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Dans le présent article, on propose un cadre stochastique général et un
modèle d'évaluation d'actifs financiers à l'équilibre qui mettent en évidence les rôles
respectifs de l'élasticité de substitution intertemporelle et de l'aversion pour le risque
dans le prix de marché des options. Nous précisons en particulier les conditions
statistiques sous lesquelles les formules d'évaluation d'options dépendent ou non
explicitement des paramètres de préférence, en particulier quand ces paramètres ne
sont pas cachés dans les prix de l'actif sous-jacent et d'une obligation, comme c'est
le cas dans les modèles standards de Black et Scholes (BS) ou de Hull et White
(HW). Plusieurs effets de causalité instantanée, du type effet de levier, expliquent
l'occurence non redondante des paramètres de préférence dans les prix d'options.
On prouve aussi que les modèles d'évaluation d'actifs financiers les plus classiques
(CAPM pour les actions, BS ou HW où les prix d'options ne font pas apparaître les
paramètres de préférence) sont fondés sur les mêmes hypothèses stochastiques
(typiquement l'absence d'effet de levier), indépendamment des valeurs des
paramètres de préférence. Même si notre formule générale d'évaluation d'options
dépend dans certains cas explicitement des paramètres de préférence, on n'oublie
pas que la formule BS est dominante à la fois comme modèle théorique de
référence et comme instrument de gestion. Une autre contribution de l'article est la
validation théorique de ce rôle de référence. Ainsi, dans la mesure où on accepte
une propriété essentielle des prix d'options, à savoir leur homogénéité de degré un
par rapport au couple formé par le prix de l'actif sous-jacent et le prix d'exercice,
on peut montrer que les hypothèses statistiques nécessaires et suffisantes pour
l'homogénéité donnent à l'équilibre des prix d'options qui conservent l'essentiel de
la forme fonctionnelle de BS. Cette forme fonctionnelle nous permet de mettre en
évidence certaines propriétés importantes du « sourire » de volatilité, c'est-à-dire
de la représentation graphique des volatilités implicites de BS en fonction de la
position de l'option par rapport à la monnaie. On montre d'abord que l'asymétrie de
ce sourire est équivalente à une forme particulière d'asymétrie de la mesure de
martingale équivalente. Enfin, cette asymétrie correspond précisément au cas où il
existe soit une prime sur un risque instantané de taux d'intérêt, soit un effet de
levier généralisé, soit les deux, en d'autres termes lorsque la formule d'évaluation



d'options dépend explicitement des paramètres de préférence. En conclusion, le
message principal pour la gestion d'options résultant de notre analyse est que
l'évidence d'une asymétrie dans le sourire de volatilité signale l'importance de la
prise en compte des paramètres de préférence dans les formules d'évaluation
d'options.

This paper develops a general stochastic framework and an
equilibrium asset pricing model that make clear how attitudes towards
intertemporal substitution and risk matter for option pricing. In particular, we
show under which statistical conditions option pricing formulas are not
preference-free, in other words when preferences are not hidden in the stock and
bond prices as they are in the standard Black and Scholes (BS) or Hull and White
(HW) pricing formulas. The dependence of option prices on preference parameters
comes from several instantaneous causality effects such as the so-called leverage
effect. We also emphasize that the most standard asset pricing models (CAPM for
the stock and BS or HW preference-free option pricing) are valid under the same
stochastic setting (typically the absence of leverage effect), regardless of
preference parameter values. Even though we propose a general non preference-
free option pricing formula, we always keep in mind that the BS formula is
dominant both as a theoretical reference model and as a tool for practitioners.
Another contribution of the paper is to characterize why the BS formula is such a
benchmark. We show that, as soon as we are ready to accept a basic property of
option prices, namely their homogeneity of degree one with respect to the pair
formed by the underlying stock price and the strike price, the necessary statistical
hypotheses for homogeneity provide BS-shaped option prices in equilibrium. This
BS-shaped option pricing formula allows us to derive interesting characterizations
of the volatility smile, that is the pattern of BS implicit volatilities as a function of
the option moneyness. First, the asymmetry of the smile is shown to be equivalent
to a particular form of asymmetry of the equivalent martingale measure. Second,
this asymmetry appears precisely when there is either a premium on an
instantaneous interest rate risk or on a generalized leverage effect or both, in other
words whenever the option pricing formula is not preference-free. Therefore, the
main conclusion of our analysis for practitioners should be that an asymmetric
smile is indicative of the relevance of preference parameters to price options.

Mots Clés : Causalité, chaînes de Markov cachées, utilité non séparable,
évaluation d'options par modèle d'équilibre, utilité récursive,
volatilité implicite de Black-Scholes, sourire de volatilité.

Keywords : Causality, hidden Markov chains, non-separable utility,
equilibrium option pricing, recursive utility, Black-Scholes
implicit volatility, smile effect

JEL : C1, C5, G1



1 Introduction

Since two fundamental characteristics of an option are its maturity date

and the underlying asset on which it is written, the price of such a secu-

rity will naturally be a�ected by the value of time as well as the price of

risk associated with the asset in question. Therefore, it is not surprising

that in a complete market setting, such a security can be duplicated by a

portfolio of bonds and stocks. In general however, when options are not

redundant securities, the respective roles of time and risk in its valuation

are less obvious. A main contribution of this paper is to provide a gen-

eral stochastic framework and an equilibrium asset pricing model that

make clear how attitudes towards intertemporal substitution and risk

matter for option pricing. In particular, we show under which statistical

conditions option pricing formulas are not preference-free, in other words

when preferences are not hidden in stock and bond prices as they are

in option pricing formulas such as the Black and Scholes (1973) formula

(hereafter BS formula). Moreover, thanks to a recursive utility frame-

work (Epstein and Zin [1989]), we succeed in disentangling the respective

roles of discounting, risk aversion and intertemporal substitution in the

option pricing formula.

The dependence of option prices on preference parameters comes

from two main e�ects. First, while it is commonly known that forward

interest rates are not just expected values of future spot rates, due to a

time-varying risk premium, we stress that this premium also enters in

the option price in such a way that preference parameters are not fully

hidden in the market price of long-term bonds. This e�ect is due to an

instantaneous causality relationship between aggregate consumption and

state variables which enter into the interest rate risk. It is worth noting

that preferences enter into this premium not only through discounting

and risk aversion, but also through the elasticity of intertemporal sub-

stitution. Second, preferences also matter for option pricing because of

a generalized leverage e�ect, that is not only the instantaneous causal-

ity relationship between state variables which enter into the stochastic

volatility process of the stock price and the stock price process itself but

also a stochastic correlation between the stock returns and the market

portfolio returns. In our framework, this e�ect can be separated from

the previous one. While the instantaneous interest rate risk premium

involves all preference characteristics (discounting, risk aversion and in-

tertemporal substitution), the risk premium related to the leverage ef-

fect only involves the risk aversion parameter. Additionally, this e�ect is

purely due to risk (in the spirit of CAPM) and vanishes if the stock has

a zero beta with respect to the market. In this last case, the volatility
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risk is perhaps compensated but the compensation does not imply an

additional role for preference parameters in option prices. On the other

hand, a beta stock pricing conformable to a standard CAPM is obtained

as soon as the above instantaneous causality or stochastic correlation

e�ects disappear. This leads us to emphasize that the most standard as-

set pricing models (CAPM for the stock, preference-free option pricing

such as in Black and Scholes (1973) or Hull and White (1987) models)

are valid under the same stochastic setting regardless of the parameter

values of the utility function. This provides a statistical foundation to

CAPM pricing in a recursive utility framework regardless of particular

preference con�gurations. In Epstein and Zin (1991), CAPM pricing

was obtained only with a logarithmic utility or an in�nite elasticity of

intertemporal substitution.

The stochastic framework we consider is not chosen for theoretical

convenience but justi�ed from a practical point of view. Indeed, we al-

ways keep in mind that the BS formula is dominant both as a theoretical

reference model and as a tool for practitioners for pricing and hedging

European options. Another contribution of the paper is to characterize

why the BS formula is such a benchmark. We show that, as soon as

we are ready to accept a basic property of option prices, namely their

homogeneity of degree one with respect to the pair formed by the un-

derlying stock price and the strike price (see Merton (1973)), we obtain

an option pricing formula that keeps the main functional shape of the

usual BS formula. This robustness of the BS formula is ensured via

homogeneity by our stochastic framework and equilibrium asset pricing

model taken together. We show that the homogeneity requirement im-

plies the stochastic framework which in turn provides BS-shaped option

prices. We therefore provide a rationalization of the vast literature that

enriches the BS model to improve its usefulness for practitioners.

Since implicit volatility, the volatility that equates the BS option

valuation formula to the observed option price, has become the stan-

dard method of quoting option prices1 and a risk management tool,

many empirical studies have investigated the properties of such implicit

volatilities. For example, some studies have addressed the e�ect of time-

to-maturity or strike price on BS implicit volatilities, the so-called smile

e�ect and its increasing amplitude when time to maturity decreases2.

1See Bates (1996).
2See, for example, Day and Lewis (1992), Engle and Mustafa (1992), and Jorion

(1995). However, as explained clearly in Melino (1994), a shortcoming of the implicit

estimation methodology is its internal inconsistency since it produces estimates of

volatility that can vary considerably from day to day while the variance is originally

assumed constant.
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Therefore, the volatility smile appears as a useful characterization of op-

tion pricing and hedging biases for practical applications. It has been

proven by Renault and Touzi (1996) that the standard Hull and White

(1987) stochastic volatility model o�ers a rationalization of a symmetric

smile3. We extend this result by providing the �rst theoretical charac-

terization of asymmetric smiles, which are often observed in practice.

First, the asymmetry of the smile is shown to be equivalent to a partic-

ular form of asymmetry of the pricing density. Second, this asymmetry

appears precisely when there is either a premium on interest rate risk

or on a generalized leverage e�ect or both, in other words whenever the

option pricing formula is not preference-free. Therefore, the main conclu-

sion of our analysis for practitioners should be that an asymmetric smile

is indicative of the relevance of preference parameters to price options.

Conversely, standard preference-free option pricing and CAPM-like stock

pricing are allowed whenever symmetric smiles are produced.

Our approach is in contrast with purely descriptive nonparametric

statistical techniques involving either functional estimation or implied

binomial trees which can �t any shape of the smile4. Contrary to our

model, these techniques imply a deterministic relationship between the

instantaneous volatility of the stock price and its level, which means that

they are not compatible with a homogeneous option pricing formula.

By our statistical and equilibrium model assumptions, we are able to

reproduce asymmetric smiles with a BS-type homogeneous option price.

For practical applications in terms of option pricing and hedging,

the fact that the general functional shape of the BS formula is mainly

preserved as long as homogeneity is maintained validates the usual prac-

tice of using the BS formula and its Hull and White extension as a

benchmark, even though the presence of various kinds of leverage e�ects

makes preference-free option pricing strictly invalid. Our generalized op-

tion pricing formula o�ers a variety of directions in which the BS formula

can be misspeci�ed and which could be of interest for practitioners. For

example, the computation of implicit preference parameters, irrespec-

tive of their theoretical interpretation, should cause little more incon-

3A symmetric smile is obtained as soon as the option price can be characterized as

an expectation of a BS formula with respect to an heterogeneity factor. In particular,

this is the case in Merton's (1976) model where the underlying stock returns contain

along with the usual Brownian process a jump process. The option pricing formula

keeps \most of the attractive features of the original BS formula in that it does

not depend on investors' preferences or knowledge of the expected return on the

underlying stock" (see Renault (1996) for a survey).
4See Gouri�eroux, Monfort and Tenreiro (1994), A��t-Sahalia, Bickel and Stocker

(1994), Bossaerts and Hillion (1995) for functional estimation and Dupire (1994),

Rubinstein (1994), for implied binomial trees.
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venience than estimating an implicit volatility and may prove as useful

to correctly appraise biases in preference-free option pricing. Moreover,

as far as preference-free option pricing and associated symmetric volatil-

ity smiles are maintained hypotheses, our results provide a theoretical

support to some extensions of the BS formula which replace the stan-

dard normal cumulative distribution function by alternative distribution

functions (including asymmetric ones).

Rubinstein (1976) and Brennan (1979) use a consumption-based rep-

resentative agent framework to price options. Amin and Ng (1993) ex-

tend this framework to a joint process for consumption growth and stock

returns which captures both interest rate and volatility risks. As spe-

cial cases of our general option pricing formula, we obtain the formula

derived by Amin and Ng (1993) and a fortiori all the other pricing for-

mulas that were nested in the latter5: of course the BS formula, but

also the Hull-White (1987) and Bailey-Stulz (1989) stochastic volatility

option pricing formulas and the Merton (1973), Turnbull-Milne (1991),

and Amin-Jarrow (1992) stochastic interest rate option pricing formulas

for equity options.

Two papers have used preferences that disentangle risk aversion from

intertemporal substitution in the context of option pricing. Detemple

(1990) uses the ordinal certainty equivalence hypothesis proposed by

Selden (1978) in a two-period economy and shows that time preferences

play a distinctive and signi�cant role in pricing options. For example,

option prices change with the expected return on the stock and may

decrease when the risk of the stock return increases. Ma (1993) extends

the stochastic di�erential utility concept in Du�e and Epstein (1992) to

a mixed Poisson-Brownian information structure and derives a closed-

form pricing formula for European call options written on aggregate

equity under Kreps-Porteus preferences.

The rest of the paper is organized as follows. In section 2, we ad-

dress the key issue of homogeneity. We provide a characterization of the

set of risk neutral dynamics which are consistent with homogeneity of

option prices. The homogeneity property can be characterized in terms

of non-causality in the Granger sense. We use this characterization in

section 3 to set up our equilibrium model and derive the structural sta-

tistical framework which bears out the homogeneity of option prices in

5We adopt a more structural approach than in Amin and Ng (1993) since we

specify the dynamics of economic fundamentals (consumption and dividends) and

stock returns are therefore determined in equilibrium. On the other hand, we do not

incorporate as in Amin and Ng (1993) the e�ect on the option price of a systematic

jump in the underlying asset price process, following Merton (1976) and Naik and

Lee (1990). This extension could easily be accomodated in our framework.
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equilibrium. The corresponding pricing probability measure, that is the

way to go from the data generating process to the risk neutral world

is characterized in section 4; the respective role of the three preference

parameters is outlined. We are then able to derive our general option

pricing formula and to characterize the array of other pricing models

which are nested in this general one. Section 5 provides a theoretical

characterization of the symmetry property of the smile both in terms of

the symmetry of the pricing density and leverage and stochastic corre-

lation e�ects in equilibrium. We further provide some guidelines for a

practical use of this option pricing model. In particular, we stress how

homogeneity allows one to use the volatility smile to characterize option

pricing biases, and how to incorporate into smile studies a calibrated

value of preference parameters. Section 6 concludes with a reference to

statistical evidence on the importance of option prices to disentangle in

estimation risk aversion and intertemporal substitution.

2 Homogeneity of Option Prices and State

Variables

The theory for pricing contingent claims in the absence of arbitrage

introduces a pricing probability measure Qt under which the price �t
at time t of any contingent claim is the discounted expectation of its

terminal payo�. In the case of a European call option maturing at time

T with a strike price K, it is given by:

�t = B(t; T )E�t (ST �K)+; (1)

where E�t denotes the expectation operator with respect to Qt, B(t; T )
is the price at time t of a pure discount bond maturing at T, and ST is

the price of the underlying asset (stock) at T. Of course, Qt is generally

di�erent from the data generating process Pt of fStg: Existence and

unicity of Qt were studied by several authors since the seminal paper of

Harrison and Kreps (1979)6.

It is then natural to hope that the option price �t inherits (at time
t) the convexity property with respect to the underlying asset price of

its terminal payo�. Indeed, since the economic function of options is ful-

�lled precisely because of this convexity, this led Merton (1973) to claim

6The theory of complete markets is beyond the scope of this paper where we are

only interested in the existence of a pricing probability measure Qt which is well-

de�ned and given to us, whether it is unique or not. This statistical viewpoint was

for instance illustrated by Sims (1984), Christensen (1992), and Cl�ement, Gouri�eroux,

and Monfort (1993).
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that \convexity is usually assumed to be a property which always holds

for warrants". It appears to hold empirically (see Broadie et al., 1995),

and it is also consistent with the alleged destabilizing e�ect of dynamic

trading (portfolio insurance) strategies, since convexity means that the

derivative of the option price with respect to the underlying asset price

(the delta ratio) is an increasing function of this asset price. Bergman,

Grundy and Wiener (1996) have recently established that whenever the

underlying asset follows a di�usion whose volatility depends only on time

and the concurrent stock price, then a call price is always increasing and

convex in the stock price. However, when volatility is stochastic, a call

price can be a decreasing concave function of the stock price over some

range. To avoid such a \perverse local concavity", Merton (1973) pro-

poses to ensure convexity through the property of homogeneity of degree

one of the option price �t with respect to the pair (St;K): Moreover, he

noticed that homogeneity will not obtain if the distribution of returns

depends on the level of the stock price. Since, as recalled in proposi-

tion 1 below, there is a fundamental bijective relationship between an

option pricing function �t(:) and the pricing probability measure Qt(:)
7;

we choose to impose the homogeneity property through the pricing prob-

ability measure Qt, as shown in proposition 2.

Proposition 1. The pricing function �t(:) and the pricing probability

measure Qt(:) are linked by the following bijective relationship (for a

given St):

Qt(:) �! �t(St;K) = B(t; T )E�
t
[(ST �K)+];

�t(:) �! Qt

�
ST
St

� k

�
= � 1

B(t; T )

@�t
@K

(St;K);

where k = K

St
:

Proof: See Appendix 1.

Of course, St is known at time t and the pricing probability measure

Qt describes equivalently the probability distribution of the future as-

set price ST or of the return ST

St
: Proposition 1 shows how the pricing

probability measure is characterized trough its probability distribution

function by the derivative of the option price �t with respect to the strike
price K. Therefore, the previous homogeneity property can be expressed

7See Huang and Litzenberger (1988, sections 5.19 and 6.13) for foundations and

A�it-Sahalia and Lo (1996) for a recent application.
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as a simple condition on the pricing probability measure.

Proposition 2. The option pricing function �t(:) is (i) homogeneous

of degree one with respect to (St;K) if and only if (ii) the pricing prob-

ability measure Qt does not depend on St:

Proof: See Appendix 1.

To understand proposition 2, it may help to see Qt as the conditional

probability distribution of a process of interest de�ned on a probability

space (
; A;Q) given the available information It at time t. Whereas

Merton (1973) showed that serial independence of asset returns for the

data generating process is a su�cient condition for homogeneity, Propo-

sition 2 establishes that a necessary and su�cient condition for homo-

geneity is the conditional independence (under Q) between future returns

and the current price, given the currently available information (other

than the current price).

It should be stressed that conditional independence neither implies

nor is implied by marginal independence. The property de�ned by propo-

sition 2 must be understood as a noncausality relationship in the Granger

sense from the current price to future returns (for a given informational

setting) and not as an independence property.

To see the full generality of this noncausality property, we will illus-

trate it in the modern �nance framework where asset prices evolve as

di�usion processes under the pricing probability measure Q:

dSt
St

= r(t)dt + �(t)dW s(t); (2)

where Ws(t) is a standard Wiener process under Q and r(t) and �(t) are
the two state variables of interest: �(t) is the instantaneous volatility

process and r(t) can be seen as an instantaneous interest rate process,

since, under Q, the risk is not compensated.8 In this framework, we can

assume without loss of generality that available information at time t is

described by the ���eld:

It = _��t[r(�); �(�);W s(�)]: (3)

In Proposition 3, we will specify which assumptions are needed to en-

sure the above property of Granger noncausality in order to de�ne later

a structural statistical model to price options in an equilibrium setting.

8The variables r(t) and �(t) are called "state variables" in a loose sense since we

are not assuming here that the (r; �) process is Markovian.
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Proposition 3. A necessary and su�cient condition for Granger non-

causality from St to future returns ST

St
; T > t is ensured by the conjunc-

tion of the two following assumptions9.

Assumption A1: (�(�); r(�))�>t ?? (dWS
� )��tjr(�); �(�); � � t;

Assumption A2: (dWS
�
)�>t ?? (dWS

t
)��tjr(:); �(:);

where r(.) and �(:) refer to the whole sample path of the processes r and

�:

Assumption A1 states that the price process S does not Granger cause

the state variable processes r and � (see Comte and Renault (1996) and

Florens and Foug�ere (1996) for a precise de�nition of Granger noncausal-

ity in continuous time). Assumption A1 is quite natural in the context

of state variables which are usually seen as being exogenous. We do not

assume however a strong exogeneity property, i.e. r and � are not nec-

essarily independent of Ws; in order to allow for the presence of leverage

e�ects. As a matter of fact, if r and � were independent of Ws, A2

would be automatically satis�ed.

To understand Proposition 3 in the general case, let us de�ne: X =

(dW s
� )��t; Y = (dW s

� )�>t; Z1 = (r(�); �(�))��t and Z2 = (r(�); �(�))�>t :
The required noncausality property from past prices to future returns

can then be written:

X ?? (Y; Z2)jZ1: (4)

By a well-known property of conditional independence (see e.g. Flo-

rens and Mouchart (1982)), condition (4) is equivalent to the conjunction

of X ?? Z2jZ1 (i.e. A1) and X ?? Y; j(Z1; Z2) (i.e. A2). This establishes

Proposition 3.

To illustrate the empirical content of these assumptions, we can char-

acterize them in the framework of a Markovian process (S; r; �) de�ned
by the di�usion equations10:

dSt

St
= r(t)dt + �(t)dW s(t);

dr(t) = �(t)dt+ �(t)dW r(t);
d�(t) = 
(t)dt+ �(t)dW �(t);

V ar

2
4 dW s(t)
dW r(t)
dW �(t)

3
5 =

2
4 1 �sr(t) �s�(t)
�sr(t) 1 �r� (t)
�s�(t) �r�(t) 1

3
5 dt; (5)

9As usual, the di�erential notation (dWS
� )�>t is a slight abuse of notation to

characterize the ���eld corresponding to the future increments of WS
� :

10We implicitly assume that the considered system of stochastic di�erential equa-

tions satisfy the usual regularity conditions(Lipschitz, growth, etc.) that ensure ex-

istence and unicity of a solution.
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where �(t); �(t); 
(t); �(t); �sr(t); �s�(t); �r�(t) are deterministic functions
of St;r(t), �(t)

11. We can then establish the following proposition12.

Proposition 4.

(i) Assumption (A1) is equivalent to the following assumption (A1)'.

(A1)' The processes �; �; 
; �; �r� are deterministic functions of the

processes r and � :

�(t) = �[r(t); �(t)];
�(t) = �[r(t); �(t)];

(t) = 
[r(t); �(t)];
�(t) = �[r(t); �(t)];

�r�(t) = �r� [r(t); �(t)]:

(ii) If assumption (A1)' holds, Assumption (A2) is equivalent to the

following assumption (A2)'.

(A2)' The processes �sr and �s� are deterministic functions of the

processes r and � :

�sr(t) = �sr[r(t); �(t)];
�s�(t) = �s� [r(t); �(t)]:

Proof: See Appendix 1.

In other words, leverage e�ects (�s� 6= 0) and cross-correlations be-

tween the stock price and the interest rate (�sr 6= 0) are allowed provided

that they do not depend on the level of the stock price. More generally,

propositions 2, 3 and 4 prove that a necessary and su�cient condition

for the fundamental homogeneity property of option prices is that the

underlying asset price process is of the \stochastic volatility " type, i.e.

that it obeys the assumed noncausality relationship from the price pro-

cess S to the state variables � and r.
This characterization of homogeneity is more general than the su�-

cient condition proposed by Merton (1973), not only since we replace the

11All these functions could be made dependent upon other state variables. In this

case, (S; r; �) would no longer be Markovian and should be embedded in a higher

dimensional Markovian process of state variables. This generalization would not

present any added di�culty.
12The equivalence results stated in Proposition 4 are valid under minor regularity

assumptions which are not explicited here. In particular, Florens and Foug�ere (1996,

p.1205) point out that implicitly some �-�elds are assumed \measurably separated".

9



independence requirement by a more speci�c noncausality assumption,

but also since it is stated in terms of the pricing probability measure

rather than the DGP. Indeed, we do not preclude a possible dependence

of the risk premiums on the stock price S, which could violate assumption

(A1)' for the DGP.

The framework of proposition 4 di�ers in a fundamental way from

the endogenous volatility paradigm where the volatility process �(t) is
viewed as a deterministic function of St: Endogenous volatility models,

also called \implied tree models" by Du�e (1995), have recently gained

in popularity (see Dupire (1994), Hobson and Rogers (1994), and Rubin-

stein (1994)). It should be emphasized that these models are tantamount

to losing the fundamental homogeneity property of option prices and by

the same token the independence of the Black-Scholes implicit volatil-

ity from the stock price level. One may deplore that this homogeneity

requirement seems to be inconsistent with usual discrete-time statistical

models like ARCH-type models. The issues of BS implicit volatility and

ARCH option pricing will be discussed in more detail in sections 4 and

5 below.

Our next task is to set up an equilibrium model which will provide

the foundations for the stochastic di�erential equations written in (5).

These equations are usually justi�ed theoretically by an absence of arbi-

trage argument. The no-arbitrage models need some assessment of the

appropriate pricing of systematic volatility and interest rate risk. Of-

ten they assume that the risk is non-systematic and has a zero price or

impose an ad-hoc functional form on the risk premium. In addition to

giving equilibrium foundations to the stochastic di�erential equations,

our equilibrium asset pricing model will price the volatility risk and the

interest rate risk. Although we specify our model in a discrete-time

setting13, it should not be interpreted as a limitation to the generality

of the results we will derive in terms of equilibrium foundations to the

stochastic di�erential equations.

3 An Equilibrium Asset Pricing Model Con-

sistent with Homogeneity

In this section, we incorporate the recursive utility model of Epstein and

Zin (1989) for asset pricing into a stochastic framework dictated by the

non-causality requirement as stated by proposition 3. More precisely, we

13Contrary to the arbitrage-based asset pricing models, equilibrium valuation of

options does not require that hedging in continuous time is feasible.
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specify a stochastic environment through a set of state variables which

allows us to outline necessary and su�cient conditions that prices must

obey in equilibrium to ful�ll the desirable homogeneity property.

3.1 An Asset Pricing Model with Recursive Utility

Many identical in�nitely lived agents maximize their lifetime utility and

receive each period an endowment of a single nonstorable good. We

specify a recursive utility function of the form:

Ut =W (Ct; �t); (6)

where W is an aggregator function that combines current consumption

Ct with �t = �( ~Ut+1 j It) , a certainty equivalent of random future

utility ~Ut+1; given the information available to the agents at time t,

to obtain the current-period lifetime utility Ut. Following Kreps and

Porteus (1978), Epstein and Zin (1989) propose the CES function as the

aggregator function, i.e.

Ut = [C�

t + ���t ]
1
� : (7)

The way the agents form the certainty equivalent of random future

utility is based on their risk preferences, which are assumed to be isoe-

lastic, i.e. ��t = E[eU�
t+1jIt]; where � � 1 is the risk aversion parameter

(1-� is the Arrow-Pratt measure of relative risk aversion). Given these

preferences, the following Euler condition must be valid for any asset j

if an agent maximizes his lifetime utility (see Epstein and Zin (1989)):

Et[�

(
Ct+1

Ct
)
(��1)M
�1

t+1 Rj;t+1] = 1; (8)

whereMt+1 represents the return on the market portfolio, Rj;t+1 the re-

turn on any asset j, and Et the conditional expectation with respect

to the information available to the agents at time t14 and 
� = �.
The parameter � is associated with intertemporal substitution, since the

elasticity of intertemporal substitution is 1=(1 � �): The position of �
with respect to � determines whether the agent has a preference towards
early resolution of uncertainty (� < �) or late resolution of uncertainty

(� > �)15.

14Of course, the probability distribution considered here to de�ne Et is P given It,

where P governs the data generating process of the variables of interest. In general,

P is di�erent from Q and Et is di�erent from E�t de�ned earlier.
15As mentioned in Epstein and Zin (1991), the association of risk aversion with �

and intertemporal sustitution with � is not fully clear, since at a given level � of risk

aversion, changing � a�ects not only the elasticity of intertemporal sustitution but

also determines whether the agent will prefer early or late resolution of uncertainty.
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This condition allows us to price any asset in the economy. In par-

ticular, the price of a European option �t maturing at t+1 is given by:

�t = StEt

�
�
(

Ct+1

Ct
)
(��1)M
�1

t+1 Max[0;
St+1

St
� K

St
]

�
; (9)

where K is the exercise price of the option.

This price depends on both the market portfolio returnMt+1 and the

stock return
St+1

St
: A �rst task is therefore to determine the equilibrium

price of the market portfolio, say PM
t

at time t. In this model, the payo�

of the market portfolio at time t is the total endowment of the economy

Ct: Therefore the return on the market portfolioMt+1 can be written as

follows:

Mt+1 =
PM
t+1 + Ct+1

PM
t

:

Replacing Mt+1 by this expression and writing (8) for Rj;t+1 = Mt+1;
we obtain:

�
t = Et

�
�

�
Ct+1

Ct

�
�
(�t+1 + 1)


�
; (10)

where: �t =
P
M

t

Ct
: Under some regularity and stationarity assumptions,

we may be able to prove that (10) has a unique solution �t of the form
�t = �(It) with �(:) solution of:

�(I)
 = E

�
�

�
Ct+1

Ct

�
�
(�(It+1) + 1)
 jIt = I

�
: (11)

Typically, the pricing function �(:) will be determined as a �xed point

of a certain operator to be de�ned more precisely in the next section.

Similarly, we will be looking for a solution 't ='(It) =
St

Dt
to the stock

pricing equation:

'(I) = E

"
�

�
Ct+1

Ct

�
��1�
�t+1 + 1

�t

�
�1
'(It+1)

Dt+1

Dt

jIt = I

#
:

(12)

Starting from (11) and (12), we are now able to look for a statistical

speci�cation which leads to return processes in equilibrium (for both

market and equity) consistent with a discrete time analog of proposition

316.

16It should be noted that the equivalent martingale measure of section 2 must be
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3.2 Equilibrium-based Foundations of a Discrete-time

Stochastic Volatility and Interest Rate Model

It is then possible, for given � and ' functions, to compute the market

portfolio price and the stock price as PM
t = �(It)Ct and St = '(It)Dt:

The dynamic behavior of these prices, or equivalently of the associated

rates of return:

LogMt+1 = Log
�(It+1) + 1

�(It)
+ Log

Ct+1

Ct
; and (13)

LogRt+1 = Log
St+1

St
= Log

'(It+1)

'(It)
+ log

Dt+1

Dt

; (14)

is determined by the joint probability distribution of the stochastic pro-

cess (Xt; Yt; It) where: Xt = Log Ct

Ct�1
and Yt = Log Dt

Dt�1
:We shall de�ne

this dynamics through a stationary vector-process of state variables Ut

so that:

It = _��t[X� ; Y� ; U� ]:

Having in mind the characterization of homogeneous option pricing

in terms of non-causality, we infer that, for the dynamics of returns de-

�ned in (13) and (14) to obey assumptions (A1) and (A2), we need to

extend these properties to the dynamics of the fundamental processes X

and Y. We therefore specify the two following assumptions:

Assumption B1: (X,Y) does not cause U in the Granger sense.

Assumption B2: The pairs (Xt; Yt); t = 1; 2; :::; T are mutually inde-

pendent knowing UT
1 = (Ut)1�t�T :

Assumptions B1 and B2 are the exact analogs of assumptions A1 and

A2 respectively. Of course St in A1/A2 is replaced by the fundamentals

Xt and Yt while increments of W
S in A2 are replaced by the discrete-

time growth rates of the fundamentals 17.

These assumptions are quite natural considering the interpretation

given to Ut as a vector of relevant state variables at time t. These

variables are exogenous by assumption B1 and according to B2 subsume

de�ned for the dividend-price pair (see Du�e (1995), p.108) and the notation St
in section 2 as well as in the following sections implicitly denotes the gain process

(capital plus dividends).
17It will be proven below that, given our pricing formulas, B1 and B2 are equivalent

to the discrete time analogs of A1 and A2 for the stock price and for the market

portfolio price.
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all temporal links between the variables of interest (Xt; Yt): As usual, no
assumption apart from stationarity is made about the law of motion of

exogenous variables. Indeed, it should be emphasized (see proposition 5

below) that assumptions B1 and B2 taken together are only made about

the law of (Xt; Yt)1�t�T knowing UT
1 :

Proposition 5. Under assumption B2, assumption B1 is equivalent to:

Assumption (B1)': `[Xt ;Yt jUT
1 ] = `[Xt ;Yt jU t

1 ]; 8T; 8t = 1; 2:::; T:

Proof: See Appendix 1.

Given the independence postulated in Assumption B2, this is in fact

the Sims characterization of the non-causality from (X,Y) to U in As-

sumption B1. Assumption (B1)' is identical to Assumption 2 in Amin

and Ng (1993), i.e. (Xt; Yt) ?? UT
t+1jU t

1: Our assumption B2 is clearly

implied by assumption 1 in Amin and Ng (1993).

The above analogy between assumptions A1/A2 about return pro-

cesses and assumptions B1/B2 about consumption and dividend pro-

cesses will be made more precise below by characterizing the return

processes implied by our equilibrium model. Indeed, B1 and B2 allow

us to characterize the joint probability distribution of the (Xt; Yt) pairs,
t=1,...,T, given UT

1 by:

`[(Xt; Yt)1�t�T jUT

1 ] =

TY
t=1

`[Xt; YtjU t

1]: (15)

Proposition 6 below provides the exact relationship between the state

variables and equilibrium prices.

Proposition 6: Under assumptions B1 and B2 we have:

PM

t
= �(U t

1)Ct; St = '(U t

1)Dt;

where �(U t
1) and '(U

t
1) are respectively de�ned by :

�(U t

1)

 = E

�
�

�
Ct+1

Ct

�
�
(�(U t+1

1 ) + 1)

��U t

1

�
;

and

'(U t

1) = E

"
�

�
Ct+1

Ct

�
��1�
�(U t+1

1 ) + 1

�(U t
1)

�
�1
'(U t+1

1 )
Dt+1

Dt

��U t

1

#
:
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There is of course a slight abuse of notation in proposition 6 since the

dimension of Ut
1 is time-varying. It is implicitly assumed in this notation

that the state variable process Ut is Markovian of some order p so that

the functions �(:); '(:) are de�ned on RKp if there are K state variables.

This remark will apply in general to all functions of Ut
1 considered in the

rest of the paper. Moreover, the stationarity property of the U process

together with assumptions B1, B2 and a suitable speci�cation of the

density function (15) (see for instance B3 below) allow us to make the

process (X,Y) stationary by a judicious choice of the initial distribution

of (X,Y). In this setting, a contraction mapping argument may be applied

as in Lucas (1978) to characterize the functions �(:) and '(:) according
to proposition 6.

It should be stressed that our framework is more general than the

Lucas one because the state variables Ut
1 are given by a general multi-

variate Markovian process (while a Markovian dividend process is the

only state variable in Lucas (1978)).

Indeed, it results from equations 13, 14, and proposition 6 that:

LogMt+1 = Log
�(U t+1

1 ) + 1

�(U t
1)

+Xt+1; and (16)

LogRt+1 = Log
'(U t+1

1 )

'(U t
1)

+ Yt+1:

Hence, the return processes (Mt+1; Rt+1) are stationary as U, X, and Y,

but, contrary to the stochastic setting in the Lucas (1978) economy, are

not Markovian due to the presence of unobservable state variables U.

In any case, this asset pricing model gives some equilibrium founda-

tions to statistical assumptions like A1 and A2 as stated by proposition

7.

Proposition 7: Given (11) and (12), the two following equivalences

hold:

(i) (X,Y) does not cause U in the Granger sense (Assumption B1)

if and only if (PM ; S) does not cause U in the Granger sense (discrete

time analog of Assumption A1 for the two price processes).

(ii) The pairs (Xt; Yt); t = 1; :::; T are mutually independent know-

ing UT
1 (Assumption B2) if and only if the consecutive returns for both

market portfolio and stock (Mt; Rt); t = 1; :::; T are mutually indepen-

dent knowing UT1 (discrete time analog of Assumption A2 for the joint

distribution of the two returns).
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However, it should be noted that while (A1) and (A2) were stated for

the so-called pricing probability measure, the properties addressed by

proposition 7 are considered for the DGP. It turns out that the two

points of view are equivalent in that case, as it is checked in subsection

3.3 below.

3.3 Homogeneous Option Prices in Equilibrium

Let us consider a European call option on the stock, coming to maturity

at date T with exercise price K. If we consider for notational simplicity

that dividends are paid immediately after exercising the option, we can

determine the option price by backward recursive application of Euler

equation (9):

�t = Et

"
�
(T�t)

�
CT
Ct

�
(��1)
(MTMt�1:::Mt+1)


�1Max[0; ST �K]

#
:

Thus, by using (16):

�t = Et

"
�
(T�t)

�
CT
Ct

���1 T�1Y
�=t

�
(1 + �(U�+1

1 )

�(U�
1 )

�
�1
Max[0; ST �K]

#
:

(17)

It is worth noting that the option pricing formula (17) is path-

dependent with respect to the state variables; it depends not only on

the initial and terminal values of the process Ut but also on its interme-

diate values18. Indeed, it is not so surprising that when preferences are

not time-separable (
 6= 1), the option price may depend on the whole

past of the state variables. As clearly explained by Machina (1989),

it is inappropriate to impose the property of consequentialism to non-

expected utility maximizers, since they would take the past uncertainty

into account instead of ignoring the risk they have borne in the dynamic

resolution of uncertainty.

Equation (17) can be rewritten as:

�t
St

= Et

"
�
(T�t)

�
CT
Ct

���1 T�1Y
�=t

�
(1 + �(U�+1

1 )

�(U�
1 )

�
�1
Max[0;

ST
St
� K

St
]

#

(18)

18Since we assume that the state variable process is Markovian of order p,

�(UT
1
)does not depend on the whole path of state variables but only on the last

p values UT ; UT�1; :::;UT�p+1:
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with:

CT

Ct
= exp[

TX
�=t+1

X� ];

and:

ST
St

=
DT

Dt

'(UT
1 )

'(U t
1)

=
'(UT

1 )

'(U t
1)

exp[

TX
�=t+1

Y� ]:

Therefore, the conditional expectation (18) is computed with respect

to the probability distribution of (XT
t+1; Y

T
t+1; U

T
t+1) given It: With a

similar argument to the one in Proposition 6, it can be proven that it

depends on It only through U t
1 (see Appendix 1). Then the pricing

formula characterizes a function 	 such that:

�t = 	(U t

1;
K

St
)St: (19)

Equation (19) states that, as expected, the option pricing formula is

homogeneous of degree one with respect to the pair (St;K)19:

4 An extended Black-Scholes formula

In this section, we introduce an additional assumption on the probabil-

ity distribution of the fundamentals X and Y given the state variables U:

Assumption B3:�
Xt

Yt

�
jU t

1 � @
��

mXt

mY t

�
;

�
�2
Xt

�XY t
�XY t �2

Y t

��
;

wheremXt;mY t; �
2
Xt
; �XY t; �

2
Y t

are stationary and measurable functions

with respect to Ut
1; so that mXt = mX(U

t
1);mY t = mY (U

t
1); �

2
Xt

=

�2
X
(U t

1); �
2
Y t

= �2
Y
(U t

1); �XY t = �XY (U
t
1):

We want to stress that, as soon as previous assumptions B1 and B2

required for homogeneous option pricing are maintained, this additional

assumption, which will allow us to derive an extended BS option pricing

19It should be emphasized that even though we have chosen to focus on Kreps-

Porteus preferences, the main argument of this section to ensure homogeneous option

prices in equilibrium remains valid with other types of preferences.
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formula, is not very restrictive. This is the reason why we will claim

that the BS shape for an option pricing formula is very robust when

one remains true to homogeneity. The fundamental argument is that, if

one considers that the discrete-time interval is somewhat arbitrary and

can be in�nitely split, log-normality (conditional on state variables U) is
obtained as a consequence of a standard central limit argument given the

independence between consecutive (X;Y ) given U: This assumption B3

extends a similar assumption made by Amin and Ng (1993) to derive an

option pricing formula in an expected utility framework, a special case

of our setting. Given this log-normality assumption, we will characterize

successively the pricing probability measure, the role of preferences in

the pricing of bonds (value of time) and equity (value of risk) and the

combination of these values in the option price.

4.1 The Pricing Probability Measure

By the argument already used to prove proposition 1 (see Appendix 1),

we deduce from the option pricing formula (18) the cumulative distri-

bution function of the pricing probability measure as a function of the

cumulative distribution � of the standard normal @(0; 1):

B(t; T )Qt

�
ST
St

� k

�
= Etf�
(T�t) exp(� � 1)[

TX
�=t+1

X� ])

:

T�1Y
�=t

�
(1 + �(U�+1

1 )

�(U�
1 )

�
�1

: 1
[
'(UT

1
)

'(Ut
1
)
exp[
P

T

�=t+1
Y� ]�k]

g;

where 1[:] denotes the indicator function.

By iterating on conditional expectations (given UT
1 and IT�� ; � = 1; 2; :::,

T � t) of the inner part of the above expectation, we can apply assump-

tions B1, B2 and B3 to derive the following formula (see Appendix 2):

B(t; T )Qt

�
ST
St

� k

�
= Et[ eB(t; T )�(d2)]; (20)

where:

eB(t; T ) = �
(T�t)aTt (
) exp((�� 1)

TX
�=t+1

mX� +
1

2
(�� 1)2

TX
�=t+1

�2X� );
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with: aTt (
) =
Q
T�1

�=t

h
(1+�(U

�+1
1

)

�(U�
1
)

i
�1
; and:

d2 =
ln St

K
+ ln

'(UT1 )

'(Ut
1
)
+
PT

�=t+1mY � + (�� 1)
PT

�=t+1 �XY �

(
P

T

�=t+1 �
2
Y �

)1=2
:

4.2 The Pricing of Bonds

To price a bond delivering one unit of the good at time T, it su�ces to

apply equation (20) with k = 0: Therefore we obtain the following bond

pricing formula:

B(t; T ) = Et[ eB(t; T )]: (21)

This formula shows how the interest rate risk is compensated in equilib-

rium, and in particular how the term premium is related to preference

parameters. In what follows, we will refer loosely to eB(t; T ) as a stochas-
tic discount factor, but naturally it is strictly so just for an asset with

zero covariance with the aggregate risk. To be more explicit about the

relationship between the term premium and the preference parameters,

let us �rst notice that we have a natural factorization of the stochastic

discount factor:

eB(t; T ) = T�1Y
�=t

eB(�; � + 1): (22)

Therefore, while the discount parameter � enters in the determination of

the general level of discount factors, the two other parameters � and 

a�ect the term premium (with respect to the return-to-maturity expec-

tations hypothesis, Cox, Ingersoll, and Ross (1981)) through the ratio:

B(t; T )

Et
Q
T�1

�=t B(�; � + 1)
=

Et(
QT�1

�=t
eB(�; � + 1))

Et
Q
T�1

�=t E�
eB(�; � + 1)

:

To better understand this term premium from an economic point of

view, let us compare implicit forward rates and expected spot rates at

only one intermediary period between t and T :

B(t; T )

B(t; �)
=
Et eB(t; �) eB(�; T )

Et eB(t; �) = Et eB(�; T )+Covt[ eB(t; �); eB(�; T )]
Et eB(t; �) : (23)
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Up to Jensen inequality, equation (23) proves that a positive term pre-

mium is brought about by a negative covariation between present and fu-

ture stochastic discount factors. Given the expression for eB(t; T ) above,
it can be seen that for von-Neuman preferences (
 = 1) the term pre-

mium is proportional to the square of the coe�cient of relative risk aver-

sion (up to a conditional stochastic volatility e�ect). Another important

observation is that even without any risk aversion (� = 1); preferences
still a�ect the term premium through the non-indi�erence to the timing

of uncertainty resolution (
 6= 1):
There is however an important sub-case where the term premium

will be preference-free because the stochastic discount factor eB(t; T ) co-
incides with the observed rolling-over discount factor (the product of

short-term future bond prices, B(�; �+1), � = t; :::; T �1). Taking equa-
tion (22) into account, this will occur as soon as eB(�; �+1) = B(�; �+1);

that is when eB(�; � + 1) is known at time �: From the expression ofeB(t; T ) above, it is easy to see that this last property stands if and only

if the mean and variance parameters mX� and �X� depend on U�
1 only

through U��1
1 ; given that in this case one can see by proposition 6 that

�(U�
1 ) itself depends on U

�
1 only through U��1

1 :
This leads us to introduce a property of the consumption process

termed predictability by Amin and Ng (1993). Contrary to the most

usual notation which introduces a large enough number of state vari-

ables in order to obtain a Markovian system of order one, it is important

here to stress that the market portfolio price may depend on the whole

recent history: Ut; Ut�1; :::; Ut�p+1: This distinctive framework allows

us to highlight the so-called \leverage e�ect" which is so important for

option pricing. This e�ect appears here when the probability distribu-

tion of (Xt) given Ut
1 depends (through the functions mX ; �

2
X
) on the

contemporaneous value Ut of the state process. More generally, the non-

causality assumption B1 could be reinforced in the following way:

Assumption B4 : X does not cause U in the strong sense, i.e. there

is neither Granger nor instantaneous causality from X to U.

In this case, the analog of proposition 5 is `(XtjUT
1 ) = `(XtjU t�1

1 ); it

is this property which ensures that short-term stochastic discount factors

are predetermined, so the bond pricing formula becomes preference-free:

B(t; T ) = Et

T�1Y
�=t

B(�; � + 1):

Of course this does not necessarily cancel the term premiums but it
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makes them preference-free. Moreover, when there is no interest rate

risk because the consumption growth rates Xt are iid, it is straightfor-

ward to check that constant mXt and �2
Xt

imply constant �(U t
1) and

in turn deterministic discount factors: eB(t; T ) = B(t; T ) and zero term

premiums.

4.3 The Pricing of Stocks

The stock price formula is obtained as a particular case of the general

option pricing formula (18) for the limit case K = 0; that is:

St = Et

"
�
(T�t)

�
CT

Ct

���1 T�1Y
�=t

�
(1 + �(U�+1

1 )

�(U�
1 )

�
�1
ST

#
:

Using a similar argument to the one used for the pricing probability

measure, we obtain under conditional log-normality assumption B3:

St = Etf�
(T�t)aTt (
) exp((� � 1)

TX
�=t+1

mX� +
1

2
(�� 1)2

:

TX
�=t+1

�2X� + (�� 1)

TX
�=t+1

�XY � )ST g;

which can be rewritten as:

St = Et

" eB(t; T ) exp((�� 1)

TX
�=t+1

�XY � )ST

#
: (24)

As expected, the stock price is expressed as the conditional expectation

of its discounted terminal value, where the stochastic discount factoreB(t; T ) is risk-adjusted by a CAPM-like term exp((��1)PT

�=t+1 �XY � ):
This term accounts for the covariance risk between the stock and the

market portfolio (proportional to the standard CAPM beta risk), weighted

by the coe�cient of relative risk aversion. In other words, the speci�c

role of time preference parameters � and 
 is fully embodied in the

stochastic discount factor which characterizes the bond equation. The

additional risk premium associated with the stock involves only the risk

parameter �:
Another useful way of writing the stock pricing formula is:

Et [QXY (t; T )] = 1; (25)
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where:

QXY (t; T ) = eB(t; T ) exp((�� 1)

TX
�=t+1

�XY � )E[
ST
St
jUT

1 ]: (26)

To understand the role of the factor QXY (t; T ); it is useful to notice
that it can be factorized:

QXY (t; T ) =

T�1Y
�=t

QXY (�; � + 1);

and that there is an important particular case where QXY (�; � + 1) is

known at time � and therefore equal to one by (25 ). This is when there

is no leverage e�ect in the general sense of the following assumption B5

(which reinforces assumption B4).

Assumption B5 : (X;Y ) does not cause U in the strong sense, i.e.

there is neither Granger nor instantaneous causality from (X;Y ) to U:

Under assumptions B1 and B2, B5 is equivalent to `(Xt; YtjUT
1 ) =

`(Xt; YtjU t�1
1 ): This means that not only there is no leverage e�ect nei-

ther for X nor for Y , but also that the instantaneous covariance �XY t
itself does not depend on Ut: In this case, we have QXY (t; T ) = 1: From

(26) and (22), taking into account that under B5 eB(�; �+1) = B(�; �+1);
we can express the conditional expected stock return as:

E

�
ST
St
jUT

1

�
=

1Q
T�1
�=t B(�; � + 1)

exp((1� �)

TX
�=t+1

�XY � ):

For pricing over one period (t to t+1); this formula provides the agent's
expectation of the next period return (since in this case the only relevant

information is U t
1 which is included in It ):

E

�
St+1

St
jIt
�
=

1

B(t; t+ 1)
exp[(1� �)�XY t+1]:

This is a particularly striking result since it is very close to a standard

conditional CAPM equation (and unconditional in an iid world), which

remains true for any value of the preference parameters � and �: While

Epstein and Zin (1991) emphasize that the CAPM obtains for � = 0

(logarithmic utility) or � = 1 (in�nite elasticity of intertemporal substi-

tution), we stress here that the relation is obtained under a particular

22



stochastic setting for any values of � and �. Remarkably, the stochastic
setting without leverage e�ect which produces this CAPM relationship

will also produce most standard option pricing models (for example BS

and Hull-White), which are of course preference-free20.

4.4 A General Pricing Formula for Options

We �nally arrive at the central result of the paper, which proposes an

extended Black-Scholes formula:

�t
St

= Et

(
QXY (t; T )�(d1)�

K eB(t; T )
St

�(d2)

)
; (27)

where:

d1 =

Log

�
StQXY (t;T )

KeB(t;T )

�
(
P

T

�=t+1 �
2
Y �

)1=2
+

1

2
(

TX
�=t+1

�2Y � )
1=2; and

d2 = d1 � (

TX
�=t+1

�2Y � )
1=2:

The second part of the formula results directly from the expression ob-

tained above for the pricing probability measure; Appendix 2 details the

derivation of the �rst part.

Apart from the familiar decomposition into �(d1) and �(d2) parts
which is also found in the usual BS formula and its extensions, it should

be noticed that the expressions for d1and d2 are also very close to the cor-

responding quantities in these formulas. In particular, our
P

T

�=t+1 �
2
Y �

= V ar
h
log ST

St
jUT

1

i
corresponds to �2(T � t) in the BS formula andR T

t
�2
u
du in the Hull-White formula.

Indeed, a preference-free option pricing formula similar to the one

obtained by Hull and White (1987), Amin and Jarrow (1992), Merton

(1973) is obtained wheneverQXY (t; T ) = 1 and eB(t; T ) =Q
T�1
�=t B(�; �+

1); that is when there are no leverage e�ects, neither through the market
risk nor through the stock risk. Another case of preference-free option

pricing is worth emphasizing. Even when QXY (t; T ) is di�erent from
one (which means that exists a leverage e�ect for the individual stock),

20A similar parallel is drawn in an unconditional two-period framework in Breeden

and Litzenberger (1978).
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it becomes independent of risk aversion, as does the option price, when

the stock is zero-beta with respect to the market (�XY t = 0):
In the general case, our option pricing formula has two main char-

acteristics. First, the advantages of standard extensions of BS option

pricing by the introduction of unobservable heterogeneity factors (see Re-

nault (1996)) are maintained. The main advantage of these approaches

is to keep in expectation the BS functional shape. Second, contrary to

a philosophy where the BS formula is praised for its independence with

respect to preference parameters and expected returns21, our extension

does not need these virtues to stay close to the Black-Scholes formula.

Indeed, while the three preference parameters enter the option price

through the value of time eB(t; T ) (as soon as there is a leverage e�ect at

the aggregate level), the risk aversion parameter and the expected stock

return play an additional role in the option price through QXY (t; T ) (as
soon as there is a leverage e�ect at the individual stock level).

To conclude, it is worth noting that our results of equivalence between

preference-free option pricing and no instantaneous causality between

state variables and asset returns are consistent with another strand of

the option pricing literature, namely GARCH option pricing introduced

by Duan (1995). Indeed, while GARCH models are unable to capture

a genuine leverage e�ect, they are close to the spirit of the framework

B1, B2, B3, B5. Of course, this framework involves unobserved state

variables while the GARCH speci�cation of conditional variance is a de-

terministic function of past observables, but in both cases, precluding

leverage e�ect allows one to plug the discrete-time model into a continu-

ous time one, where conditional variance is constant between two integer

dates. Kallsen and Taqqu (1994) have shown that such a continuous-time

embedding makes possible arbitrage pricing which is per se preference-

free. This explains why the GARCH option pricing and the stochas-

tic volatility and interest rate option pricing proposed here under B5

are very similar: they are both preference-free and involve a cumulated

conditional variance
PT

�=t+1 �
2
Y �
: Section 5 below will summarize the

practical implications of these various paradigms.

5 Homogeneous Option Pricing and Volatil-

ity Smile

The fact that the BS formula is free from preference parameters is of-

ten perceived as its main advantage. In reality, the argument is hard to

21See Merton (1990), footnote 26 p. 282.
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understand if one considers that practitioners are used to infer implicit

parameters from option prices, irrespective of their theoretical inter-

pretation. One prominent example is the so-called implied or implicit

volatility parameter, i.e. the volatility parameter derived from the BS

formula. Similarly to yields on the bond market, implicit volatilities

serve as a useful unit of measure on option markets. The usefulness of

this unit of measure comes from the fact that it does not depend on the

stock price level, in other words that the implicit volatility function is

homogeneous of degree zero with respect to the pair (S,K) where S is

the price of the underlying asset and K the strike price. It should be

emphasized however that this homogeneity property holds if and only

if the option pricing formula itself is homogeneous of degree one with

respect to the same pair (S,K). This is the case of course of the BS

formula itself. Therefore, any option pricing formula that features this

homogeneity property should be of interest to practitioners, be it based

on preferences or not. The usefulness of such homogeneous general op-

tion pricing formulas is discussed here through the volatility smile, that

is the representation, at a given date t and for a given maturity T , of
the set of BS implicit volatilities in function of the corresponding strike

prices. In particular, we provide new characterizations of the symme-

try of the volatility smile in terms of the option pricing function and of

the pricing probability measure. We also draw the implications of these

characterizations for our option pricing model.

5.1 The volatility smile as an image of the pricing

probability measure

According to the notations of Proposition 1, we will compare in this sub-

section a general but homogeneous option pricing formula �t(St;K) with

the BS option pricing formula de�ned itself by a homogeneous function

BS(:; :; �), for a given volatility parameter �, with:8>>>>>><
>>>>>>:

BS(St;K; �) = St�(d1)�KB(t; T )�(d2);

d1 =
1

�
p
T � t

�
Log

St

KB(t; T )
+

1

2
�2(T � t)

�
;

d1 = d1 � �
p
T � t:

(28)

Following Renault and Touzi (1996), it appears useful to characterize

the shape of the volatility smile with respect to the moneyness xt =

Log
St

KB(t; T )
rather than the strike price K. In other words, the BS
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implicit volatility is a function ��
t
(xt) of xt only, and not of St and K

separately. Starting with the de�ning formula:

�t(St;K) = BS(St;K; �
�

t
(xt)); (29)

a direct application of the homogeneity of degree one of �t(:; :) and

BS(:; :; �) with respect to the pair (St;K) allows one to divide each

side of (29) by K and conclude that ��
t
(xt) is well-de�ned as a function

of St=K or (equivalently) of xt by :

�t(xt) = BS(xt; �
�

t (xt)) (30)

with the following slight change of notations :8>>>><
>>>>:

�t(xt) = �t

�
St
K
; 1

�
;

BS(xt; �) = BS

�
St

K
; 1; �

�
:

(31)

The subscripts t in the functions �t(:; :) and �
�
t (:) indicate that they

may depend upon other state variables, the value of which is �xed at

time t. The property we just emphasized is in fact the homogeneity of

degree zero of the BS implicit volatility with respect to the pair (St;K).

This homogeneity is a direct consequence of the postulated homogeneity

of degree one of the general option pricing formula �t(:; :) as well as the
known homogeneity property of the BS option pricing formulaBS(:; :; �).

Various consequences of this setting both in terms of option pricing

and option hedging are detailed in Renault and Touzi (1996), Renault

(1997) and Garcia and Renault (1998). In particular, Renault and Touzi

(1996) and Renault (1997) have investigated the well-documented skew-

ness of the smile and provided the theoretical setting which guarantees

symmetric volatility smiles22, that is the property:

��t (x) = ��t (�x) for any x: (32)

We will characterize the variations of �(x), BS(x; �); ��
t
(x) as func-

tions of x for a given value of St. In other words, the genuine variable of

interest is the strike price K, while the switch to the variable x is only

a matter of rescaling for convenience.

22In the standard analysis of the smile relationship between the implicit volatility

and the strike price, the symmetry is characterized with respect to the log strike

price, and not its absolute value.

26



In Proposition 8 below, we extend a result �rst stated in Renault and

Touzi (1996), which characterizes the symmetry of the smile in terms of

the option pricing function23.

Proposition 8. If option prices are conformable to a homogeneous op-

tion pricing formula x! �(x), the volatility smile is symmetric (��(x) =
��(�x) for any x) if and only if, for any x:

�(�x) = ex�(x) + 1� ex

Proof: See Appendix 3.

Thanks to proposition 1, this characterization of the symmetry of the

smile admits an equivalent formulation in terms of the pricing probabil-

ity measure. While this pricing probability measure was characterized

in Proposition 1 through the cumulative distribution function of
ST
St
; it

is convenient here to characterise it through either the cumulative dis-

tribution function FVT (:) or the probability density function fVT (:) of

VT = Log
STB(t; T )

St
. We are then able to prove (see Appendix 3) the

following proposition:

Proposition 9 If VT = Log
STB(t; T )

Bt
admits a probability density func-

tion fVT (:) with respect to the pricing probability measure and is inte-

grable with respect to this measure, the volatility smile is symmetric if

and only if one of the following three equivalent properties is ful�lled:

(i) For any x:

�(x) = FVT (x) � e�x[1� FVT (�x)]

(ii) For any x:

FVT (x) = E�t [e
VT 1[VT��x]]

(iii) There exists an even function g(.) such that for any x:

fVT (x) = e�x=2g(x)

As announced in the introduction, these characterizations o�er to prac-

titioners various ways to extend the BS formula, while keeping both a

23For sake of notational simplicity, the subscripts t have been dropped
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homogeneous option pricing function and a symmetric smile. Character-

ization (i) provides a theoretical support to descriptive approaches which

replace the standard normal cumulative distribution function of the BS

formula by alternative distribution functions, possibly asymmetric (see

Garcia and Gencay (1997)). Characterization (ii) should be interpreted

in terms of hedging. Indeed, Garcia and Renault (1998) have shown

that E�
t
[eVT1[VT��x]] is precisely the hedging ratio, in other words the

derivative of the option pricing function with respect to the stock price

(the so-called delta of the option)24. Finally, for characterization (iii) let

us just notice at this stage25 that if the pricing probability measure is

characterized by a conditional log-normal distribution of future returns

given available information at time t :

VT = Log
STB(t; T )

St
j It ;(Qt) N (mt; �

2
t
)

the condition of Proposition 9 means that :

mt = ��
2
t

2

which is automatically ful�lled in equilibrium since, by application of (1)

with K = 0; we have:
St = B(t; T )E�

t
ST

More generally, if VT = Log
STB(t; T )

St
follows (under Qt) a condi-

tional gaussian distribution N [mt(U
T
t ); �

2
t (U

T
t )] given It and the path

UT
t
(between t and T ) of some state variables U , the condition will be

ful�lled (by integration over UT
t ) as soon as:

mt(U
T

t
) = ��

2
t (U

T
t )

2
:

This is the case for instance for an Hull and White world without

leverage e�ect, which explains the main result of Renault and Touzi

(1996): if option prices are conformable to the Hull and White option

pricing formula without leverage e�ect, the volatility smile is symmet-

ric. More generally, it is often claimed that an asymmetric smile means

24Their proposition 2.1 shows that this characterization of the hedging ratio is a

necessary and su�cient condition for homogeneous option pricing. Since hedging is

not the primary focus of this paper, we leave to the reader the interpretation of this

fairly natural relationship between FVT (x) and the delta coe�cient.
25The characterization of the set of asset prices processes in equilibrium whose

equivalent pricing probability measure ful�lls the condition (iii) of Proposition 9 is

also beyond the scope of this paper.
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that the underlying pricing probability measure is skewed. Proposition

9 characterizes precisely which type of "symmetry" of the pricing prob-

ability measure is required for the symmetry of the smile. In particular,

it shows that it is not the density of the log returns that should be

symmetric (as it is commonly believed perhaps because of the usual log-

normal setting), but the same density rescaled by a suitable exponential

function.

In the next subsection, we generalize this result by characterizing

the skewness of the volatility smile in terms of the leverage e�ects or the

serial correlation in the aggregate consumption risk which appear in our

general option pricing formula.

5.2 Asymmetric smiles, preferences and implied la-

tent binomial trees

By taking into account the slight change of notations (31), our general

option pricing formula (27) can be rewritten as follows:

�t(x) = Et

(
QXY (t; T )�(d1(x)) �

eB(t; T )
B(t; T )

e�x�(d2(x))

)
(33)

where

d1(x) =
x

�t;T
+
�t;T
2

+
1

�t;T
Log

"
QXY (t; T )

B(t; T )eB(t; T )
#

d2(x) = d1(x)� �t;T

�2t;T =

TX
�=t+1

�2Y � :

However, we know by (20) that:

B(t; T )[1� FVT (�x)] = Et[ eB(t; T )�(d2(x))]:
Therefore, when one compares the option pricing formula (33) to the

symmetry condition (i) in Proposition 9, it is easy to check that:

Et

( eB(t; T )
B(t; T )

e�x�(d2(x))

)
= e�x[1� FVT (�x)]

In other words, the symmetry property of the smile is equivalent to:
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FVT (x) = Et fQXY (t; T )�(d1(x))g

or:

1�Et

( eB(t; T )
B(t; T )

�(d2(�x))
)
= Et fQXY (t; T )�(d1(x))g (34)

From the bond and stock pricing equations (21) and (25), we know

that
eB(t;T )

B(t;T )
and QXY (t; T ) are two random random variables that are

equal in expectation conditional to It: Given this equality in expectation,
it is natural to ask whether (34) holds when these two random variables

are equal with probability one. The answer is a�rmative, since from

(33):

d2(�x) = �d1(x) +
2

�t;T
Log

"
QXY (t; T )

B(t; T )eB(t; T )
#
:

Then, when the two random variables are equal: �(d2(�x)) = 1 �
�(d1(x)); which ensures that (34) holds. We have therefore proven the

following proposition:

Proposition 10 : In the framework of section 4, a su�cient condition

for a symmetric volatility smile is the following identity :

QXY (t; T ) =
eB(t; T )
B(t; T )

The details of the proof above suggest that the condition is not too

far from being a necessary and su�cient condition. It should also be

stressed that, from (26), this condition for symmetry is equivalent to:

E[
ST
St
jUT

1 ] =
1

B(t; T )
exp[(1� �)

TX
�=t+1

�XY � ]

This equation corresponds to a CAPM-like stock pricing formula.

Moreover, when the symmetry condition of proposition 10 is ful�lled,

d1(x) and d2(x) are preference-free and coincide with the corresponding

arguments of a Hull-White type option pricing formula. The formula
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does not imply however that option prices are preference-free. Indeed

the option pricing formula becomes:

�t(x) = Et

( eB(t; T )
B(t; T )

[�(d1(x)) � e�x�(d2(x))]

)
:

Therefore, preference parameters may still appear through the ratioeB(t;T )

B(t;T )
: As already explained in subsection 4.4 above, the natural way

to obtain a true preference-free Hull-White option pricing formula is in-

deed to impose the two following conditions: (i) ~B(t; T ) = B(t; T ) and
(ii) QXY (t; T ) = 1:

In other words two kinds of \generalized" leverage e�ects may explain

(besides the instantaneous interest rate risk) asymmetric smiles: either a

genuine leverage e�ect, that is an instantaneous correlation between the

return on the stock and its stochastic volatility process, or a stochastic

correlation between the return of the stock and the total endowment

of the economy. These results provide some theoretical foundation to

the observed asymmetric smiles and their empirically documented re-

lationship with the business cycle and interest rate movements (see for

instance the survey by Bates (1996)). More importantly, the new conclu-

sion of our model for practicioners should be that an asymmetric smile

is indicative of the relevance of preference parameters to price options.

Indeed, our structural equilibrium model has shown that violations of

the symmetry condition in Proposition 10 (due to interest rate risk or

the occurence of a leverage e�ect in the general sense above) correspond

precisely to cases where preference parameters matter for option pricing.

Therefore, whenever an asymmetric smile is observed, the �rst issue

to address is to specify a list of state variables as well as a set of mean,

variance and covariance functions conformable to B3. Since the process

of state variables is a latent Markov process, a natural candidate is the

Markov switching model introduced by Hamilton (1989) and applied to

asset pricing by Cecchetti, Lam and Mark (1990, 1993) and Bonomo and

Garcia (1993, 1994, 1996). The standard procedures of estimation and

identi�cation of such a model (Hamilton (1989), Garcia (1997)) can then

be used for the modeling of the bivariate process (Xt; Yt).
The statistical procedure just referred to amounts to an unrestricted

inference procedure based on aggregate consumption and stock divi-

dends. However, the equilibrium pricing relationships for bonds, stocks

and options constrain these dynamics and suggest to look for a Markov

switching process consistent with these equilibrium relationships. This

approach is in the spirit of Hansen and Singleton (1983), who estimate
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a VAR process for consumption and returns constrained by Euler equa-

tions, and Bonomo and Garcia (1996), who estimate a Markov switching

model consistent with CCAPM pricing relationships for stock and bond

returns. What our model suggests is that adding option prices to such

relationships should be informative about both laws of motion and pref-

erence parameters. This is in contrast with Merton (1990, p. 282) who

claims that: \...attempts to use the option price to estimate either ex-

pected returns on the stock or risk preferences of investors are doomed

to failure." Of course, this citation refers to a world where option prices

are preference-free, which is di�erent from our extended framework when

leverage e�ects are at play and smiles are asymmetric.

Our approach has to be compared with a recent trend in the litera-

ture called implied binomial trees (Rubinstein (1994)). There is a formal

similarity between the two approaches, because in both cases we try to

calibrate a binomial tree or a discrete Markov process on the dynamics

of option prices. However, while implied binomial trees inferred in Ru-

binstein (1994) represent the local volatility of the underlying asset, the

riskless interest rate and the asset payout rate as a function of the prior

path of the underlying asset price, our implied latent binomial trees are

hidden Markov chains which correspond to violation 3 of the BS model

in Rubinstein (1994, p. 778): \The local volatility of the underlying

asset, the riskless interest rate or the asset payout rate is a function of a

state variable which is not the concurrent underlying asset price or the

prior path of the underlying asset price". We have explained that this

type of violation is useful since it maintains the homogeneity of option

prices but of course we are led to follow the route of what Rubinstein

calls the unpalatable alternative of establishing an equilibrium model in

which investor preferences explicitly enter. We have argued that such

a route is viable: once the Markov process has been identi�ed and es-

timated, it can be simulated to calibrate preference parameters on our

closed-form option pricing formula. Inferring the dynamics of fundamen-

tals and preference parameters from option prices does not then appear

much more complicated than the usual Monte Carlo procedures used

pervasively for extended BS pricing models. Moreover, implied latent

binomial trees and preference parameters should provide more stable op-

tion pricing and hedging than standard implied binomial trees26 given

their structural underpinning.

26Recent work by Dumas, Fleming and Whaley (1996) has shown that lack of

stability is an important drawback of the implied binomial tree methodology.
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6 Conclusion

In this paper, we have speci�ed a stochastic framework for the funda-

mentals which produces, in a dynamic equilibrium asset pricing model,

a homogeneous option pricing formula. Since this homogeneity property

preserves a Black-Scholes shape to our generalized option pricing for-

mula, it reinforces the robustness of the BS formula and rationalizes the

abundant literature that extends the BS model to improve its usefulness

for practitioners.

In general, through an instantaneous causality relationship between

the market portfolio or the stock price and state variables which af-

fect the interest rate risk or the stochastic volatility of the stock price,

the option price depends on preference parameters. The interest rate

risk premium is not hidden in the market price of long-term bonds and

involves all preference characteristics (discounting, risk aversion and in-

tertemporal substitution), while the risk premium related to the volatil-

ity risk or leverage e�ect only involves the risk aversion parameter. This

last e�ect is purely due to a covariance risk (in the spirit of the CAPM)

and vanishes if the stock has a zero beta with respect to the market.

It is only in the absence of such instantaneous causality e�ects that our

general option pricing formula specializes to the usual preference-free op-

tion pricing formulas. When the processes of consumption growth and

dividend growth are not instantaneously caused by unobserved state

variables, we recover preference-free option pricing as if markets were

complete and unambiguous arbitrage-based pricing was possible, as well

as CAPM pricing for stocks. On the other hand, when markets are gen-

uinely incomplete, due to a leverage e�ect for the stock or a similar e�ect

for the market return, a causality e�ect appears and one needs some as-

sessment of the appropriate pricing of systematic volatility and interest

rate risks through attitudes towards risk and intertemporal substitution.

Even though the state variables are usually unobservable, our for-

mula is of practical relevance in two respects. First, we have referred

to Hamilton's (1989) Markov switching model as a tractable way to �l-

ter out these state variables from the data, which makes our formula

implementable. Second, we have shown that observed asymmetries in

the smile e�ect are directly related to the risk premiums associated with

correlations with these state variables, which make their presence essen-

tial to price options more accurately and in particular to account for

asymmetric smile e�ects observed with BS implicit volatilities.

We have emphasized in section 5 that equilibrium conditions for op-

tion prices can be informative to infer the laws of motion of the fun-

damentals and the preference parameters. In particular, option prices
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appear to matter empirically to disentangle risk aversion from intertem-

poral substitution in a recursive utility framework with Kreps-Porteus

preferences. A preliminary study27 estimating Euler conditions with var-

ious asset prices shows that the addition of �rst-order conditions related

to options leads to parameter estimates supportive of Kreps-Porteus pref-

erences, contrary to what is obtained simply with stocks and Treasury

bills . Further simulation and estimation work is warranted to con�rm

these results, but they point to the potential usefulness of option prices

to identify asset pricing models, an avenue which has been overlooked in

the literature.

27In a previous version of the paper, we included a section entitled \GMM esti-

mation of the Recursive Utility Model with Option Prices" in which the equilibrium

model was tested on a set of Euler conditions with daily option data from the Mon-

treal Stock Exchange. Further details can be found in that version which is available

upon request from the authors.
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Appendix 1

Proof of Proposition 1:

The price of the option can be rewritten as:

�t(K) = B(t; T )St

Z +1

K

St

�
ST
St
� K

St

�
dQt

�
ST
St

�
:

Therefore:

@�t

@K
= B(t; T )St

R +1
K

St

� 1
St
dQt

�
ST

St

�
;

@�t

@K
= �B(t; T )Qt

h
ST

St
� K

St

i
:

Proof of Proposition 2:

(ii)=)(i)

�t = B(t; T )StE
�

t

"�
ST
St
� K

St

�+
#
:

The pricing function �t would be homogeneous of degree one if mul-

tiplying K and St by a positive scalar �; �t would also be multiplied

by �: Looking at the formula above, this could be true as soon as the

Qt probability distribution of the return ST

St
; with respect to which the

expectation is computed, is independent of St:
(i)=) (ii)

By Proposition 1:

Qt

�
ST
St

� x

�
= � 1

B(t; T )

@�t(K;St)

@K
;

with: x = K

St
:

But if �t is homogeneous of degree one,
@�t(K;St)

@K
is homogeneous of

degree zero, so that:

@�t(�K; �St)

@K
=
@�t(K;St)

@K
=
@�t(

K

St
; 1)

@K
=
@�t(x; 1)

@K
;

which depends only on x.

Therefore Qt

h
ST

St
� x

i
does not depend on St:

Proof of Proposition 4:
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The equivalence between (A1) and (A1)' is nothing but the charac-

terization of Granger non-causality in continuous time (from S to (r; �))
provided by Florens and Foug�ere (1996, p.1206). When these assump-

tions are maintained, we are able to write:

dSt
St

= r(t)dt + �(t)�sr(t)dW
r(t) + �(t)�s�(t)dW

�(t) + �(t)�(t)dW z(t);

where dW z is a standard Brownian motion independent of (dW r ; dW �);
and: �

�sr(t)
�s�(t)

�
=

�
1 �r�(t)
�r�(t) 1

��1 �
�sr(t)
�s�(t)

�
;

and �2(t) =1-�2
sr
(t)� �2

s�
(t)� 2�r�(t)�sr(t)�s�(t):

Assumption (A2) means that, given r(.) and �(:);the process (St)
is a geometric Brownian motion. This means that the trend and the

di�usion terms of dSt
St

are deterministic functions of time (given r(:) and
�(:)), that is _[r(:); �(:)]� measurable. Since _[r(:); �(:)] and _[St] are
assumed to be measurably separated given _[r(t); �(t)]; this means that
the trend and the di�usion terms of dSt

St
are deterministic functions of

(r(t); �(t)):Taking into account the above expressions for these terms

and assumption (A1)' about �r�;we conclude that (A2) is equivalent to
(A2)'.

Proof of Proposition 5:

Let us de�ne: Zt = (Xt; Yt); Z
t
1 = (X� ; Y� )1���t:

By assumption B2 :

TY
t=1

`(Xt; YtjUT

1 ) = `(ZT1 jUT

1 )

=
`(ZT1 ; U

T
1 )

`(UT
1 )

=

Q
T

t=1 `(Zt; UtjZt�11 ; U t�1
1 )

`(UT
1 )

=

QT

t=1 `(UtjZt�11 ; U t�1
1 )

QT

t=1 `(ZtjZt�11 ; U t
1)

`(UT
1 )

:

Under assumptions B1 and B2 :

`(UtjZt�11 ; U t�1
1 ) = `(UtjU t�1

1 ) (assumption B1);

`(ZtjZt�11 ; U t

1) = `(ZtjU t

1) (assumption B2):
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Then:

TY
t=1

`(Xt; YtjUT

1 ) =

Q
T

t=1 `(UtjU t�1
1 )

`(UT
1 )

TY
t=1

`(ZtjU t

1)

=

TY
t=1

`(Xt; YtjU t

1):

Integrating over (X� ; Y� ); � 6= t; it can be seen that, under assump-

tion B2, Assumption B1 implies B1'. Conversely, if assumption B1' holds

together with B2, then it has been seen above that by assumption B2:

`(ZT1 ; U
T

1 ) =

TY
t=1

`(UtjZt�11 ; U t�1
1 )

TY
t=1

`(ZtjU t

1):

But it is also true that:

`(ZT1 ; U
T

1 ) = `(UT

1 )`(Z
T

1 jUT

1 );

=

TY
t=1

`(UtjU t�1
1 )

TY
t=1

`(ZtjUT

1 ); by assumption B2

=

TY
t=1

`(UtjU t�1
1 )

TY
t=1

`(ZtjU t

1); by assumption B1'.

Comparing these two expressions for `(ZT1 ; U
T
1 ) it can be seen that:

TY
t=1

`(UtjZt�11 ; U t�1
1 ) =

TY
t=1

`(UtjU t�1
1 ):

Applying this recursively for T=1, 2, 3 and so on, we obtain that:

`(UtjZt�11 ; U t�1
1 ) = `(UtjU t�1

1 );8t:

which is Assumption B1.

Proofs of Propositions 6 and 7:

a) Proposition 6:

The conditional expectation (11) is computed under the probabil-

ity distribution of Xt+1;It+1 given (X�;Y� )��t and U
t
1;that is basically

(Xt+1;Yt+1;Ut+1) given (Xt
1; Y

t
1 ; U

t
1): But with obvious notations:
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`[Xt+1; Yt+1; Ut+1jXt

1; Y
t

1 ; U
t

1] = `[Ut+1jXt

1; Y
t

1 ; U
t

1]

:`[Xt+1; Yt+1jXt

1; Y
t

1 ; U
t+1
1 ]

= `[Ut+1jU t

1]:`[Xt+1; Yt+1jU t+1
1 ];

by application of respectively (B1) and (B2). Therefore:

`[Xt+1; Yt+1; Ut+1jXt

1; Y
t

1 ; U
t

1] = `[Xt+1; Yt+1; Ut+1jU t

1];

and the conditional expectation (11) depends on It only through U t
1 :

�(It) = �(U t
1): A similar argument can be applied to (12) after replace-

ment of �t+1and �t by �(U
t+1
1 ) and �(U t

1):
b) Proposition 7:

From Proposition 6 and (16), it is straightforward to check that B1

(resp. B2) implies the discrete time analogue of A1 (respectively A2).

To obtain the converse of these implications, we have to prove that (A1)

together with (A2) imply that �(It) and  (It) depend on Itonly through
U t
1:This is obtained by a proof fully similar to the proof of Proposition 6,

since, thanks to (16) it is equivalent to think about the joint probability

of (X;Y; U) or (M;R;U):
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Appendix 2

We derive in this appendix pricing formulas (20), (24) and (27), for

the pricing probability measure, the stock and the call option respec-

tively. We know from equation (18) that the call option price can be

written as the di�erence of two terms Gt �Ht;where:

Gt = Et

"
�
(T�t)

�
CT
Ct

���1
aTt (
)ST1[ST�K]

#

and:

Ht = KEt

"
�
(T�t)

�
CT
Ct

���1
aT
t
(
)1[ST�K]

#

with:aTt (
) =
Q
T�1
�=t

h
(1+�(U

�+1
1

)

�(U�
1
)

i
�1
:

To arrive at formula (27), we need to show that:

Gt = StEt[QXY (t; T )�(d1)]

Ht = KEt[ eB(t; T )�(d2)]
The second result is obviously equivalent to formula (20) (see the

argument at the beginning of subsection 4.1), while the �rst will provide

as a by-product formula (24). Indeed, in the particular case K=0:

Gt = Et

"
�
(T�t)

�
CT
Ct

���1
aT
t
(
)ST

#
= St

�(d1) = 1

and therefore the �rst result gives:

St = StEt[QXY (t; T )]

that is formula (25), which is equivalent to (24).

We therefore concentrate on proving the two above expressions for

Gt and Ht: First, given that:

log
CT
Ct

=

TX
�=t+1

X� ;
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and:

log
ST

St
= log

'(UT
1 )

'(U t
1)

+

TX
�=t+1

Y� ;

Gt and Ht can be rewritten as:

Gt

St
= Et

(
�
(T�t)aT

t
(
)

'(UT
1 )

'(U t
1)

exp[(� � 1)

TX
�=t+1

X�

+

TX
�=t+1

Y� ]1
[
P

T

�=t+1
Y��log

K

St

'(Ut
1
)

'(UT
1
)
]

)

Ht = Et

(
�
(T�t)aT

t
(
) exp[(� � 1)

TX
�=t+1

X� ]1
[
P

T

�=t+1
Y��log

K

St

'(Ut
1
)

'(UT
1
)
]

)

By the law of iterated expectations:

Et(:) = Et[Et(:jUT

1 )];

we are led to compute some expectations of the form E[exp(Z1)1[Z2�0]];
where (Z1; Z2)

0 is a bivariate Gaussian vector. We therefore establish

the following lemma.

Lemma : If

�
Z1

Z2

�
is a bivariate Gaussian vector, with:

E

�
Z1

Z2

�
=

�
m1

m2

�
; V ar

�
Z1

Z2

�
=

�
!2
1 �!1!2

�!1!2 !2
2

�

E[exp(Z1)1[Z2�0]
] = exp[m1 +

!
2
1

2
]�(m2

!2
+ �!1); with � the cumulative

normal distribution function.

a) Proof of the Lemma:

E[(expZ1)(1[Z2�0])] = E[exp(Z1 � �!1
!2
Z2) exp(�

!1

!2
Z2)1[Z2�0]]

= E[exp(Z1 � �!1
!2
Z2)]E[exp(�

!1

!2
Z2)1[Z2�0]]

= exp(m1 � �!1
!2
m2 +

1
2
[!2

1 � �2!2
1 ])

: E[exp(Z)1[Z�0]]
where:

Z; @[�!1
!2
m2; �

2!2
1 ] = @[m;�2] (assuming � > 0):
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E[eZ1[Z�0]] =
R +1
0

eZ(2��2)�
1
2 e�

1

2�2
(Z�m)2dZ

=
R +1
0

(2��2)�
1
2 e�

1

2�2
[Z2

�2mZ�2Z�2+m2]dZ

=
R +1
0

(2��2)�
1
2 e�

1

2�2
[Z2

�(m+�2)]2e�
1

2�2
[m2

�(m+�2)2]dZ

= e�
1

2�2
[�2m�2��4] Pr obf@[m+ �2; �2] > 0g

= em+�
2

2 �(m
�
+ �)

= e
�
!1
!2
m2+

�
2
!
2
1

2 �(m2

!2
+ �!1)

Using this expression in the previous equation, we �nally obtain:

E[(expZ1)(1[Z2�0])] = exp[m1 +
!2
1

2
]�(

m2

!2
+ �!1)

Clearly, the result carries through for � = 0:
If � < 0;we obtain:

E[exp(�
!1
!2
Z2)1[Z2�0]] = E[exp(Z)1[Z�0]] = em+�

2

2 �(�m
�
� �)

with:� = ��!1:
The result is therefore unchanged.

b) Proof of the formula Gt = StEt[QXY (t; T )�(d1)]
We apply the above lemma with:

Z1 = (�� 1)

TX
�=t+1

X� +

TX
�=t+1

Y� (35)

Z2 =

TX
�=t+1

Y� � log
K

St

'(U t
1)

'(UT
1 )

We know that, given UT
1 ; (Z1; Z2)

0 is a bivariate Gaussian vector

with the following moments:

m1 = (�� 1)

TX
�=t+1

mX� +

TX
�=t+1

mY� ;

m2 =

TX
�=t+1

mY� � log
K

St

'(U t
1)

'(UT
1 )
;

!2
1 = (�� 1)2

TX
�=t+1

�2X� +

TX
�=t+1

�2Y � + 2(�� 1)

TX
�=t+1

�XY � ;
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!2
2 =

TX
�=t+1

�2Y � ;

�!1!2 = (�� 1)

TX
�=t+1

�XY � +

TX
�=t+1

�2Y � :

Therefore, by application of the lemma:

E
h
exp[(�� 1)

P
T

�=t+1X� +
P

T

�=t+1 Y� ]1[ST�K]jUT
1

i

= exp[(�� 1)

TX
�=t+1

mX� +

TX
�=t+1

mY�

+
1

2
(�� 1)2

TX
�=t+1

�2X� +
1

2

TX
�=t+1

�2Y � + (�� 1)

TX
�=t+1

�XY � )]

�

"
1

(
P

T

�=t+1 �
2
Y � )

1
2

[At] +

TX
�=t+1

�2Y �

#

with: At =
PT

�=t+1mY� � log K

St

'(Ut1)

'(UT
1
)
+ (�� 1)

PT

�=t+1 �XY � :

It is worth noticing at this stage that:

Et

�
ST
St
jUT

1

�
=
'(UT

1 )

'(U t
1)

exp[

TX
�=t+1

mY� +
1

2

TX
�=t+1

�2Y � ]

and in turn:

At = logE

�
ST
St
jUT

1

�
+ log

St
K

+ (�� 1)

TX
�=t+1

�XY � �
1

2

TX
�=t+1

�2Y �

= log
StQXY (t; T )

K eB(t; T ) � 1

2

TX
�=t+1

�2Y � :

Therefore, the above application of the lemma proves that:

Gt

St
= Etf�
(T�t)aTt (
) exp[(�� 1)

TX
�=t+1

mX� +

1

2
(�� 1)2

TX
�=t+1

�2X� + (�� 1)

TX
�=t+1

�XY � ]E

�
ST
St
jUT

1

�
�(d1)g
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where:

d1 =
1

(
PT

�=t+1 �
2
Y � )

1
2

"
log

StQXY (t; T )

K eB(t; T ) +
1

2

TX
�=t+1

�2Y �

#

In other words, we have proven that:

Gt

St
= Et [QXY (t; T )�(d1)]

which is the required result.

c) Proof of the formula Ht = KEt[ eB(t; T )�(d2)]:
We apply the lemma with:

Z1 = (�� 1)

TX
�=t+1

X�

Z2 =

TX
�=t+1

Y� � log
K

St

'(U t
1)

'(UT
1 )

Therefore, (m2; !
2
2) are unchanged with respect to the case b) above,

but now:

m1 = (�� 1)

TX
�=t+1

mX� ;

!2
1 = (�� 1)2

TX
�=t+1

�2X� ;

�!1!2 = (�� 1)

TX
�=t+1

�XY � :

Therefore, by application of the lemma:

E
h
exp[(�� 1)

PT

�=t+1X� ]1[ST�K]jUT
1

i

= exp[(�� 1)

TX
�=t+1

mX� +
1

2
(�� 1)2

TX
�=t+1

�2X� ]

�

"
1

(
P

T

�=t+1 �
2
Y � )

1
2

At

#
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By the same argument as above, we then obtain:

Ht

K
= Et

(
�
(T�t)aT

t
(
) exp[(�� 1)

TX
�=t+1

mX�

+
1

2
(�� 1)2

TX
�=t+1

�2X� ]�(d2)

)

with:

d2 = d1 �
(
P

T

�=t+1 �
2
Y � )

1
2

2
:

This provides the required result:

Ht = KEt[ eB(t; T )�(d2)]:
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Appendix 3

Proof of Proposition 8:

We �rst check that, for any given value of �;the function �(:) =

BS(:; �) ful�lls the announced property:

�(�x) = ex�(x) + 1� ex:

Indeed, from (28) and (31):

BS(x; �) = �[d1(x; �)] � e�x�[d2(x; �)];

with: d1(x; �) =
x

�
+ �

2
; d2(x; �) =

x

�
� �

2
:

But: �[d2(�x; �)] = �[�d1(x; �)] = 1��[d1(x; �)];and: �[d1(�x; �)] =
�[�d2(x; �)] = 1��[d2(x; �)]:

Therefore:

BS(�x; �) = �[d1(�x; �)] � ex�[d2(�x; �)]
= ex�[d1(x; �)] ��[d2(x; �)] + 1� ex

= exBS(x; �) + 1� ex:

Let us now consider another homogeneous option pricing formula

x! �(x): The associated BS implied volatilities are then de�ned by:

�(x) = BS[x; ��(x)];

�(�x) = BS[�x; ��(�x)]:

Therefore, for any x:

��(x) = ��(�x)
() �(�x) = BS[�x; ��(x)]
() �(�x) = exBS[x; ��(x)] + 1� ex

() �(�x) = ex�(x) + 1� ex:2

Proof of Proposition 9:

a) First, we prove that the criterion of Proposition 8 is equivalent to

the property (i) of Proposition 9. We know by proposition 1 that:
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@�

@K
(St;K) = �B(t; T )Qt

�
ST
St

� K

St

�
= �B(t; T )[1� FVT (�x)]:

Since, from (31):

@�

@x
(x) =

@

@x
[�(1;

K

St
)] = �K

St

@

@K
�(St;K)

we have, for any x :

@�

@x
(x) = e�x[1� FVT (�x)]:

Therefore, the propery (i) of Proposition 9 may be rewritten as:

�(x) = 1� e�x
@�

@x
(�x)� @�

@x
(x)

or equivalently:

�@�
@x

(�x) = ex[�(x) +
@�

@x
(x) � 1]:

This last equality is obviously a corollary of proposition 8 obtained

by taking the derivative with respect to x of the identity in Proposition

8. Conversely, this equality implies that for any x :

�
Z +1

x

@�

@u
(�u)du =

Z +1

x

eu[�(u) +
@�

@u
(u)� 1]du

This equation will provide the criterion of Proposition 8 if we are able

to complete it by the following limit condition:

lim
x!+1

�(�x) = lim
x!+1

[ex�(x) + 1� ex]:

Therefore, the required equivalence will be proved if we show that

this limit condition is always guaranteed. But, on the one hand:

lim
x!+1

�(�x) = lim
x!�1

�(x)

= lim
K!+1

B(t; T )E�tMax[0; ST �K] = 0
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by virtue of the Lebesgue dominated convergence theorem since:

Max[0; ST�K] �!K!+1 0 almost surely and 0 �Max[0; ST�K] � ST ;
which is by assumption integrable with respect to the pricing probability

measure. On the other hand:

lim
x!+1

ex[�(x)� 1] + 1 = 1 + lim
K!0+

1

KB(t; T )

fB(t; T )E�
t
Max[0; ST �K]�B(t; T )E�

t
ST g

= 1 + lim
K!0+

1

K
E�tMax[�ST ;�K]

= 1� lim
K!0+

E�
t
Min[

ST
K
; 1]

= � lim
K!0+

E�
t
Min[

ST
K
� 1; 0] = 0

by virtue of the Lebesgue dominated convergence theorem since:Min[ST
K
�

1; 0] �!K!0+ 0 almost surely and 0 � �Min[ST
K
� 1; 0] � 1: This proves

that: limx!+1 �(�x) = 0 = limx!+1[ex�(x) + 1 � ex] and completes

the proof of the required equivalence.

b) We now check that properties (i) and (ii) of Proposition 9 are

equivalent. The general de�nition (1) of the pricing probability measure

implies that:

�t(St;K) = B(t; T )E�t [ST1[ST�K] �B(t; T )KQt[ST � K];

that is, after dividing by St :

�(x) = E�
t
[eVT 1[VT��x]]� e�x[1� FVT (�x)]

By identi�cation of this formula with condition (i), we see that (i) is

equivalent to (ii).

c) Finally, we prove that conditions (i) and (iii) are equivalent. By

taking the derivative of (i), we obtain:

@�

@x
(x) = fVT (x) � e�xfVT (�x) + e�x[1� FVT (�x)]:

But, since by part a) of this proof:

@�

@x
(x) = e�x[1� FVT (�x)]

we conclude that (i) implies:
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fVT (x) = e�xfVT (�x)

or:

e
x

2 fVT (x) = e�
x

2 fVT (�x)

which means that the function x ! e
x

2 fVT (x) is even, which is exactly

condition (iii) of Proposition 9. Conversely, if this condition is ful�lled,

we have, for any x:

Z +1

x

fVT (u)du =

Z +1

x

e�ufVT (�u)du:

This equation will provide property (i) of proposition 9 if we complete

it by the following limit condition:

lim
x!+1

�(x) = lim
x!+1

[FVT (x)� e�x[1� FVT (�x)]]:

Therefore, the required equivalence will be proved is we show that this

limit condition always holds. But it is clear that:

lim
x!+1

[FVT (x)� e�x[1� FVT (�x)]] = lim
x!+1

FVT (x) = 1

and that :limx!+1 �(x) = 1; since we have already shown in part a) of

this proof that: limx!+1 ex[�(x)�1] = �1: This completes the proof.2
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