; at;v; �; w
1

t;v)dv

�
;

(2.26)

where

CE
Y (St;K; at;T ; �; w

1
t;T ) � St exp

�
��(T � t)�

1

2
�2a2t;T + �at;Tw

1
t;T

�

�N
�
d(St;K; at;T ; �; w

1
t;T )�K exp

�
� r(T � t)

�
N
�
d(St;K; at;T ; �; w

1
t;T )�

p
1� �2 at;T

�
(2.27)

and

GY (St; Bv; at;v; �; w
1
t;v) � � St exp

�
��(v � t)�

1

2
�2a2t;v + �at;vw

1
t;v

�

�N
�
d(St; Bv; at;v; �; w

1
t;v)

�
� rK exp

�
� r(v � t)

�
N
�
d(St; Bv; at;v; �; w

1
t;v)�

p
1� �2 at;v

�
: (2.28)

6The model (2.20)-(2.21) can be obtained from (2.7)-(2.9) by taking �Y
1

=

b1�
Y ; �Y

2
= b2�

Y ; dW �

t � (b2
1
+ b2

2
)�1=2[b1dW

�

1t+ b2dW
�

2t] and � � (b2
1
+ b2

2
)�1=2b1;

and eliminating the state variable Z and the Brownian motion W �

3
:
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The optimal exercise boundary satis�es the recursive integral equation

B(Yt; t)�K = Ct
�
B(Yt; t); Yt; t

�
; (2.29)

B(YT ; T ) = max
�r
�
K;K

	
(2.30)

subject to the relevant boundary conditions implied by the limiting behav-

ior of the state variable process Y .

Expressions (2.26)-(2.28) for the early exercise premium and the
value of the American option are not closed form expressions. One ex-
pectation with respect to the trajectories of Y (equivalently, with respect
to the trajectories of W �) remains to be taken. If the optimal exerise
surface B( � ; � ) has been identi�ed, explicit computation of the option
value can be performed by simulating the path of Y: Such calculations are
standard for pricing European-type contracts, i.e., computing the for-
mula for Et(C

E
Y ) where C

E
Y is given in (2.27) (see references appearing

in the Introduction on this subject). The determination of the excercise
boundary, however, is a nontrivial step in this computation. As (2.29)
reveals it involves solving a recursive integral equation in two dimensions.
This di�cult step is bypassed in the nonparametric approach developed
in the next section.
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3 Nonparametric methods for American op-

tion pricing with stochastic volatility and

dividends

The results in section 2 showed that the reduced forms for equilibrium
American option prices and exercise decisions depend in a nontrivial way
on two latent state processes Y and Z (see also Appendix A). They also
established that the call price is homogeneous of degree one in (S;K);
the strike, under relatively mild regularity conditions (see Corollary 2.1).
The main obstacle is that call prices as well as exercise boundaries under
stochastic volatility and random dividends become fairly complex func-
tions of these state processes. Indeed, considering a fully speci�ed para-
metric framework would require the computation of intricate expressions
involving conditional expectations and identifying the exercise boundary
which solves a recursive integral equation. It is the main reason why no
attempts were made to compute prices and excercise decisions under such
general conditions. Fortunately the task of determining whether both
stochastic volatility and dividends a�ect the valuation of the OEX con-
tract can be accomplished by using nonparametric methods. Moreover,
these also yield a method for pricing calls and exercising contracts condi-
tional on volatility and dividends. In a �rst subsection, we describe the
generic speci�cation of the model used in the nonparametric approach.
Some of the technical issues regarding the nonobservability of the volatil-
ity are discussed in a second subsection. The third subsection presents
the estimation techniques and results while the �nal one is devoted to
testing the e�ect of volatility and dividends on option valuation.

3.1 The generic reduced form speci�cation

In the economy of section 2 and appendix A two state variables Y and Z
a�ect the equilibrium call prices and exercise decisions. Therefore T � t

periods before maturity we have the following relations

(C=K)t = �gC
�
(S=K)t; T � t; Yt; Zt); (B=K)t = �gB

�
T � t; Yt; Zt): (3.1)

The functions �gB and �gC are viewed as the reduced forms of the gen-
eral equilibrium speci�cation discussed in the previous section and in
appendix A. We deleted on purpose all the parameters which help to
determine the relations appearing in (3.1). Indeed, one of the advantages
of the nonparametric approach is that we will not (have to) specify the
preference parameters or the stochastic process for the underlying asset.
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Since the reduced forms (3.1) involve two unde�ned and unobserv-
able state variables, they are of no interest for the econometrician and
the practitioner. Both would prefer a relation which expresses C=K and
B=K as functions of variables having an economic interpretation. Ob-
serving the model derived in section 2 in its more general formulation,
we see that there are mainly two chanels through which Y and Z af-
fect the call price and exercise decisions, namely (1) the dividend rate �
and (2) the volatility of the underlying asset price � (see Theorem 2.1
and Corollary A.1). Therefore we will be interested in estimating the
relationships appearing in the model of section 2:

(C=K)t = gC
�
(S=K)t; T � t; �t; �t

�
; (B=K)t = gB

�
T � t; �t; �t

�
;

(3.2)
where �t = �(Yt; Zt; t) and �t = �(Yt; Zt; t): Relationship (3.2) is what
one could call an \empirical reduced form" of the option pricing model
developed in section 2.

The idea is that with enough observations on call prices, exercise
decisions, dividends and volatility, we should be able to recover the re-
duced forms from the data. However, by being nonparametric in both
the formulation of the theoretical model and its econometric treatment,
there are issues we cannot address.7 Nevertheless, the nonparametric ap-
proach does achieve the main goal of our econometric anaylsis, namely
to determine whether the volatility and/or the dividend rate a�ect the
valuation of the contract and the exercise policy. The models studied so
far in the empirical �nance literature on American options have concen-
trated almost exclusively on the e�ect of the dividends and implicitly
assume that there is only one state variable acting through the divi-
dend rate, see e.g., Harvey and Whaley (1992a, b), Fleming and Whaley
(1994). They used a modi�ed Cox-Ross-Rubinstein algorithm, yielding:

(C=K)t = ~gC
�
(S=K)t; T � t; �(Yt; t)

�
; (B=K)t = ~gB

�
T � t; �(Yt; t)

�
;

(3.3)
where ~gC and ~gB are speci�c functions related to the GBM speci�ca-
tion. Even within the Harvey and Whaley and Fleming and Whaley
framework of a single state variable and time-varying dividends, our
nonparametric approach does not necessarily assume a GBM process.

7For instance, suppose that in estimating nonparametrically the relations in (3.2)
we �nd that both � and � a�ect B=K and C=K: Then from appendix A we can
note that model 1 and model 3 are possible candidates for the true underlying model.
Indeed, model 1 is the most general one which yields � and � as functions of Y and Z.
Model 3 is more restrictive in the sense that the underlying economic model restricts
� to be a function of Z. Such issues can only be addressed via a fully speci�ed
structural model.
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Moreoever, it is also worth noting that the nonparametric methods not
only allow us to price contracts, similar to Harvey and Whaley (1992a,b)
and Fleming and Whaley (1994), but also to compute excercise bound-
aries conditional on dividends. Finally, within this framework we can
also cover models with stochastic volatility but a single state variable:

(C=K)t = gC
�
(S=K)t; T � t; �(Yt; t); �(Yt; t)

�
;

(B=K)t = gB
�
T � t; �(Yt; t); �(Yt; t)

�
; (3.4)

such as model 2 in appendix A and Theorem 2.2 (which includes the
implied binomial tree models of Rubinstein (1994)). In the next subsec-
tion, we devote our attention to the speci�cation of the latent volatility
variable process and the estimation issues associated with it.

3.2 Volatility measurement and estimation issues

We noted in the Introduction that models often encountered in the lit-
erature on European options feature stochastic volatility, see Hull and
White (1987), Johnson and Shanno (1987), Scott (1987), Wiggins (1987),
Chesney and Scott (1989), Stein and Stein (1991), Heston (1993), among
others. The results obtained for European options, and those for Ameri-
can options with stochastic volatility discussed in section 2, show that in
order to price a call one has to integrate over a path of future volatilities
for the remaining lifetime of the contract.8 The �rst step will consist
of estimating the current state. Since it is a latent process we need to
extract it from the (return) data. Once those estimated volatilities are
obtained we will estimate nonparametrically their relationship with the
call prices which are assumed to be functions of the expected value of
future volatilities, given current values of the state variables. Obviously,
even with an explicit model for volatility, the computation of this expec-
tation for European and certainly American type contracts is extremely
challenging. It is this di�cult step which is bypassed here via the use of
market data and nonparametric methods.

In principle, one could �lter �t from the data using a sample of ob-
servations on the series St: We obviously need a parametric model if we
were to do this in an explicit and optimal way. This however would be
incompatible with a nonparametric approach. Hence, we need to pro-
ceed somehow without violating the main results of section 2 and at the

8This distinction between the current state and its future path over the remaining
term of the contract was also important in the case of dividend series. Indeed Harvey
and Whaley (1992a, b) and Fleming and Whaley (1994) reduce the index by the
discounted 
ow of dividends during the lifetime of the option.
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same time without making speci�c parametric assumptions. One could
consider a nonparametric �t between �t and

�
S=K

�
t
and past squared

returns (logSt�j � logSt�j�1)
2; j = 1; : : : ; L; for some �nite lag L; re-

sulting in the following L+ 2-dimensional nonparametric �t:

(C=K)t = �gC
�
(S=K)t; T � t; �t; (logSt�j � log St�j�1)

2
; j = 1; 2; : : : ; L

�
; (3.5)

(B=K)t = �gB
�
T � t; �t; (log St�j � log St�j�1)

2
; j = 1; 2; : : : ; L

�
; (3.6)

considered for instance by Pagan and Schwert (1990). It is clear that
this approach is rather unappealing as it would typically require a large
number of lags, say L = 20 with daily observations. Hence, we face
the typical curse of dimensionality problem often encountered in non-
parametric analysis.9 A more appealing way to proceed is to summarize
the information contained in past squared returns (possibly the in�nite
past). We will consider three di�erent strategies: (a) historical volatil-
ities, (b) EGARCH volatilities and (c) implied volatilities. Each are
discussed in detail in a �rst subsection. The �nal subsection elaborates
on nonparametric estimation issues.

3.2.1 Volatility measurement

(a) Historical volatilities. Practitioners regulary use the most re-
cent past of the quadratic variation of S to extract volatility. Typically,
these estimates amount to a 20 or 30 days average of past squared re-
turns. Such a statistic is obviously easy to compute, does not involve
any parameters and solves in a rather simple way the curse of dimen-
sionality problem alluded to before. In using historical volatilities, we
replace �(Yt; Zt; t)

2 by L�1
PL�1

j=0 (logSt�j � logSt�j�1)
2 and obtain a

nonparametric estimation problem similar to that involving dividends. A
slightly more complicated scheme, notably appearing in RiskMetricsTM,
is to use the in�nite past through an exponentially weighted moving
average speci�cation. This amounts to

�̂t = ��̂t�1 + �(1� �)(logSt � �rt�1)
2;

9The nonparametric estimators of regression functions Y = f(X), where X is a
vector of dimension d; are local smoothers, in the sense that the estimate of f at
some point x depends only on the observations (Xi; Yi) with Xi in a neighborhood
N (x) of x: The so-called curse of dimensionality captures the fact that, if we measure
the degree of localness of a smoother by the proportion of observations (Xi; Yi) for
which Xi is in N (x); then the smoother becomes less local when d increases, in the
sense that the N (x) corresponding to a �xed degree of localness loses its neighbouring
property as the dimension of X increases. A consequence of this is that unless the
sample size increases drastically, the precision of the estimate deteriorates as we add
regressors in f: For more details on the curse of dimensionality and how to deal with
it, see Hastie and Tibshirani (1990), Scott (1992, chap. 7) and Silverman (1990, p.
91 { 94). We propose here a di�erent approach.
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where �rt = (1��) logSt+��rt�1: Obviously, such a speci�cation involves
parameter estimation. One can �x � at some value, not necessarily
obtained via formal statistical estimation.10 The empirical quantiles of
the �ltered volatilities are given in Table 2.

(b) EGARCH volatilities. The ARCH class of models could be
viewed as �lters to extract the (continuous time) conditional variance
process from discrete time data. Several papers were devoted to the
subject, namely Nelson (1990, 1991, 1992, 1996a,b) and Nelson and Fos-
ter (1994, 1995), which brought together two approaches, ARCH and
continuous time SV, for modelling time-varying volatility in �nancial
markets. Nelson's �rst contribution in his 1990 paper was to show that
ARCH models, which model volatility as functions of past (squared) re-
turns, converge weakly to a di�usion process, either a di�usion for log�2t
or a Constant Elasticity of Variance (CEV) process. In particular, it was
shown that a GARCH(1,1) model observed at �ner and �ner time in-
tervals �t = h with conditional variance parameters !h = h!; �h =

� (h/ 2)
1
2 and �h = 1�� (h/ 2)

1
2 � �h and conditional mean �h = hc�2t

converges to a di�usion limit

d logSt = c �2t dt+ �tdWt (3.7)

d�2t = (! � ��2t )dt+ �2t dW
�
t : (3.8)

Similarly, it was also shown that a sequence of AR(1)-EGARCH(1,1)
models converges weakly to an Ornstein-Uhlenbeck di�usion for ln�2t

d ln�2t = �(� � ln�2t )dt+ dW �
t : (3.9)

These basic insights show that the continuous time stochastic di�erence
equations emerging as di�usion limits of ARCH models were no longer
ARCH but instead SV models. Moreover, following Nelson (1992), even
when misspeci�ed, ARCH models still keep desirable properties regard-
ing extracting the continuous time volatility. The argument is that for
a wide variety of misspeci�ed ARCH models the di�erence between the
(EG)ARCH volatility estimates and the true underlying di�usion volatil-
ities converges to zero in probability as the length of the sampling time
interval goes to zero at an appropriate rate. This powerful argument
allows us to use the EGARCH model as �lter which is not necessarily
incompatible with the underlying (unspeci�ed) structural model. In-
deed, it is worth noting that setting c = 1 in (3.7) and using (3.9) yields

10In the case of RiskMetricsTM for daily data, one sets � = :94; a value which we
retained for our computations.
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Table 1: EGARCH(1,1) �ltering of the volatility

Parameter Estimate Estimated standard error

� 0:00043 0:00025

! �0:93279 0:10280

� 0:89609 0:01133


 �0:11361 0:01045

� 0:22466 0:02026

a stochastic volatility model which falls within the class of processes
described by the equilibrium equation for S in appendix A.

Volatilities are extracted using the following AR(1)-EGARCH(1,1)
speci�cation:

lnSt = �+ lnSt�1 + et;

ln�2t = ! + ��2t�1 + 

et�1

�t
+ �

"
jet�1j

�t�1
�

r
2

�

#
:

The estimation from S&P 100 data is summarized in Table 1, while Table
2 provides a summary of the distribution of extracted volatilities.

(c) Implied volatilities. Last but not least, we can look through
the window of a (modi�ed) Black-Scholes economy pricing formula and
compute the implied volatilities from call prices which are quoted on the
market. The computation of implied volatilities is discussed in Harvey
and Whaley (1992a) and Fleming and Whaley (1994). They do take into
account the dividend process. Indeed, they compute the present value
of the dividend stream during the life of the option to adjust the index
and subsequently apply the (constant volatility) Cox-Ross-Rubinstein
algorithm. If there are two state variables, and hence both �(Yt; Zt; t)
and �(Yt; Zt; t); we expect that implied volatilities paired with the ob-
served dividend series � re
ect the joint process (Yt; Zt): The empirical
quantiles of implied volatilities are given in Table 2.
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Table 2: Empirical quantiles of �ltered conditional variances (�̂2)

Quantiles Type of volatility extraction

�̂2EGARCH �̂2RiskMetricsTM �̂2Implied

min 0.00005 0.00003 0.00002

5% 0.00006 0.00004 0.00006

25% 0.00008 0.00006 0.00009

50% 0.00010 0.00007 0.00012

75% 0.00013 0.00010 0.00017

95% 0.00023 0.00033 0.00039

max 0.00917 0.00326 0.00364

3.2.2 Estimation issues

The purpose of this section is to point out several issues regarding the
nonparametric estimation of

(C=K)t = gC
�
(S=K)t; T�t; �t; �̂t

�
and(B=K)t = gB

�
(S=K)t; T�t; �t; �̂t

�
;

(3.10)
where �t is now replaced by �̂t which represents any of the volatility
estimations discussed in the previous section. It is beyond the scope and
purpose of this paper to provide all the technical details. Instead, we
will brie
y touch on the issues and provide the relevant references to the
literature. The purpose of applying nonparametric statistical estimation
is to recover gC or gB from the data. This estimation method can only
be justi�ed if it applies to a situation where the regularity conditions
for such techniques are satis�ed. To discuss this let us brie
y review
the context of nonparametric estimation. In general it deals with the
estimation of relations such as

Yi = g(Zi) + ui ; i = 1; : : : ; n; (3.11)

where, in the simplest case, ((Yi; Zi); i = 1; : : : ; n) is a family of i.i.d.
pairs of random variables, and E(ujZ) = 0; so that g(z) = E(Y jZ = z):
The error terms ui; i = 1; : : : ; n; are assumed to be independent, while
g is a function with certain smoothness properties which is to be es-
timated from the data. Several estimation techniques exist, including
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kernel-based methods, smoothing splines, orthogonal series estimators
such as Fourier series, Hermite polynomials and neural networks, among
many others. Most of the applications involving options data cited in the
Introduction involve the use of kernel-based methods. Kernel smoothers
produce an estimate of g at Z = z by giving more weight to observations
(Yi; Zi) with Zi \close" to z: More precisely, the technique introduces
a kernel function, K; which acts as a weighting scheme (it is usually a
probability density function, see Silverman (1986, p. 38)) and a smooth-

ing parameter � which de�nes the degree of \closeness" or neighborhood.
The most widely used kernel estimator of g in (3.11) is the Nadaraya-
Watson estimator de�ned by

ĝ�(z) =

Pn
i=1K

�
Zi�z
�

�
YiPn

i=1K
�
Zi�z
�

� ; (3.12)

so that
�
ĝ�(Z1); : : : ; ĝ�(Zn)

�0
=WK

n (�)Y; where Y = (Y1; : : : ; Yn)
0 and

WK
n is a n� n matrix with its (i; j)-th element equal to

K
�
Zj�Zi

�

��Pn
k=1K

�
Zk�Zi

�

�
: WK

n is called the in
uence matrix asso-

ciated with the kernel K: The parameter � controls the level of neigh-
boring in the following way. For a given kernel function K and a �xed
z; observations (Yi; Zi) with Zi far from z are given more weight as �
increases; this implies that the larger we choose �; the less ĝ�(z) is chang-
ing with z: In other words, the degree of smoothness of ĝ� increases with
�: As in parametric estimation techniques, the issue here is to choose K
and � in order to obtain the best possible �t. Nonparametric estimation
becomes more complicated when the errors are not i.i.d. Under general
conditions, the kernel estimator remains convergent and asymptotically
normal. Only the asymptotic variance is a�ected by the correlation of
the error terms (see for instance A��t-Sahalia (1996) on this matter). It is
still not clear in the literature what should be done in this case to avoid
over- or undersmoothing.11 The characterization of the correlation in
the data may be problematic in option price applications, however. The

11When the observed pairs of (Y; Z) are drawn from a stationary dynamic bivari-
ate process, Robinson (1983) provides conditions under which kernel estimators of
regression functions are consistent. He also gives some central limit theorems which
ensure the asymptotic normality of the estimators. The conditions under which these
results are obtained have been weakened by Singh and Ullah (1985). These are mix-
ing conditions on the bivariate process (Y;Z): For a detailed treatment, see Gy�orfy
et al. (1989). This reference (chap. 6) also discusses the choice of the smoothing
parameter in the context of nonparametric estimation from time series observations.
When the autocorrelation function of u is unknown, one has to make the transfor-
mation from sample estimates obtained from a �rst step smoothing. Altman (1987,
1990) presents some simulations results which show that in some situations, this so
called whitening method seems to work relatively well. However there is no general
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relevant time scale for the estimation of g is not calendar time, as in a
standard time series context, but rather the time to expiration of the
contracts which are sampled sequentially through the cycle of emissions.
It becomes even more di�cult once it is realized that at each time t sev-
eral contracts are listed simultaneously and trading may take place only
in a subset of contracts. To choose the bandwith parameter we followed
a procedure called generalized cross-validation, described in Craven and
Wahba (1979) and used in the context of option pricing in Broadie et.

al. (1995).
Another technical matter to deal with is the estimation of reduced

forms using implied volatilities, historical volatilities or EGARCH volatil-
ities which all amount to di�erent �ltering devices to surpass the com-
plicated multidimensional nonparametric �t involving past squared re-
turns. However, choosing and working with a measurement of the latent
volatility variable raises a more serious problem of errors in the variables
generated by using �ltered volatility. There are di�erent ways of dealing
with this issue. Some amount to kernel regression estimation procedures
proposed by Muus (1994) involving kernels based on a characteristic
function speci�cation. As these procedures are rather complicated we
will refrain from applying them. More interestingly, Rilstone (1996)
studies the generic problem of generated regressors, which is a regressor
like �̂t, in a standard kernel-based regression model and shows how it
a�ects the convergence rates of the estimators while maintaining their
properties of consistency and asymptotic normality.

3.3 Estimation results

We focus our attention on the OEX contract which was also studied
by Harvey and Whaley (1992a, b) and Fleming (1994). The empirical
investigation rests on a combination of �ve di�erent data sets. They
are: (1) time series data of the daily closure of the S&P100 Index, (2)
data on daily call option prices at the market closure obtained from
the Chicago Board Option Exchange (CBOE), (3) observations on the
daily exercises of the OEX contract as recorded by the Option Clearing
Corporation (OCC), (4) dividend series of the companies listed in the
S&P100 Index and (5) series of �ltered volatilities described in section
3.2.1.12 The sample we consider runs from January 3rd 1984 to March

result on the e�ciency of the procedure. See also H�ardle and Linton (1994, section
5.2) and Andrews (1991, section 6).

12The implied volatilities series for the OEX contract is that calculated by Fleming
and Whaley (1994). The data refered to in (3) is described in Diz and Finucane
(1993), while the dividend series are those calculated by Harvey and Whaley (1992b).
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30th 1990.
We consider �rst call prices normalized by the strike price K. The

degree of moneyness is measured via the ratio S=K. The empirical re-
sults are reported in two sets of six �gures. To summarize the results
we classify the options in three classes of maturity (see e.g., Rubinstein
(1985)): (1) very short maturities which are less than one month, de-
noted TTM1 in the �gures, (2) maturities between one and two months,
denoted TTM2 and �nally (3) maturities between two and three months
denoted TTM3. Regarding volatility we classi�ed the data according to
the empirical quartiles of the volatility distribution appearing in Table 2.
The same strategy is applied to the dividend rate process, except that we
took a roughly 50-50 percent cut of the distribution which conveniently
was separated as �t = 0 versus �t > 0; where �t denotes observations of
the dividend rate. Figure 1 consists of six of graphs. It can be interpreted
as a 3� 2 matrix, the rows corresponding to the three time-to-maturity
classes, TTM1 (top) to TTM3 (bottom), and columns to the two classes
of observed dividend rates, �t = 0 (left) and �t > 0 (right). Each graph
contains four curves representing the quartiles of the volatility distribu-
tion. Figure 1 covers the case of EGARCH volatilities.

The �rst thing to note is that the cases �t = 0 and �t > 0 look quite
similar across the di�erent maturities. As time to maturity increases,
there is a larger impact of volatility. This is obviously not surprising
as the option price is more sensitive to changes in volatility and to the
volatility level itself over longer time horizons. What is more surpris-
ing perhaps is that, particularly with TTM3, there is a distinct pattern
emerging for the fourth volatility quartile while the �rst three seem to
be lumped together. For at-the-money options the di�erence is roughly
a two to three percent upward shift in the price ratio C=K: In section 3.4
we will actually discuss how this translates into actual option prices. For
smaller maturities this di�erence disappears, as expected. The results
so far seem to suggest two things: (1) conditioning on �t does not dis-
place pricing of options and (2) the volatility e�ect seems to be present
only for large (fourth quartile) volatilities. We also report results using
implied volatilities rather than EGARCH ones. These appear in Figure
2 and show that the results are robust with regard to the speci�cation
of volatility.
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Figure 1: Estimated call prices conditional on dividend and EGARCH

volatility quartiles. | : �rst quartile; { { : second quartile; ��� : third

quartile; � � � : fourth quartile.
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Figure 2: Estimated call prices conditional on dividend and implied

volatility quartiles. | : �rst quartile; { { : second quartile; ��� : third

quartile; � � � : fourth quartile.
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Since graphical appearances may be decieving we must rely on ex-
plicit statistical testing to �nd out whether volatility and/or dividends
matter in pricing OEX index options. Indeed, the graphs only make the
distinction, adopted for convenience, �t = 0 versus �t > 0: We therefore
consider now a formal procedure for testing whether volatility and/or
dividends should be included in relations (3.10). A��t-Sahalia, Bickel and
Stoker (1994) proposed a test for the exclusion of variables in a regres-
sion function estimated by kernel methods. If we consider a relationship
like gC in (3.10), we may wish to test whether the dividend rate � is a
variable which contributes to the variation of (normalized) call prices.
We are therefore considering the test of H0(�) : C=K = g0�C

�
(S=K); �; �

�
against H1(�) : C=K = gC

�
(S=K); �; �; �

�
: Alternatively, we may also

test for the presence of an impact of volatility on call prices by consid-
ering a test of H0(�) against H1(�); where these hypotheses are de�ned
in a similar way reversing the role of � and �:

The test statistic proposed by A��t-Sahalia, Bickel and Stoker (1994)
is based on the mean square di�erence of prediction errors by the two
competing models g0�C and gC ; � = � or �: It is shown that a normalized
version of the test statistic is asymptotically normally distributed, under
some regularity conditions bearing mainly on the kernel function, the
convergence of the bandwidth and the joint distribution of the variables
involved in the relation de�ned by H1(�): The test results appear in
Table 3 where t� represents the statistic used for testing H0(�) against
H1(�); where � stands for � and �: 13 Since t� is asymptotically N(0; 1)
under H0(�) we �nd a rejection of the null hypothesis in all cases. In
other words, neither the volatility nor the dividend rate can be omitted
from the relationship gC in (3.10). Hence, based on this evidence we
have to conclude that the emphasis on dividends alone in the pricing
of OEX options, as articulated in Harvey and Whaley (1992a, b) and
Fleming and Whaley (1994), is not enough to characterize option pricing
in this market. 14

13One regularity condition for applying the tests deserves some attention. Namely,
if we consider a test ofH0(�) against H1(�); it is clear that the condition that the den-
sity of (C=K; S=K;�; �) is r (where r is the order of the kernel used in the estimation)
times continuously di�erentiable for some r � 2 is not met as � is a random variable
for which the value 0 is a mass point. We therefore report in Table 3 two statistics
for each test, one based the entire sample and one based on the observation points
with �t > 0: The latter should in principle not su�er from a mass point accumulation
in the data. Fortunately the results are invariant to this issue as can be noted from
the table.

14One important comment needs to be made to understand the comparison with
the Fleming-Harvey-Whaley �ndings. Namely, there is a di�erence between our state
variable speci�cation and theirs. Indeed, we use concurrent �t instead of the future

ow of dividend over the lifetime of the option. The Fleming-Harvey-Whaley ap-
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Table 3: Goodness of �t test statistics.

t� t�

Full sample 675:8855 73:2789

Obs. with � > 0 378:5861 82:2617

To conclude this section we turn our attention to the data on exercise
decisions. Broadie et. al. (1995) describe in detail how to extract from
the data set observations on excercise decisions. These observations are
used to derive a kernel estimate gB in (3.10). The resulting surface
is shown in Figure 3 for di�erent �ltered volatilities, taking the implied
volatility as a representative example here. 15 We also found, but do not
report here for the purpose of streamlining the presentation, that both
dividends and volatility again play a signi�cant role (in a statistical
sense). It is interesting to study the surface plotted in Figure 3. We
notice that the surface is relatively insensitive with respect to volatility,
except at the high end scale of volatility. This evidence is in line with the
call price functionals which showed an upward shift only for the upper
quartile of the volatility distribution. It is important to note that the
evidence reported here comes from a very di�erent and separate data
set involving observations regarding excercise decisions rather than call
prices.

3.4 Nonparametric pricing of American call options

In addition to the statistical issues involved in the speci�cation of an
option pricing functional we must also assess option pricing errors. In
Table 4 we report the results of numerical computations which compare
the pricing of an OEX call using (1) the binomial tree approach, (2)
the algorithm for American option pricing developed Broadie and De-
temple (1996) and last but not least (3) the nonparametric functionals
retrieved from the data. These are respectively denoted Bin, B-D and

proach assumes future dividends to be known to compute their implied volatilities.
In practice they have to be predicted. When the autocorrelation function of �t is
computed we �nd strong and cyclical autocorrelations. This means that �t contains
a fair amount of information regarding future dividend payments. This makes our
approach a reasonable proxy without having to model explicitly the prediction model
for future dividends.

15Figure 3 does not involve conditioning on values of �t.
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Nonparametric in Table 4. A number of hypothetical situations were
postulated for these calculations. First, we examined prices quoted on
nondividend paying days. Hence, �t is assumed zero and we therefore
compare a nonparametric pricing functional which explicitly conditions
on this event while the parametric approaches do not. 16 The B-D
algorithm for instance assumes that the S&P100 index follows a geomet-
ric Brownian Motion with constant volatility and constant dividend 
ow
�.17 To deal with volatility we compared two extremes, namely volatility
days which reside in the �rst and fourth quartile of the distribution. 18

From the results in the previous section we know that this amounts to
comparing two typical situations which can be characterized as low and
high volatilities since the �rst three quartiles appear to be lumped to-
gether (cfr. Figures 1 and 2). Moreover, we examined three maturities,
namely 28, 56 and 84 days. These are hypothetical TTM speci�cations
falling in the three broad categories we studied. The particular choice
of days in inconsequential for our results. The options priced are either
at-the-money or else 5 percent in- and out-of-the-money. For the non-
parametric pricing scheme we computed the average price over the entire
range of the low and high volatility quartiles while the parametric pricing
schemes were computed for the upper and lower limits of the empirical
quartile ranges. This provides a pricing bracket which we can compare
with the nonparametric results. All the results in Table 4 refer to the
ratio C=K and can be easily interpreted in a dollar sense by picking K
= 100 for instance.

The results in Table 4 show that parametric models consistently mis-
price the OEX option. In particular, the average nonparametric price in
general fails to belong to the interval prescribed by the parametric mod-
els. Moreover, this conclusion is uniform across the parametric models.
In addition, for low volatilities we note underpricing by the parametric
model for nearly all maturities. 19 In contrast, for high volatility we
note that the nonparametric pricing schemes belong to the parametric
range for medium maturities (56 days and 84 days) while the parametric
models overprice for short maturities out- or at-the-money options. The
magnitude of the errors can be considerable. Taking K = 100 we note
that they may be 20 cents or more per contract. In percentage terms the

16Results pertaining to �t > 0 are not reported but yield to conclusions similar to
those we report for �t = 0.

17The dividend rate was set equal to the sample average of the S&P100 dividend
series contructed by Harvey and Whaley (see also Broadie et. al. (1995) for more
details).

18All calculations in Table 4 are made with the EGARCH volatility estimates.
19An exception are the out-of-the money short maturity options.
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Table 4: American call option normalized prices (C=K).

(a) Time to maturity = 28 days

Volatility Low volatilities High volatilities

Moneyness out at in out at in

Nonparametric 0.00114480 0.01666828 0.05533171 0.00285930 0.02091207 0.05696213

lower 0.00096633 0.01371195 0.05142301 0.00389952 0.02006459 0.05465180
Bin

upper 0.00174318 0.01579428 0.05228001 0.00824606 0.02660485 0.05931876

lower 0.00097033 0.01372321 0.05142182 0.00390517 0.02008115 0.05464477
B-D

upper 0.00174216 0.01580728 0.05228078 0.00823746 0.02662683 0.05930739

(b) Time to maturity = 56 days

Volatility Low volatilities High volatilities

Moneyness out at in out at in

Nonparametric 0.00574492 0.02590474 0.06231479 0.01194974 0.03423728 0.06610578

lower 0.00351903 0.01945440 0.05436309 0.00955299 0.02839967 0.06074075
Bin

upper 0.00528273 0.02238628 0.05626256 0.01698366 0.03761091 0.06863641

lower 0.00351797 0.01947021 0.05436360 0.00954500 0.02842289 0.06075945
B-D

upper 0.00529623 0.02240454 0.05625452 0.01697063 0.03764160 0.06861070

(c) Time to maturity = 84 days

Volatility Low volatilities High volatilities

Moneyness out at in out at in

Nonparametric 0.01017253 0.03236089 0.0684330 0.02033059 0.04318956 0.07282010

lower 0.00625150 0.02386238 0.05735078 0.01458586 0.03477430 0.06610690
Bin

upper 0.00881129 0.02743838 0.06003424 0.02425917 0.04601170 0.07630737

lower 0.00624208 0.02388162 0.05735069 0.01459030 0.03480239 0.06611287
B-D

upper 0.00879815 0.02746057 0.06003006 0.02426214 0.04604874 0.07628135

pricing errors sometimes exceed 30 to 40 percent of the price. Needless
to say that such di�erences are very signi�cant in the pricing of these
options.

4 Conclusion

We considered American option contracts when the underlying asset or
index has stochastic dividends and stochastic volatility. This situation is
quite common in �nancial markets and generalizes many cases studied in
the literature so far. The theoretical models which were derived in sec-
tion 2 yield fairly complex expressions which are di�cult to compute. It
motivated us to adopt a nonparametric approach to estimate call prices
and exercise boundaries conditionnal on dividends and volatility. Us-
ing data from the OEX contract we �nd that dividend payments are
important, con�rming earlier results of Harvey and Whaley (1992a,b)
and Fleming and Whaley (1994), but also uncover a signi�cant volatility
e�ect hitherto ignored in the literature on American options. In that
respect our results join the extensive e�orts undertaken in the case of
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European style options. Yet, the nonparametric approach we present
is more 
exible since it does not require the speci�cation of an explicit
model for the underlying index. This 
exibility inherent in the nonpara-
metric approach applies to American and European contracts, or even
more exotic option designs provided a su�ciently active market yields
enough data to compute the estimates. It allowed us to uncover a rather
interesting e�ect of volatility on option pricing in the case of the OEX
contract. Indeed, it appears that OEX option prices are relatively in-
sensitive to volatility movements except when the latter starts to behave
in the extreme upper end of the distribution. Our approach also joins
the recent e�orts of applying nonparametric methods to option pricing.
Yet the analysis in this paper is novel since it extends the domain of
application of the nonparametric approach to stochastic volatility and
to a class of contracts which involve both exercise timing decisions and
pricing determination. The method proposed in this paper has also sub-
stantial practical applications for users of OEX options. In that regard
knowledge of the empirical exercise boundary and the pricing function
can help in decisions involving the purchase of the OEX contract or its
exercise prior to maturity.
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A Stock, bond and contingent claim valua-

tion with stochastic volatility

In this appendix, we develop a consistent model of contingent claim
valuation with stochastic volatility of the underlying stock price and a
stochastic dividend rate. Our general equilibirum approach endogenizes
the equilibrium value of the stock, its dividend rate and volatility coe�-
cients, the interest rate and the values of contingent claims. Equilibrium
values are expressed as functions of the primitives of the economy: the
dividend process on the stock and the preferences of the representa-
tive agent. The model is su�ciently general to deliver the basic stylized
facts which characterize for instance the S&P100 Index process: stochas-
tic volatility and stochastic, imperfectly correlated, dividend rate. The
economy is described in the �rst subsection; the second subsection covers
the equilibrium properties of stocks and derivative securities.

A.1 The Economy

We consider a continous time pure exchange economy with a representa-
tive agent and a �nite time period [0; T ]: The uncertainty is represented
by a three-dimensional Brownian Motion processW � (W1;W2;W3) de-
�ned on a probability space (
;F ; P ): The information structure of the
representative agent is the �ltration generated by W: The economy has
a �nancial market with two primitive assets, a risky asset (stock) and
an instantaneously riskless bond. The risky stock is in unit supply. It
generates a 
ow of dividend payments D which satis�es the stochastic
di�erential equation

dDt = Dt[�
D(Yt; Zt; t)dt+ �D(Yt; Zt; t)dW1t]; t 2 [0; T ]; (A.1)

dYt = �
Y (Yt; t)dt+ �

Y
1 (Yt; t)dW1t + �

Y
2 (Yt; t)dW2t; t 2 [0; T ]; (A.2)

dZt = �
Z(Zt; t)dt+ �

Z
1 (Zt; t)dW1t + �

Z
3 (Zt; t)dW3t; t 2 [0; T ]; (A.3)

whereD0; Y0 and Z0 are given. The variables Y and Z are state variables
which captures the stochastic 
uctuations in the volatility coe�cient of
the dividend process. The drift is also a�ected by Y and Z: The price
of the stock, S; satis�es the stochastic di�erential equation

dSt+dDt = St[�tdt+�1tdW1t+�2tdW2t+�3tdW3t]; t 2 [0; T ]; (A.4)

and has an initial value S0. The initial value S0 and the coe�cients
(�; �1; �2; �3) which appear in (A.4) are determined in equilibrium.
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The riskless bond with instantaneous maturity is in zero net supply.
It pays an interest rate r per unit time which is also determined in
equilibrium.

The representative agent has preferences represented by the von Neu-
mann-Morgenstern index

U(c) = E

"Z T

0

u(Zt; ct; t)dt

#
; (A.5)

where u(Z; c; t) is a state-dependent instantaneous utility function and
Z represents a utility shock. The function u( � ) satis�es standard con-
ditions: it is twice continuously di�erentiable with respect to c; strictly
concave and increasing with respect to c and has the limiting values
limc"1 u0(Z; c; t) = 0 and limc#0 u

0(Z; c; t)
=1; for all Z 2 IR+ and t 2 [0; T ]:

The preference model (A.3),(A.5) is fairly general. It includes, in
particular, the standard model with constant subjective discount rate
u(c; t) = e��tu(c) which is obtained by setting �Z = �Zt� ; �Z1 =
�Z3 = 0 and u(Z; c; t) = Zu(c): It also includes models with stochastic

discount rate obtained for u(Z; c; t) = e

R
t

0
Z�d�u(c) where Z follows the

stochastic process (A.3). The consideration of state-dependent utility
functions gives us the additional degree of freedom required to model
equilibrium dividend rate processes (�t � Dt=St) which are stochastic
and partially correlated with the price volatility process.

The representative agent consumes and invests in the stock and the
riskless asset. A consumption policy is a progressively measurable pro-

cess c such that
R T
0
cvdv < 1, (P -a.s.). An investment policy is a

progressively measurable process � such that
R T
0
�2v(�

2
1v + �22v)dv < 1,

(P -a.s.). Here � represents the investment in the stock. The invest-
ment in the bond is X � � where X denotes the wealth of the agent. A
consumption-investment policy (c; �) generates the wealth process

dXt = [rtXt�ct]dt+�t
�
(�t�rt)dt+�1tdW1t+�2tdW2t+�3tdW3t

�
; t 2 [0; T ];

(A.6)

where X0 is given. An investment policy is admissible if the associated
wealth process satis�es

Xt � 0; t 2 [0; T ]: (A.7)

A consumption-investment policy (c; �) is optimal for the prefer-
ences U(c) if it cannot be dominated by any alternative admissible
consumption-investment policy. A collection of processes ((S; r); c; �)
is an equilibrium if (i) taking prices as given the policy (c; �) is optimal
for the agent and (ii) markets clear: c = D and X � � = 0:
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A.2 The equilibrium values of the stock, the interest

rate and contingent claims

In this subsection we �rst provide equilibrium valuation formulas for the
stock, the bond and zero net supply contingent claims for the general
economy described above (Theorems A.1 and A.2 and corollary A.1).
We then examine conditions on the primitives of the model under which
the stock price has various stochastic volatility structures and dividend
rate processes while the equilibrium interest rate is constant. These
conditions lead to the canonic market model which serves as our starting
point in Section 2 for the valuation of American options and to the
various reduced forms which are tested in Section 3

Our �rst two Theorems state standard pricing results which hold in
pure exchange economies [see e.g. Lucas (1978), Du�e and Zame (1989),
Karatzas, Lehoczky and Shreve (1990), Detemple and Zapatero (1991);
see also Cox, Ingersoll and Ross (1985) for production economies]. Let

bt � exp
�
�
R t
0
r�d�

�
denote the discount factor for date t cash 
ows.

Similarly, let bt;� � b�=bt denote the discount factor at date t for cash

ows received at date �: We also use the notation u1 � @u=@Z; u2 �

@u=@c; u11 � @2u=@Z2; etc, where @u denotes the partial derivatives of
the utility function. We have,

Theorem A.1 Consider the economy with stochastic dividend process

(A.1)-(A.3) described above. The equilibrium interest rate is given by

rt=�
u21

u2
�Z(Zt; t)�

u22

u2
Dt�

D(Yt; Zt; t)�
1

2

u211

u2

�
�Z(Zt; t)

�2
�
1

2

u222

u2

�
Dt�

D(Yt; Zt; ; t)
�2
�
u221

u2
�Z1 (Zt; t)�

D(Yt; Zt; t)Dt ; (A.8)

where
�
�Z(Zt; t)

�2
� �Z1 (Zt; t)

2 + �Z3 (Zt; t)
2: The price of the dividend

paying asset is given by

St = E
Q
t

"Z T

t

bt;�D�d�

#
; (A.9)

for t 2 [0; T ]: The expectation in (A.9) is taken relative to the equilibrium

equivalent martingale measure based on the equilibrium market prices of

risk

�1t = �
u22

u2
Dt�

D(Yt; Zt; t)�
u21

u2
�Z1 (Zt; t); (A.10)

�2t = 0; (A.11)

�3t = �
u21

u2
�Z3 (Zt; t); (A.12)
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for all t 2 [0; T ]: The equilibrium risk premium on the stock is given by

�t � rt =

3X
i=1

�it�it ; t 2 [0; T ]: (A.13)

In the competitive equilibrium of Theorem A.1 zero net supply con-
tingent claims can be easily valued. Suppose that we add to the basic
economic model of Section A.1 a zero net supply claim with maturity
date T1; terminal cash-
ow B and 
ow of payments df� ; � 2 [0; T1]: For
this asset it is easy to show that,

Theorem A.2 Consider the economy with stochastic dividend process

(A.1)-(A.3) and suppose that a zero net supply contingent claim with

characteristics (f;B; T1) is marketed. The equilibrium value V of the

contingent claim is given by

Vt = EQ
t

"Z T1

t

bt;vdfv + bt;T1B

#
; (A.14)

for t 2 [0; T ]: The expectation in (A.14) is taken relative to the equi-

librium equivalent martingale measure based on the equilibrium market

prices of risk (A.10)-(A.12) and the discount factor is based on the equi-

librium interest rate (A.8). The equilibrium risk premium on a zero net

supply contingent claim with volatility coe�cients �1; �2 and �3 is

�t � rt =

3X
i=1

�it�it ; t 2 [0; T ]; (A.15)

where � represents the drift of the contingent claim price.

Let us consider the stock in the economy of Theorem A.1. Applying
the representation formula of Theorem A.2 and simplifying leads to the
following expressions for the equilibrium stock price

St = E
Q
t

�Z T

t

bt;vDvdv

�
(A.16)

= E
Q
t

�Z T

t

exp

�
�

Z v

t

rsds

�
Dt exp

�Z v

t

�
�Ds �

1

2
�Ds

2

�
ds+

Z v

t

�Ds dW1s

�
dv

�
(A.17)

(by de�nition (A.1))

= DtE
Q
t

�Z T

t

exp

�Z v

t

�
�
rs � �Ds + �1s�

D
s +

1

2
�Ds

2
�
ds+

Z v

t

�Ds dW
�

1s

�
dv

�
(A.18)
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where dW �
1t � dW1t + �1tdt

� DtW (Dt; Yt; Zt; t); (A.19)

where W (D;Y; Z; t) denotes the conditional expectation appearing in
the previous line. Note that this function depends on the level of the
dividend payment, D; because the equilibrium interest rate in (A.8)
depends on D for a su�ciently general speci�cation of preferences. The
equilibrium dividend rate � is given by

�t = �(Dt; Yt; Zt; t) �
Dt

St
=W (Dt; Yt; Zt; t)

�1: (A.20)

Summarizing, we have

Corollary A.1 In the equilibrium of Theorem A.1, the stock price is

St = DtW (Dt; Yt; Zt; t) (A.21)

where

W (Dt; Yt; Zt; t)

� E
Q
t

�Z T

t

exp

�Z v

t

�
�
rs � �Ds + �1s�

D
s +

1

2
�Ds

2
�
ds+

Z v

t

�Ds dW
�

1s

�
dv

�
(A.22)

where r and �1 are given in (A.8) and (A.10) respectively. The stock

price satis�es the following stochastic di�erential equation

dSt = St
��
rt � �(Dt; Yt; Zt; t)

�
dt+ �1tdW

�
1t + �2tdW

�
2t + �3tdW

�
3t

�
;

(A.23)
where the volatility coe�cients can be written as

�1t =

�
1 +

WD

W

�
�D(Yt; Zt; t) +

WY

W
�Y1 (Yt; t) +

WZ

W
�Z1 (Zt; t); (A.24)

�2t =
WY

W
�Y2 (Yt; t); (A.25)

�3t =
WZ

W
�Z3 (Yt; t): (A.26)

For economies in which the interest rate is independent of the divi-
dend level, the equilibrium dividend rate becomes

�t = �(Yt; Zt; t) =W (Yt; Zt; t)
�1 (A.27)

a function of (Y; Z) solely. The term WD in the volatility expression
(A.24) is then equal to zero. This property of the equilibrium holds,
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for instance, when preferences are of the power form with multiplicative
state variable e�ect: u(Z; c; t) = v(Z) 1



c
 :

Canonic option pricing models assume that the interest rate is con-
stant. In the economic context above, this amounts to the further re-
striction

u21

u2
�Z�

u22

u2
D�D�

1

2

u211

u2
�Z

2
�
1

2

u222

u2
D2�D

2
�
u221

u2
�Z1 �

DD = � (A.28)

for some constant �: This restriction is a joint condition on the prefer-
ences of the representative agent and on the structure of the dividend
process (A.1)-(A.3). If (A.28) holds, we obtain the following model for
our primary securities (under the pricing measure Q) :

model 1:

dSt = St
��
r � �(Yt; Zt; t)

�
dt+ �1(Yt; Zt; t)dW

�
1t + �2(Yt; Zt; t)dW

�
2t

+�3(Yt; Zt; t)dW
�
3t] ;

dYt =
�
�Y (Yt; t)� �1t�

Y
1 (Yt; t)

�
dt+ �Y1 (Yt; t)dW

�
1t + �Y2 (Yt; t)dW

�
2t;

dZt =
�
�Z(Zt; t)� �1t�

Z
1 (Zt; t)� �3t�

Z
3 (Zt; t)

�
dt+ �Z1 (Zt; t)dW

�
1t

+�Z3 (Zt; t)dW
�
3t;

where (�1; �2; �3) are given in (A.10)-(A.12), �(Y; Z; t) �W (Y; Z; t)�1

and r is constant. The volatility coe�cients of the stock are

�1t = �D(Yt; Zt; t) +
WY

W
�Y1 (Yt; t) +

WZ

W
�Z1 (Zt; t);

�2t =
WY

W
�Y2 (Yt; t);

�3t =
Wz

W
�Z3 (Yt; t):

Model 1 is fairly general to the extent that both the dividend rate and
the volatility coe�cients of the stock price depend on Y and Z:

This is the general model which underlies our treatment of American
options in Section 2 and our econometric investigation in Section 3.

In Section 3 we are led to consider various reduced forms which are
subcases of model 1. In the remainder of this Appendix we explore con-
ditions on the structure of the economy which give rise to those special
cases.
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Suppose that in addition to (A.28) we also require

�Dt � �1t�
D
t = �(Yt; t); (A.29)

�Dt = �D(Yt; t); (A.30)

�1t =  (Yt; t); (A.31)

where � and  are functions of the state variables Y but not Z: Then,
it can be veri�ed from (A.22) that W =W (Yt; t) and that the volatility
coe�cients (�1; �2) are functions of Y alone while �3 = 0: Thus, our �rst
subcase is

model 2:

dSt = St
��
r � �(Yt; t)

�
dt+ �1(Yt; t)dW

�
1t + �2(Yt; t)dW

�
2t

�
;

dYt =
�
�Y (Yt; t)� �1t�

Y
1 (Yt; t)

�
dt+ �Y1 (Yt; t)dW

�
1t + �Y2 (Yt; t)dW

�
2t;

where �1 is given by (A.31), �(Y; t) �W (Y; t)�1 and r is constant. The
volatility coe�cients of the stock are

�1t = �D(Yt; t) +
WY

W
�Y1 (Yt; t);

�2t =
WY

W
�Y2 (Yt; t);

�3t = 0:

This model underlies the reduced form speci�cation (3.4) which is dis-
cussed in Section 3.

An alternative case of interest is when (assuming that (A.28) also
holds)

�Dt � �1t�
D
t = �(Zt; t); (A.32)

�Dt = �D(Yt; t); (A.33)

�1t =  (Yt; t); (A.34)

�Z1t = 0; (A.35)

Condition (A.32) is satis�ed for the multiplicative power utility u(Z; c) =
v(Z) 1



c
 provided that the drift of the dividend process �D(Y; Z; t) has

the appropriate structure. Condition (A.35) implies that Y and Z are in-
dependent processes under the P -measure. Independence under P com-
bined with multiplicative power utility function ensures that the market
price of risk �1 satis�es (A.34). Note that this preference structure also
implies that �3 is a function of Z alone: the processes Y and Z are then
also independent under the pricing measure Q:
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From (A.32)-(A.35) we can write

W (Yt; Zt; t)

= E
Q
t

�Z T

t

exp

�
�r(v � t)�

Z v

t

�(Zs; s)ds�
1

2

Z v

t

�
D
s

2

ds+

Z v

t

�
D
s dW

�

1s

�
dv

�

= E
Q
t

�Z T

t

exp

�
�r(v � t)�

Z v

t

�(Zs; s)ds

�
E
Q
t

�
exp

�
�
1

2

Z v

t

�
D
s

2

ds

+

Z v

t

�
D
s dW

�

1s

�
jF

Z
v

�
dv

�

= E
Q
t

"Z T

t

exp

�
�r(v � t)�

Z v

t

�(Zs; s)ds

�
dv

#

=W (Zt; t):

In the equality above we used the measurability of the �rst expo-
nential with respect to FZ

v : The third equality follows from the Q inde-
pendence of Y and Z and the martingale property of the exponential in
question. Our model 3 then reads

model 3:

dSt = St
��
r � �(Zt; t)

�
dt+ �1(Yt; t)dW

�
1t + �3(Zt; t)dW

�
3t

�
;

dYt =
�
�Y (Yt; t)� �1t�

Y
1 (Yt; t)

�
dt+ �Y1 (Yt; t)dW

�
1t + �Y2 (Yt; t)dW

�
2t;

dZt =
�
�Z(Zt; t)� �3t�

Z
3 (Zt; t)

�
dt+ �Z3 (Zt; t)dW

�
3t;

where �1 is given in (A.34) and �3 in (A.12), �(Z; t) � W (Z; t)�1 and r
is constant. The volatility coe�cients of the stock are

�1t = �D(Yt; t);

�2t = 0;

�3t =
WZ

W
�Z3 (Zt; t):

In this model the dividend rate is stochastic and depends on Z alone
while the volatility of the stock depends both on Y and Z: A subcase of
this model is when W = W (t) is independent of both Y and Z: Then
the dividend rate is a function of time alone and �3 = 0: This subcase is
the model with pure volatility risk (and no dividend yield risk).

model 4:

dSt = St
��
r � �(t)

�
dt+ �1(Yt; t)dW

�
1t

�
;

dYt =
�
�Y (Yt; t)� �1t�

Y
1 (Yt; t)

�
dt+ �Y1 (Yt; t)dW

�
1t + �Y2 (Yt; t)dW

�
2t;
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where �1 is given in (A.34), �(t) = W (t)�1 and r is constant. The
volatility coe�cients of the stock are

�1(Yt; 1) = �D(Yt; t);

�2 = 0 and �3 = 0:

Proof of Theorem 2.2: De�ne w2
t;v � (at;v)

�1
�R v
t
�1(Yu; u)dB

�
u

�
: Using

(2.22) - (2.23) and the de�nition of w2
t;v enables us to write the solution

of (2.20) as:

Sv = St exp

�
(r � �)(v � t)�

1

2
a2t;v + �at;vw

1
t;v +

p
1� �2 at;vw

2
t;v

�
:

Note that the event
�
Sv � Bv(Yv ; v)

	
is equivalent to�

w2
t;v � �d(St; Bv ; at;v; �; w

1
t;v)+

p
1� �2 at;v

	
; where the function d( � )

is de�ned in (2.24)-(2.25). Since w2
t;v has a standard normal distri-

bution conditional on the trajectories of Y we can �rst integrate the
representations (2.14) and (2.15) with respect to w2

t;v conditionally on
fYs : s 2 [t; v]g; and then integrate over the trajectories of Y: This leads
to the expressions in the Theorem.
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